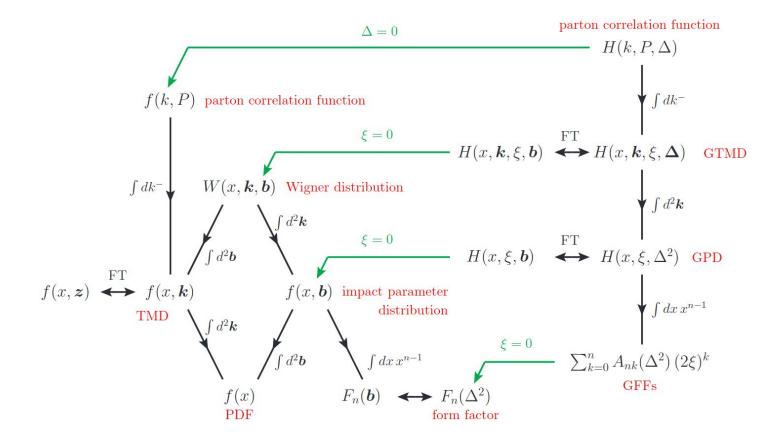


Andrea Signori

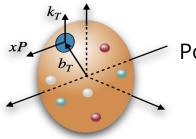
University of Pavia & INFN

Opportunities for unpolarized and polarized hadron structure

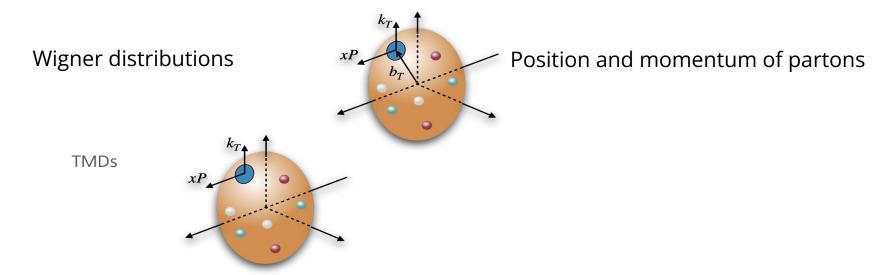

Fixed-target experiments at LHC - CERN

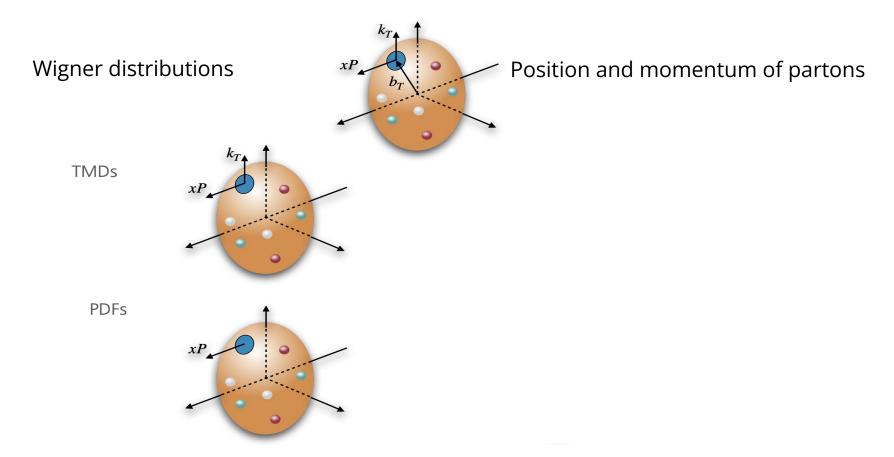
June 22, 2022

Outline

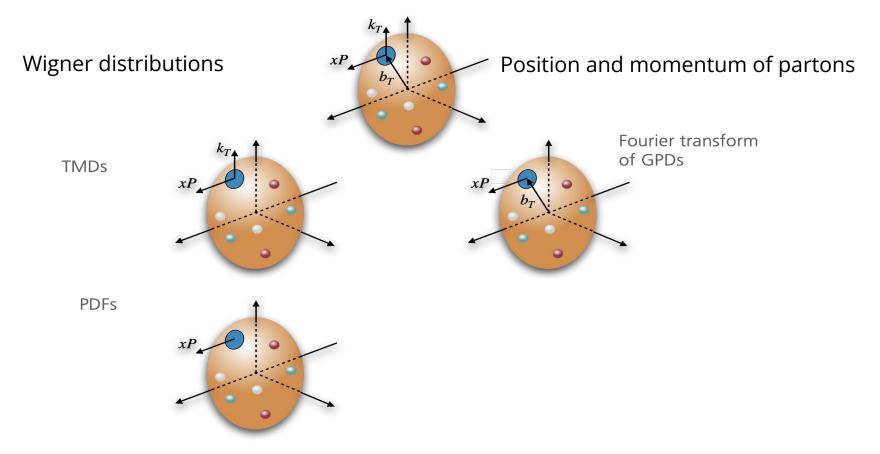

- 1. Introduction and motivation
- 2. Structure of TMDs and its interplay with data
- 3. Opportunities with a fixed-target at the LHC (short selection!)

The hadron structure landscape

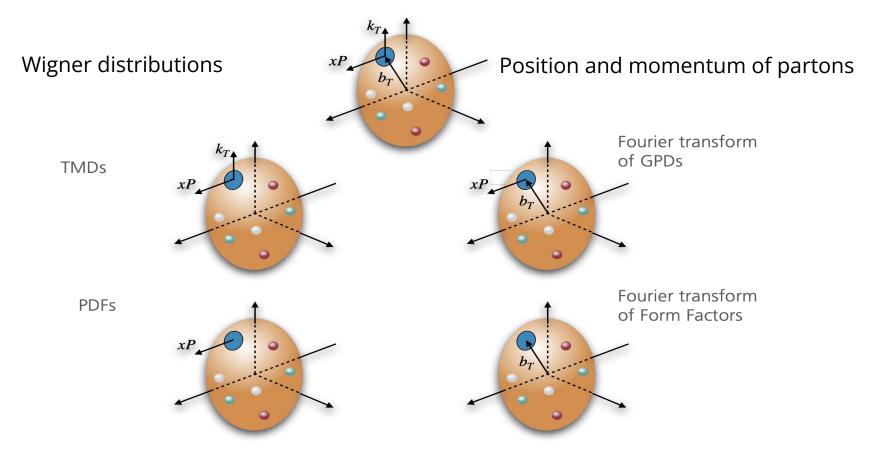



Credit picture: M. Diehl - [arXiv 1512.01328]

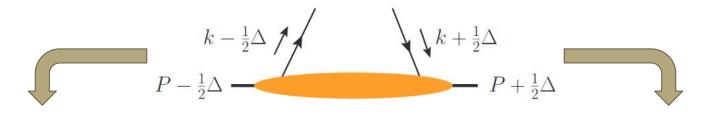
