Electron Yukawa from s-channel e⁺e⁻ → Higgs: Status & plans

FCC-ee Higgs WG kick-off meetg CERN, 28th March 2022

David d'Enterria (CERN)

[Current status reported in: arXiv:2107.02686]

Generation of lightest fermion masses?

LHC can only measure 3rd (plus a few 2nd) generation Yukawas.
 Can we prove mass generation for stable (u,d,e,v) matter in the Universe?

Tiny s-channel $e^+e^- \rightarrow H$ cross section

FCC-ee Higgs WG kickoff meetg, March 2022

Huge backgrounds

Very-rare counting experiment over 10 decay channels:

Decays of a 125 GeV Standard-Model Higgs boson

- Other 4-jet final states, e.g. $H \rightarrow ZZ^*(4j)$ swamped by $e^+e^- \rightarrow Z^*, \gamma^* \rightarrow q\overline{q}$ (100 pb),
- **•** Rarer decays (4 ℓ) have ~0 counts.

Higgs decay channel	BR	$\sigma \times BR$
		(ISR \otimes spread incl.)
$H \rightarrow b\overline{b}$	58.2%	164 ab
$H \rightarrow gg$	8.2%	23 ab
$H \to \tau \tau$	$6.3\%{ imes}60\%{ imes}60\%$	6.5 ab
$H \to c\overline{c}$	2.9%	8 ab
$H \to WW \to \ell \nu \ 2j$	$21.4\%{ imes}67.6\%{ imes}32.4\%{ imes}2$	26 ab
$H \to WW \to 2\ell \ 2\nu$	$21.4\%{ imes}32.4\%{ imes}32.4\%$	6.3 ab
$H \rightarrow WW \rightarrow 4j$	$21.4\%{\times}67.6\%{\times}67.6\%$	28 ab
$H \rightarrow ZZ \rightarrow 2j \ 2\nu$	$2.6\%{ imes}70.\%{ imes}20.\%{ imes}2$	2 ab
$H \to ZZ \to 2\ell \ 2j$	$2.6\%{ imes}70.\%{ imes}10.\%{ imes}2$	1 ab
$H \to ZZ \to 2\ell \ 2\nu$	$2.6\%{\times}20.\%{\times}10.\%{\times}2$	0.3 ab
$H \to \gamma \gamma$	0.23%	0.65 ab

Irreducible background	σ	S/B	
$e^+e^- \rightarrow b\overline{b}$	$19 \mathrm{~pb}$	$O(10^{-5})$	
${ m e^+e^-} ightarrow q\overline{q}$ (w/ ${ m e_{q-q,mistag}}$ ~1%)	61 pb	$\mathcal{O}(10^{-3})$	4
$e^+e^- \to \tau\tau$	$10 \mathrm{~pb}$	$\mathcal{O}(10^{-6})$	
$e^+e^- \to c\overline{c}$	22 pb	$O(10^{-7})$	
$e^+e^- \to WW^* \to \ell\nu \ 2j$	23 fb	$\mathcal{O}(10^{-3})$	
$e^+e^- \to WW^* \to 2\ell \ 2\nu$	$5.6~{\rm fb}$	$\mathcal{O}(10^{-3})$	
$e^+e^- \to WW^* \to 4j$	$24 \mathrm{fb}$	$\mathcal{O}(10^{-3})$	
$e^+e^- \rightarrow ZZ^* \rightarrow 2j \ 2\nu$	$273 \mathrm{~ab}$	$\mathcal{O}(10^{-2})$	
$e^+e^- \to ZZ^* \to 2\ell \ 2j$	$136 \mathrm{~ab}$	$\mathcal{O}(10^{-2})$	
$e^+e^- \to ZZ^* \to 2\ell \ 2\nu$	39 ab	$\mathcal{O}(10^{-2})$	
$e^+e^- \to \gamma \gamma$	79 pb	$\mathcal{O}(\overline{10^{-8}})$	

Most significant channel: $e^+e^- \rightarrow H(gg) \rightarrow jj$

1/N) dN / dx

2 gluon-tagged jets (with 70% effic. each) Light-q mistagging rate: ~1% Challenging, but not impossible: Dedicated QCD studies needed (reco&PID of ALL hadrons in jets).

BDT MVA result (removing jet vars. potentially already used in g-uds discrimination):

Signal reduction ~50% Backgd. reduction: x17

Decays of a 125 GeV Standard-Model Higgs bosor

Signal & backgrounds cross sections cut flow:

