# ZH analysis and Higgs to Hadron teams introduction

Patrizia Azzi, Gregorio Bernardi, Jan Eysermans, Ang Li, Giovanni Machiori, Emmanuel Francois Perez

FCC-ee Higgs Kick-off meeting March 28<sup>th</sup>, 2022















# Main Analyzers



Gregorio Bernardi APC-Paris

Jan Eyserman MIT



Patrizia Azzi

INFN

Ang Li
APC-Paris
2nd year Ph.D student



Giovanni Machiori APC-Paris Master 2 intern: Alexis Maloizel March – July 2022

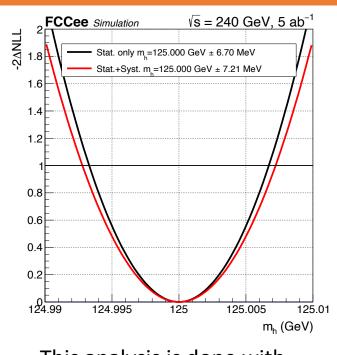


Emmanuel Francois Perez CERN

Ang LI--APC-Paris 28/03/2021



### ZH analysis activities


### $\triangleright$ Higgs mass and ZH cross-section from Z( $\mu^+\mu^-$ )H events

- ✓ Event Selections (w/o MVA)
- ✓ Signal and background fits:
  - Different generators
  - Signal shapes
- ✓ Statistical analysis performed using Combine (Cross-section ~1.07%, Higgs mass: 6.7 MeV)
- ✓ Systematics uncertainties:
  - Beam Energy Spread (samples with 1% and 6% BES uncertainty)
  - Initial State Radiation (Whizard → KKMC reweigthing)
  - Centre-of-mass uncertainty (± 2 MeV)
  - Muon momentum scale (variation of  $10^{-5}$ )
  - Final State Radiation (additional sample without FSR; need to benchmark against Sherpa)
  - Inclusion of all systematics (besides FSR):  $\Delta m_H \sim 7.2$  MeV and  $\Delta \sigma \sim 1.10$  %

#### ✓ Further checks

- Different detector configuration studied (Magnetic field 2T to 3T, FullSilicon tracker (a la CLD))
- M<sub>recoil</sub> in Delphes and in Full Simulation
- Fake Muon and muon isolation
- Crossing Angle
  Ang LI--APC-Paris 28/03/2021

Talk on FCC Week Liverpool
On behalf of the FCC-ee ZH analysis team



This analysis is done with FCCSW+RooFit+HiggsCombine



# ZH analysis Plans

| ☐ Revisit Selection (with MVA)                                                                       |
|------------------------------------------------------------------------------------------------------|
| □ FSR:                                                                                               |
| <ul> <li>Sherpa-to-Wizhard reweighting, then implement it in the fit and check the impact</li> </ul> |
| Crossing angle:                                                                                      |
| <ul> <li>implement the variation in the fit</li> </ul>                                               |
| ☐ Muon resolution:                                                                                   |
| Implement smearing                                                                                   |
| <ul> <li>Go directly with the resolution of the full-sim sample</li> </ul>                           |
| ☐ Fit studies                                                                                        |
| <ul> <li>Systematic uncertainty on the background shape/norm</li> </ul>                              |
| Check stat-effect of signal fits                                                                     |
| ☐ Model dependence study                                                                             |
| □ Backgrounds                                                                                        |
| 4-Fermion background generation (All Pythia backgrounds switch to Whizard)                           |
| □ Electron channel                                                                                   |
| • Smearing now identical to muons, additional smearing to be applied at analysis level               |
| ☐ FullSim                                                                                            |
| • Large-stat signal samples to understand potential reco-effects                                     |
| Additional cuts to optimize fits on the mass measurement                                             |
| • E.g. remove FSR photons (or FSR recovery)                                                          |
| Gen-based fit                                                                                        |
| • Run the analysis with gen-info only, as ultimate precision reference (stat-only)                   |
| ☐ 365 GeV pole + combination with 240 GeV                                                            |
| □ Paper                                                                                              |

Ang LI--APC-Paris 28/03/2021 4



# Higgs to Hadron analysis activities and plans

- ➤ Measurement of hadronic Higgs boson branching ratios at FCC-ee with Z(II)H events at Vs=240 GeV (Giovanni, Paul Paquiez\* and Mariette Jolly\*)
  - ✓ Flavour tagging
  - ✓ Event selection, categorisation
  - ✓ Fits
- Plans (Giovanni and Alexis)
  - ☐ Optimise selection and categorisation
  - Compare jet flavour matching and reconstruction algorithms
  - ☐ Investigate other event generators and more backgrounds
  - ☐ Investigate impact of alternative detector designs (and of new algorithms) affecting flavour tagging
  - Systematic uncertainties
  - ☐ Fit (binned vs unbinned / range / signal model parameters that can / can't be correlated across categories / Asimov ..)
  - lacktriangle Improve hadronic mass resolution to improve discrimination between signal and background

(\*) former student of Giovanni

Talk on FCC Week Liverpool

Ang LI--APC-Paris 28/03/2021