Wigner distributions

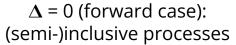


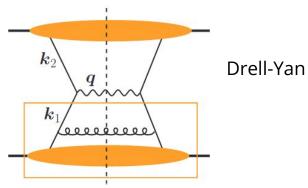
Position and momentum of partons



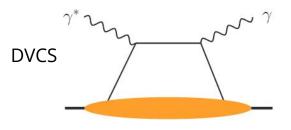
see, e.g., C. Lorcé, B. Pasquini, M. Vanderhaeghen, JHEP 1105 (11)

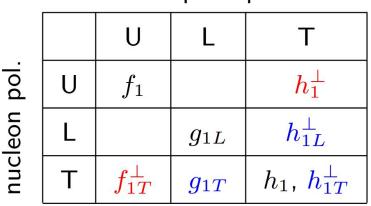

see, e.g., C. Lorcé, B. Pasquini, M. Vanderhaeghen, JHEP 1105 (11)




see, e.g., C. Lorcé, B. Pasquini, M. Vanderhaeghen, JHEP 1105 (11)

Correlation functions: which processes ?


$$H(k, P, \Delta) = (2\pi)^{-4} \int d^4 z \; e^{izk} \left\langle p(P + \frac{1}{2}\Delta) | \bar{q}(-\frac{1}{2}z) \Gamma q(\frac{1}{2}z) | p(P - \frac{1}{2}\Delta) \right\rangle$$