P	rocess	Events	Passes	+ cuts	+ MVA	raw σ	Tagrate	Pass+Tag	+ Cut	Final σ
Η	gg	100000	85315	80350	45440	$25\pm0~{ m ab}$	$70\%^{2}$	10 ab	9.7 ab	5.5 ± 0.0 ab
bl	b	199981	140057	12532	1331	$81\pm0~\rm{pb}$	$0.0\%^{2}$	0 pb	0 pb	$0\pm 0~{ m pb}$
co	3	200000	174120	28282	1984	$73\pm0~{ m pb}$	$0.0\%^{2}$	$0 \mathrm{~pb}$	0 pb	$0\pm 0~{ m pb}$
q	q	200000	186171	36888	2015	$237\pm0~{ m pb}$	$1.0\%^{2}$	22 fb	$4.4~{ m fb}$	$239\pm5~{ m ab}$
Ζ	Z	99999	75095	49798	14261	$224\pm0~{\rm fb}$	$0.0\%^{2}$	0 pb	0 pb	$0\pm 0~{ m pb}$
• ta	utau	20000	0	0	0	$26\pm0~\rm{pb}$	$0.0\%^{2}$	0 pb	0 pb	$0\pm 0~{ m pb}$
W	VW	20000	16959	12783	5413	$21\pm0~{\rm fb}$	$0.0\%^{2}$	0 pb	$0 \mathrm{~pb}$	$0\pm 0~{ m pb}$

Total bckg: 244 ab, $S/\sqrt{S+B} = 1.0973$, training data 1.1843, from MVA 1.1101

Davidd'Enterria (CERN)

Electron Yukawa limits in ($\sqrt{s_{spread}}, \mathscr{L}_{int}$) plane

• Monochromatization working points ($\sqrt{s_{spread}}$ vs. \mathscr{L}_{int} per IP/year):

Future plans

Accelerator studies (2022 – 2026):

- Angeles Faus & team want to improve the monochromatization vs. luminosity working point, realistic optics studies for FCC-ee.
- Hopefully enlarged team with multiprong tasks using EU (ERC) funding.
- Analysis improvements (2022, focus on $H \rightarrow gg$ channel):
 - 1) Search for exclusive channel(s) not shared with $Z \rightarrow qq$ backgd

Current focus on charm-anticharm gluon splitting: $H \rightarrow gg(cc)$ (ongoing work with BU student):

 $\sigma(H) = \sigma(H) \times BR(H \rightarrow gg) \times P(g \rightarrow cc) \approx 280 \text{ ab} \times 8.2\% \times 3.2\% \approx 1 \text{ ab}$ P(g \rightarrow cc) $\approx 3.2\%$ splitting probab. known only at LO+NLL accuracy (using LEP data and MCs tunes now: expect theoretically developments here).

Tiny cross section, but ongoing MVA BDT study indicates huge $Z \rightarrow cc(g)$ reduction (however, we need to reach ~10⁶ backgd suppression).

- 2) Determine ultimate reachable light-q vs. gluon mistagging rate: Using MVA with ideal hadron-PID'd jet constituents.
- 3) Use FCCSW with realistic detector (DELPHES) performances.

Backup slides

Beams monochromatization in e⁺e⁻ collisions

Standard collision: Dispersion has the same sign at the IP:

$$w = 2 (E_0 + \varepsilon)$$

Monochromatization: Dispersion has opposite sign at the IP:

$$w = 2 E_0 + O(\varepsilon^2)$$

Enhanced c.m. energy resolution, and in some cases increase of the relative frequency of events at the centre of the distribution.

[F.Zimmermann, A.Valdivia: JACoW-IPAC2017-WEPIK015 JACoW-IPAC2019-MOPMP035]

e Yukawa via s-channel $e^+e^- \rightarrow H$ production

Higgs decay to e⁺e⁻ is unobservable: BR(H→e⁺e⁻) ∝ m_e² = 5.2·10⁻⁹
 Resonant Higgs production considered so far only for muon collider: σ(μμ→H) ≈ 70 pb. Tiny κ_e Yukawa coupling ⇒ Tiny σ(ee→H):

$$\sigma(e^+e^- \rightarrow H) = \frac{4\pi\Gamma_H^2 Br(H \rightarrow e^+e^-)}{(\hat{s} - M_H^2)^2 + \Gamma_H^2 M_H^2} = 1.64 \text{ fb } (\text{m}_{\text{H}} = 125 \text{ GeV}, \Gamma_{\text{H}} = 4.1 \text{ MeV})$$

$$e^+ \qquad \text{W}, Z, \bar{b}, g, \tau^+$$

$$= \text{Huge luminosities available at FCC-ee:}$$

$$\frac{1000}{1000} \qquad \int_{\text{FCC-ee}}^{\sqrt{\text{S}=\text{m}_{\text{H}}}} (-2 \cdot 10^{36} \text{ cm}^2 \text{ S}^{-1})}_{\text{ILC - 4}} \qquad H_{\text{Hoery}}, \text{FCC-ee running at H pole-mass}$$

$$\mathcal{S}_{\text{int}} \approx 20 \text{ ab}^{-1}/\text{yr would produce O(30.000) H's}$$

$$IFF \text{ we can control: (i) beam-energy spread,}$$
(ii) ISR, and (iii) huge backgrounds, then:}
$$\Rightarrow \text{ Electron Yukawa coupling measurable.}$$

$$\Rightarrow \text{ Higgs width measurable (threshold scan)?}$$

$$\Rightarrow \text{ Separation of possible nearly-degen. H's?}$$

BSM electron Yukawa

Upper bound on k_e translates into lower bound on M_{BSM} scale:

κ_e	≈	1	+	$v^3/(\sqrt{2}m_eM^2)$

	LHC8 (25/fb)	$ \kappa_e \lesssim 600$	$M\gtrsim 6~{ m TeV}$
$h ightarrow e^+ e^-$	LHC14 (300/fb)	$ \kappa_e \sim 260$	$M\sim9~{\rm TeV}$
	LHC14 (3/ab)	$ \kappa_e \sim 150$	$M\sim 12~{\rm TeV}$
	$100 { m TeV} (3/{ m ab})$	$ \kappa_e \sim 75$	$M\sim 17~{\rm TeV}$
	LEP II	$ \kappa_e \lesssim 2000$	$M\gtrsim 3~{ m TeV}$
$e^+e^- \rightarrow h$	FCC-ee $(100/{ m fb})$	$ \kappa_e \sim 10$	$M\sim 50~{\rm TeV}$
(~))	current	${ m Re}\kappa_e\lesssim 3000$	$M\gtrsim 2.5~{ m TeV}$
$(g-2)_e$	future	${ m Re}\kappa_e\sim 300$	$M \sim 8 { m ~TeV}$

Note: Unsuppressed dim-10 BSM operators also possible.

FCC-ee Higgs WG kickoff meetg, March 2022

"Actual" s-channel $e^+e^- \rightarrow H$ cross section

- $\sigma(e^+e^- \rightarrow H) = 1.64$ fb for Breit-Wigner with natural $\Gamma_{\mu} = 4.1$ MeV width. But Higgs production greatly suppressed off resonant peak.
- Convolution of Gaussian energy spread of each e[±] beam with Higgs Breit-Wigner leads to a (Voigtian) effective cross-section decrease:

Signal & backgrounds simulation

■ PYTHIA8 e^+e^- at $\sqrt{s} = m_{H}^-= 125$ GeV to generate 10 final-states for Higgs signal plus backgrounds:

(other SM loop-induced $e^+e^- \rightarrow H$ found negligible)

- HDECAY: Higgs boson decay NLO branching ratios
- YFSWW/ZZ/MG5 calculators to cross-check PYTHIA8 x-sections
- FastJet package: Exclusive e⁺e⁻ (N_i=2,4) jet algorithm
- Event-shape variables: thrust, sphericity, T, oblateness,...
- ISR switched-on in PY8, $\sqrt{s_{spread}}$ via scaling to match $\sigma(e^+e^- \rightarrow H)=280$ ab

Event reconstruction, preselection, MVA

Signal & backgd events showered/hadronized/decayed with PYTHIA8. Final-state particles acceptance: 5°< θ < 175°.</p>

Jet reco: k_{T} algorithm for N_i=2,4 exclusive jets. Isolation: $\Sigma E < 1$ GeV, $\Delta R < 0.25$

Assumed reconstruction (in)efficiencies for jets (uds, g, c, b), tau, γ , e:

	b jets	c jets	gluon jets	τ_{had} (hadron decays)	γ, e^{\pm}
reco/tagging efficiency (ε_i)	80%	70%	70%	80%	100%
mistagging rates $(\varepsilon_{i \to i}^{\text{mistag}})$	1% (for c jet)	5% (for b jet)	1% (for <i>uds</i> jets)	$\sim 0\%$ (for b, c -jets)	$0.01\%~(e^{\pm} \text{ for } \gamma)$
	0.01% (for $udsg$ jets)	0.1% (for $udsg$ jets)	0.001, 0.01% (for b, c -jets)	$\sim 0\%$ (for $udsg$ jets)	

Final-state Higgs signal definitions (preselection to eliminate reducible backgds):

Target Higgs decay	Final state definition	Signal presel. efficiency
$H \rightarrow b\overline{b}$	2 (excl.) jets, 1 <i>b</i> -tagged jet, no τ_{had}	80%
${\rm H} \to gg$	2 (excl.) gluon-tagged jets, 0 isolated ℓ^{\pm}	50%
$H \rightarrow \tau_{had} \tau_{had}$	Exactly 2 $\tau_{\rm had}$, 0 isolated ℓ^{\pm}	65%
$\mathbf{H} \to c \overline{c}$	2 (excl.) jets, 1 c-tagged jet, no $\tau_{\rm had}$	70%
$\mathrm{H} \to \mathrm{WW}^* \to \ell \nu 2j$	1 isolated ℓ^{\pm} , $E_{\rm miss} > 2$ GeV, 2 (excl.) jets	${\sim}100\%$
$\mathrm{H} \to \mathrm{WW}^* \to 2\ell 2\nu$	2 isolated oppcharge ℓ^{\pm} , $E_{\text{miss}} > 2$ GeV, 0 non-isol. ℓ^{\pm} , 0 charged hadrons	$\sim 100\%$
$\mathrm{H} \to \mathrm{WW}^* \to 4j$	4 (excl.) jets, ≥ 1 c-tag jets, 0 b-,g-tag jets;	70%
	jets with $m_{j1j2} \approx m_{\rm W}$ not both c-tagged, 0 $\tau_{\rm had}$, 0 isolated ℓ^{\pm}	
$\mathrm{H} \to \mathrm{ZZ}^* \to 2j2\nu$	2 (excl.) jets, $E_{\rm miss} > 30$ GeV, 0 isolated ℓ^{\pm} , 0 $\tau_{\rm had}$	${\sim}100\%$
$\mathrm{H} \to \mathrm{ZZ}^* \to 2\ell 2j$	2 isolated opposite-charge ℓ^{\pm} , 2 (excl.) jets, 0 $\tau_{\rm had}$	${\sim}100\%$
$\mathrm{H} \to \mathrm{ZZ}^* \to 2\ell 2\nu$	2 isolated oppcharge ℓ^{\pm} , $E_{\text{miss}} > 2$ GeV, 0 non-isol. ℓ^{\pm} , 0 charged hadrons	${\sim}100\%$
$H \rightarrow \gamma \gamma$	2 (excl.) isolated photons	$\sim 100\%$

MVA with O(50) variables for kinematical properties of each single, pair, (n-wise combinations) of physics objects, global event vars., MELA vars.,...

2^{nd} most significant channel: $e^+e^- \rightarrow H(WW^*) \rightarrow I_{Vjj}$

(1/N) dN / 0.0804

0.0805

1/N) dN/

0.5

1.5 2 2.5

cos(o

0.6

0.5

- Final state def. (retains ~100% of σ (WW*(lvjj)) = 27 ab): 1 isolated $e,\mu,\tau(e),\tau(\mu) + ME>2 \text{ GeV} + 2 \text{ jets (excl.)}$
- Analysis cuts (from MVA):
 - ✓ $E_{i1,i2}$ < 52,45 GeV \iff Kills e⁺e⁻→ qq ✓ $m_{w(lv)}$ > 12 GeV/c² ← Kills e⁺e⁻ → qq ✓ E_{lepton} > 10 GeV \iff Kills e⁺e⁻→ qq ✓ ME > 20 GeV \iff Kills e⁺e⁻ \rightarrow qq
 - ✓ BDT MVA ← Kills e^+e^- →WW* continuum (exploits opposite W^{\pm} polarizations in H decay)

Decays of a 125 GeV Standard-Model Higgs boson

Signal & backgrounds cross sections cut flow:

Process	Events	Passes	+ cuts	+ MVA	raw σ	Tagrate	Pass+Tag	+ Cut	Final σ
$\mathrm{HWW}\mathrm{jjl} u$	400000	174534 144336	66399	44797	$27\pm0~{ m ab}$	$100\%^{2}$	23 ab	10 ab	7.0 ± 0.0 ab
WW	400000	174809 145026	55955	16886	$46\pm0~{ m fb}$	$100\%^{2}$	$17~{ m fb}$	$6.4~{ m fb}$	$1.9\pm0.0~{ m fb}$
bb	999898	0 200961	2	0	$81\pm0~\rm{pb}$	$100\%^{2}$	16 pb	161 ab	0 ± 81 ab
cc	1000000	0 63844	0	0	$73\pm0~\rm{pb}$	$100\%^{2}$	$4.7 \ \mathrm{pb}$	$0 \mathrm{~pb}$	$0\pm73~\mathrm{ab}$
qq	1000000	0 7675	0	0	$237\pm0~\rm{pb}$	$100\%^{2}$	$1.8 \ \mathrm{pb}$	$0 \ \mathrm{pb}$	$0\pm237~\mathrm{ab}$
tautau	20000	0 8359	0	0	$26\pm 0~\rm pb$	$0.75\%^{2}$	$605 \ \mathrm{ab}$	$0 \ \mathrm{pb}$	$0\pm72~{\rm zb}$
	m · 11	1 40 0	a1 (a.						

Total bckg: 1.9 fb, $S/\sqrt{S} + B = 0.5025$, training data 0.5352, from MVA 0.5033

50 60 70

FCC-ee Higgs WG kickoff meetg, March 2022

Davidd'Enterria (CERN)

$e^+e^- \rightarrow H$ significance: Multi-channel combination

Number of presel. & MVA events per channel for signal & backgrounds:

Table 4. Number of reconstructed events expected after preselection N(presel.) and BDT output N(MVA) cuts, for s-channel Higgs decay modes and associated dominant backgrounds in e^+e^- collisions at $\sqrt{s} = m_{\rm H}$ ($\delta_{\sqrt{s}} = 4.1 \,{\rm MeV}$ and $\mathcal{L}_{\rm int} = 10 \,{\rm ab}^{-1}$).

Channel	N(presel.)	N(MVA)	Channel	N(presel.)	N(MVA)	Channel	N(presel.)	N(MVA)
$H \rightarrow b\overline{b}$	1320	1220	$H \rightarrow gg$	110	55	$H \rightarrow \tau_{had} \tau_{had}$	48	13
$e^+e^- \rightarrow b\overline{b}$	$1.5 \cdot 10^8$	$1.1 \cdot 10^8$	$e^+e^- \to q\overline{q}$	61000	2400	$e^+e^- \rightarrow \tau_{had}\tau_{had}$	$2.7 \cdot 10^7$	$3.8\cdot 10^5$
$e^+e^- \rightarrow c\overline{c}$	$1.4\cdot 10^6$	$9.4\cdot 10^5$	$e^+e^- \rightarrow c\overline{c}$	220	~ 10			
$e^+e^- \rightarrow q\overline{q}$	$3.0 \cdot 10^4$	4800	$e^+e^- \rightarrow b\overline{b}$	20	~ 1			
$\mathrm{H} \to \mathrm{WW}^* \to \ell \nu 2j$	265	55	$H \to WW^* \to 2\ell 2\nu$	64	25	$H \to WW^* \to 4j$	180	27
$e^+e^- \to WW^* \to \ell\nu 2j$	$2.3\cdot 10^5$	11000	$e^+e^- \to WW^* \to 2\ell 2\nu$	$5.6 \cdot 10^4$	7600	$e^+e^- \to WW^* \to 4j$	$1.3 \cdot 10^5$	14000
$e^+e^- \rightarrow b\overline{b}$	1100		$e^+e^- \to ZZ^* \to 2\ell 2\nu$	1360	~ 5	$e^+e^- \to ZZ^* \to 4j$	$4.7 \cdot 10^3$	20
$e^+e^- \to c\overline{c}, q\overline{q}$	150		$e^+e^- \to \tau\tau$	$1.2\cdot 10^7$	_	$e^+e^- \to b\overline{b}, c\overline{c}$	$5\cdot 10^5$	7000
$H \to ZZ^* \to 2j2\nu$	21	11	$H \to ZZ^* \to 2\ell 2j$	10	4	$H \to ZZ^* \to 2\ell 2\nu$	3	0.8
$e^+e^- \to ZZ^* \to 2j2\nu$	2700	1000	$e^+e^- \rightarrow ZZ^* \rightarrow 2\ell 2j$	1000	500	$e^+e^- \to ZZ^* \to 2\ell 2\nu$	270	70
$e^+e^- \rightarrow WW^* \rightarrow 2j2\nu$	6100	400	$e^+e^- \to WW^* \to 2\ell 2j$	$3.3\cdot 10^4$	~ 1	$e^+e^- \to WW^* \to 2\ell 2\nu$	$3.3 \cdot 10^4$	260
$e^+e^- \to b\overline{b}, c\overline{c}, q\overline{q}$	7000		$e^+e^- \to b\overline{b}, c\overline{c}, q\overline{q}$	400	_	$e^+e^- \to b\overline{b}, c\overline{c}, q\overline{q}$	390	_
$e^+e^- \to \tau \tau$	1700	~ 2				$e^+e^- \to \tau\tau$	$3 \cdot 10^4$	_

Channels significance & combination via RooStats-based LHC Higgs tool: Profile likelihood & hybrid significances give ~identical results, which are also very close to naive S/√B expectation (10⁻⁴ backgd. relative uncertainty):

${\rm H} \to gg$	$\mathrm{H} \to \mathrm{WW}^* \to \ell \nu \ 2j; \ 2\ell \ 2\nu; \ 4j$	$\mathrm{H} \to \mathrm{ZZ}^* \to 2j \; 2\nu; \; 2\ell \; 2j; \; 2\ell \; 2\nu$	${\rm H} \to b \bar{b}$	$\mathrm{H} \to \tau_{\mathrm{had}} \tau_{\mathrm{had}}; c \overline{c}; \gamma \gamma$	Combined
1.1σ	$(0.53\otimes 0.34\otimes 0.13)\sigma$	$(0.32\otimes 0.18\otimes 0.05)\sigma$	0.13σ	$< 0.02\sigma$	1.3σ

■ For $\mathscr{L}_{int} = 10 \text{ ab}^{-1}$: Significance $\approx 1.3\sigma$ Limit (95% CL) for SM Yukawa: $y_e < 1.6 \times y_{e,SM}$

$$\sigma_{\rm sig}(e^+e^- \to h \to X\bar{X}) \simeq |\kappa_e|^2$$

FCC-ee Higgs WG kickoff meetg, March 2022

e⁺e⁻ → H significance contours in ($\sqrt{s_{spread}}, \mathscr{L}_{int}$) plane

• Monochromatization working points ($\sqrt{s_{spread}}$ vs. \mathscr{L}_{int} per IP/year):

Electron Yukawa limits at various machines

■ Hadron machines can very loosely constrain $y_e^{}$ via $H \rightarrow e^+e^-$ searches on top of huge DY (and $H \rightarrow \gamma\gamma$) backgrounds:

Combining up to 4 IPs & running a few years we are at SM y_e values.
 Limits on y_e are ×100 (×30) better than at HL-LHC (FCC-hh).

Conclusions

Accurate m_H needed to run at resonant peak

[•] δσ_B <1 fb (2·10⁻³)

[arXiv:1703.01626 arXiv:1909.12245]

160

165

155

158

2m,,

161

162

160

159

163 164 E_{CM} (GeV)

0.5

156

157

170

s (GeV)

Davidd'Enterria (CERN)

Accurate m_H needed to run at resonant peak

Can m_H be accurately reconstructed via σ(HZ) line shape scan?
 Preliminary MG5@NLO studies by Paolo Azzurri:

• Optimal data-taking point for min Δm_{μ} (stat): $\sqrt{s} \simeq mZ + mH - 0.2 \simeq 217 \text{ GeV}$

- Vσ_{ZH}(dm_H/dσ_{ZH})_{min}=350 MeV/Vfb With 5/ab @ 217 GeV: $\delta m_{H} = \pm 5$ MeV Need systematics control: $\delta E_{beam} < 5$ MeV (5·10⁻⁵), $\delta \epsilon/\epsilon$, $\delta L/L < 10⁻³$, $\delta \sigma_{B} < 0.1$ fb (~10⁻³)
- Combining threshold HZ x-section with m_{HZ} (recoil) should give: $\delta m_{H} = \pm 3.5 \text{ MeV}$

Example of BDT MVA vars. ($H \rightarrow WW^* \rightarrow I\nu jj$)

$\cos \theta_{j1}$	E_ℓ	$p_{_{\mathrm{TT}}}(jj)$	$\cos \phi_{j1}$	$m_{\rm miss}$	$E_{\rm vis}$	p^ℓ_{T}	$E_{\rm miss}$	$p_{_{\mathrm{TT}}}(jj\ell)$	$\cos heta^*$
0.0446	0.0417	0.0409	0.0398	0.0341	0.0328	0.0308	0.03015	0.02726	0.02626
$\eta_{ m miss}$	η_{j1}	$\cos\theta_{j2}$	$\Delta \phi_{jj}$	$m_{_{ m T.miss}}$	$m_{\rm Woffsh.}$	$E_{j,\min}$	$\Delta R_{\min, j\ell}$	$\min \Delta \eta_{j\ell}$	$p_{_{ m T}}^{j1}$
0.0255	0.0238	0.0220	0.0215	0.0212	0.0212	0.0205	0.0204	0.0192	0.0189
$\max\cos(\ell j)$	η_ℓ	$m(\ell u)$	$\min \cos(\ell j)$	$\max \Delta \eta_{jj}$	$m_{ m Wshell}$	$m_{_{\mathrm{T}}}(\ell j_1)$	$m_{_{\rm T}}(jj\ell)$	$m(\ell j_1)$	m_{j2}
0.0189	0.0182	0.0179	0.0176	0.0165	0.0160	0.0160	0.0160	0.0156	0.0147
$\cos \phi_{j1,j2}$	p_{T}^{j2}	$\Delta R_{\max,j\ell}$	η_{j2}	lin.spher.	m_{j1}	$p_{_{\mathrm{T}}}(\ell j2)$	$\Delta heta_{jj}$	$m_{_{\rm T}}(jj)$	ΔR_{jj}
0.0140	0.0136	0.0136	0.0136	0.0136	0.0134	0.0134	0.0132	0.0131	0.0127
$E_{j,\max}$	$m_{_{\rm T}}(\ell j_2)$	sphericity	$p_{_{\mathrm{T}}}(\ell j1)$	$\min \Delta \phi_{j\ell}$	E_{isol}	aplanarity	$\max \Delta \phi_{j\ell}$	$\phi(j_1)$	$m(jj\ell)$
0.0125	0.0121	0.0116	0.0103	0.0102	0.00998	0.00927	0.00914	0.00894	0.00764
$m(\ell j_2)$	m_{jj}	$\phi(j_2)$	lin.aplan.	ϕ^ℓ	$\cos \phi^{*}$		others (R_{\min})	$_{1}, \eta_{\ell}, \ldots)$	
0.00680	0.00641	0.00565	0.00514	0.00512	0.00471		< 0.0	01	

Table 5. Indicative list of BDT variables used in the $H \to WW^* \to \ell \nu \ 2j$ analysis, with their relative weight in the statistical significance for this channel.

Significance increase with polarized beams?

 Polarization of beams would enhance the signal by (1+Pol²) and suppress background by (1-Pol²).
 However, realistic longitud. polarization estimates (Pol=20-30%) are clearly insufficient and higher polarizations would reduce luminosity...

Significance increase:

Pol. = 68%: ×2 significance Pol. = 90%: ×4 significance

Channel 1: $e^+e^- \rightarrow H(bb) \rightarrow 2 b$ -jets

- Final state (retains 90% of σ (bb) = 156 ab): 2 jets (exclusive) + 1 b-jet tagged + 0 τ (had)
- Analysis cuts:
 - ✓ Kinematics: None.
 - ✓ BDT MVA applied to reduce dominant Z*γ*→bbar continuum

For L_{int}=10 ab⁻¹

Significance ≈ 0.1

 $S/\sqrt{B} = 1310/\sqrt{1.7e+8} \approx 0.1$

Signal & backgds before/after MVA cuts:

H(bb): $\sigma = 142 \text{ ab} \Rightarrow \sigma (after) = 131 \text{ ab}$ qqar: $\sigma \approx 20 \text{ pb} \Rightarrow \sigma (after) = 17 \text{ pb}$ τ - τ : $\sigma = 607 \text{ ab} \Rightarrow \sigma (after) = 375 \text{ ab}$

Channel 2: $e^+e^- \rightarrow H(WW^*) \rightarrow I_{Vjj}$

Final state (retains 80% of σ (WW*(lvjj)) = 28 ab): 1 isolated e, μ , τ (e), τ (μ) + ME>2 GeV + 2 jets (excl.)

Analysis cuts:

(exploits opposite W± polarizations in H decay)

For L_{int}=10 ab⁻¹ S/ $\sqrt{B} = 80/\sqrt{27.e3} \approx 0.5$ Significance ≈ 0.5

Channel 3: $e^+e^- \rightarrow H(WW^*) \rightarrow 2I2v$

Final state (retains 60% of σ(WW*(2l2v)) = 7 ab):
 2 isolated e,μ,τ(e),τ(μ) + ME > 2 GeV
 + 0 non-isolated leptons or ch.had.

Analysis cuts (Preselection kills qqbar entirely):

Channel 4: $e^+e^- \rightarrow H(WW^*) \rightarrow 4j$

- Final state (retains 9% of σ(WW*(4j)) = 29 ab):
 4 jets (excl.) + >=1 jet c-tagged jet + 0 b-jets + 0 g-jets
 Jets with m_{j1j2}~m_w not both c-tagged + 0 τ(had)
 + 0 isolated e,μ,τ(e),τ(μ)
- Analysis cuts:
 - ✓ -ln(y_{j3,jet4}) > 5., E_{total}>110 GeV
 ✓ max(M_{jj})= 60-85 GeV/c²
 - ✓ $|\Delta \phi_{Z \text{ decay planes}}| < 1.$
 - ✓ BDT MVA

Signal & backgrounds before/after cuts:

H(WW*): $\sigma = 2.75 \text{ ab} \Rightarrow \sigma(\text{after}) = 1.4 \text{ ab}$ qqbar: $\sigma = 15.7 \text{ fb} \Rightarrow \sigma(\text{after}) = 2 \text{ fb}$ WW*: $\sigma = 1.4 \text{ fb} \Rightarrow \sigma(\text{after}) = 810 \text{ ab}$ τ - τ : $\sigma = 0 \text{ ab} \Rightarrow \sigma(\text{after}) = 0 \text{ ab}$ ZZ*: $\sigma = 4 \text{ ab} \Rightarrow \sigma(\text{after}) = 1.38 \text{ ab}$

For L_{int}=10 ab⁻¹ S/ \sqrt{B} = 14/ $\sqrt{29.e3} \approx 0.08$ Significance ≈ 0.08

Channel 6: $e^+e^- \rightarrow H \rightarrow \tau_{had} \tau_{had}$

- Final state (retains 65% of $\sigma(\tau\tau) = 7.4$ ab):
 - 2 jets (exclusive) + 2 tau-jet tagged + 0 isolated final-state leptons
- Analysis cuts:
 - ✓ Kinematics cuts: None
 - ✓ MVA BDT applied to reduce dominant $Z^*/\gamma^* \rightarrow \tau \tau$ continuum.
- Signal & backgds before/after MVA cuts:

 $H(\tau\tau)$: $\sigma = 7.4 \text{ ab} \Rightarrow \sigma (after) = 1.5 \text{ ab}$ qqbar: $\sigma = 87 \text{ pb} \Rightarrow \sigma (after) = 75 \text{ ab}$ τ - τ : $\sigma = 10 \text{ pb} \Rightarrow \sigma (after) = 100 \text{ fb}$

For L_{int} =10 ab⁻¹ S/ \sqrt{B} = 15/ $\sqrt{1e+6} \approx 0.02$ Significance ≈ 0.02

Channel 7: $e^+e^- \rightarrow H(ZZ^*) \rightarrow 2j2v$

- Final state (retains 75% of σ (WW*(2j2v)) = 2.3 ab): 2 jets (excl.) + ME > 30 GeV
 - + 0 isolated $e,\mu,\tau(e),\tau(\mu)$ + 0 $\tau(had)$
- Kinematic cuts:

✓ min($|m_{ME}-m_z|, |m_{ii}-m_z|$)<10 GeV ← Kills qqbar, τ-τ

 $\begin{array}{c} \checkmark \ \mathsf{E}_{tot} > 120 \ \mathsf{GeV} \\ \checkmark \ \mathsf{m}_{\mathsf{ME}} > 60 \ \mathsf{GeV/c^2} \\ \checkmark \ \mathsf{Cos}(\Delta\theta_{\mathsf{ME},j2}) < 0.8 \\ \leftarrow \ \mathsf{Kills} \ \mathsf{qqbar}, \tau - \tau \\ \checkmark \ \mathsf{Mils} \ \mathsf{qpbar}, \tau - \tau \\ \ast \ \mathsf{Mils} \ \mathsf{qpbar}, \tau - \tau \\ \ast \ \mathsf{Mils} \ \mathsf{qpbar}, \tau - \tau \\ \ast \ \mathsf{Mils} \ \mathsf{qpbar}, \tau - \tau \\ \ast \ \mathsf{Mils} \ \mathsf{qpbar}, \tau - \tau \\ \ast \ \mathsf{Mils} \ \mathsf{qpbar}, \tau - \tau \\ \ast \ \mathsf{Mils} \ \mathsf{qpbar}, \tau - \tau \\ \ast \ \mathsf{Mils} \ \mathsf{qpbar}, \tau - \tau \\ \ast \ \mathsf{Mils} \ \mathsf{qpbar}, \tau - \tau \\ \ast \ \mathsf{Mils} \ \mathsf{qpbar}, \tau - \tau \\ \ast \ \mathsf{Mils} \ \mathsf{qpbar}, \tau - \tau \\ \ast \ \mathsf{Mils} \ \mathsf{qpbar}, \tau - \tau \\ \ast \ \mathsf{Mils} \ \mathsf{qpbar}, \tau - \tau \\ \ast \ \mathsf{Mils} \ \mathsf{qpbar}, \tau - \tau \\ \ast \ \mathsf{Mils} \ \mathsf{qpbar}, \tau - \tau \\ \ast \ \mathsf{Mils} \ \mathsf{qpbar}, \tau - \tau \\ \ast \ \mathsf{Mils} \ \mathsf{qpbar}, \tau - \tau \\ \ast \ \mathsf{Mils} \ \mathsf{qpbar}, \tau - \tau \\ \ast \ \mathsf{Mils} \ \mathsf{Mils} \ \mathsf{qpbar}, \tau - \tau \\ \ast \ \mathsf{Mils} \ \mathsf{Mils$

- ✓ E_{μ} > 14 GeV ← Kills τ-τ

(indicative distributions only: normalized to 1)

Signal & backgrounds before/afte H(ZZ*): $\sigma = 1.75 \text{ ab} \Rightarrow \sigma(\text{after cuts}) = 0.37 \text{ ab}$ ZZ*: $\sigma = 179 \text{ ab} \Rightarrow \sigma(\text{after cuts}) = 25 \text{ ab}$ qqbar: $\sigma = 963 \text{ fb} \Rightarrow \sigma(\text{after cuts}) = 4 \text{ ab}$ τ - τ : σ = 471 ab \Rightarrow σ (after cuts) = 2 ab WW*: $\sigma = 526 \text{ ab} \Rightarrow \sigma(\text{after cuts}) = 0 \text{ ab}$

For L_{int}=10 ab⁻¹
S/
$$\sqrt{B}$$
 = 3.7/ $\sqrt{316} \approx 0.21$
Significance ≈ 0.21

Channel 8: $e^+e^- \rightarrow H(ZZ^*) \rightarrow 2I2j$

- Final state (retains 73% of σ(WW*(2l2j)) = 1.14 ab):
 2 isolated opposite-charge leptons e,μ,τ(e),τ(μ)
 - + 2 jets (exclusive)
- Kinematic cuts:

Channel 9: $e^+e^- \rightarrow H(ZZ^*) \rightarrow 2I2v$

- Final state (retains 60% of $\sigma(ZZ^*(2|2v)) = 0.34$ ab): 2 isolated $e,\mu,\tau(e),\tau(\mu) + ME>2 \text{ GeV}$ + 0 non-isolated leptons or ch.had.
 - Analysis cuts (Preselection kills qqbar entirely):

(indicative distributions only: normalized to 1)

Channel 10: $e^+e^- \rightarrow H \rightarrow \gamma \gamma$

Final state (retains 95% of the $\sigma(\tau\tau) = 0.64$ ab): 2 isolated photons (exclusive) + nothing else

- Analysis cuts:
 - ✓ E_{γ} > 60 GeV reduces diphoton continuum & Bhabha scatt. backgd where e⁺e⁻mis'id for γ with P≈0.35%.
 - ✓ MVA BDT doesn't improve result

Signal & backgds before/after cuts:

 $\begin{array}{lll} \mathsf{H}(\gamma\gamma): & \sigma = 0.61 \ \text{ab} & \Rightarrow & \sigma \ (\text{after}) = 0.3 \ \text{ab} \\ \gamma\gamma: & \sigma = 25 \ \text{pb} & \Rightarrow & \sigma \ (\text{after}) = 900 \ \text{fb} \\ e^+e^-: & \sigma = 2.3 \ \text{pb} & \Rightarrow & \sigma \ (\text{after}) = 59 \ \text{ab} \end{array}$

For L_{int}=10 ab⁻¹ S/ \sqrt{B} = 30/ $\sqrt{1.e4} \approx 0.01$ Significance ≈ 0.01

$e^+e^- \rightarrow H(WW^*) \rightarrow 4j$

The qqbar background σ ~O(100 pb) produces mainly 2-jet events, which can be killed by cutting on event shape variables (sphericity & aplanarity), but ~6 pb remains from quarks that radiate gluons to produce 4-jet events.

- Tagging b-jets (which are produced ~20% of the time in the qqbar background and ~5% of the time in the signal) and removing events with any b-tagged jets provides marginal improvement in separation, but the qqbar background still dominates and washes out the signal almost entirely
- Attempts to reconstruct W mass to apply cuts met with little success (low discriminating power). Try hemisphere separation ...