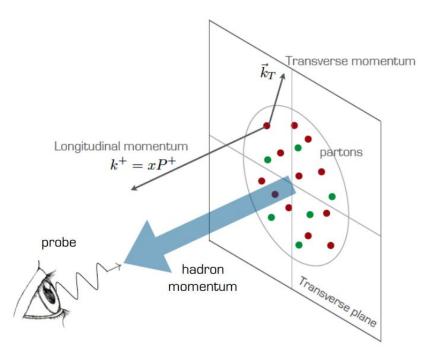
 $\Delta \neq 0$ (non-forward case) Exclusive processes

TMD PDFs for quarks in nucleon

quark pol.

$$\Phi_{ij}(k,P)\,=\,\mathrm{F.T.}\left\langle P \Big|\,\overline{\psi_j}(0)\,U\,\psi_i(\xi)\Big|P
ight
angle$$

At leading twist: 8 TMD PDFs


(similar classification for gluons and for fragmentation functions ... and for GPDs too)

- Black: time-reversal even AND collinear
- Blue: time-reversal even
- **Red**: time-reversal odd (*process dependence*)

The **symmetries of QCD** play a crucial role in this classification

Parton distribution functions

"Maps" of hadron structure in momentum space

 $f_1(x)$

1D structure in momentum space ("collinear")

 $f_1ig(x,k_T^2ig)$

3D structure in momentum space ("transverse momentum dependent" - **TMD PDFs**)

GPDs for quarks in nucleon

		Quark Polarization		
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
larization	υ	Н		$\overline{E}_{\tau} = 2\widetilde{H}_{T} + E_{T}$
	L		\widetilde{H}	\widetilde{E}_T
Nucleon Polarization	т	Ε	\widetilde{E}	H_T \widetilde{H}_T

N. d'Hose, Transversity 2022 - <u>https://agenda.infn.it/event/19219/</u>

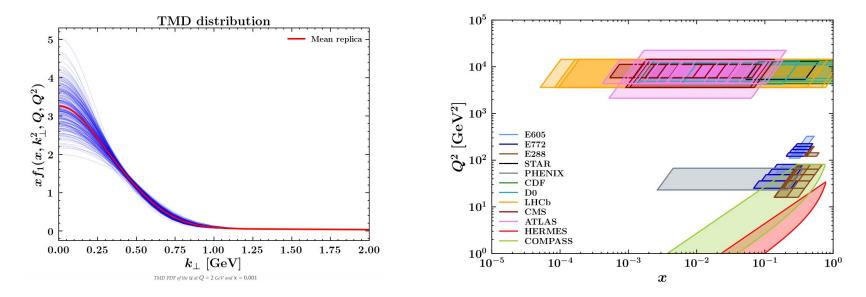
Why studying this maps?

 f_1

 h_1

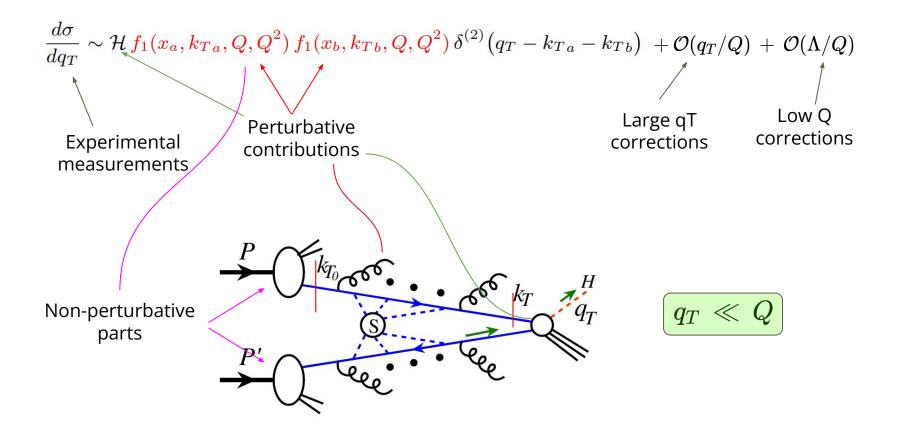
 $f_{1T}^{\perp},\,h_1^{\perp}$

e


 F_{i}

- Test factorization and universality

- Precise knowledge: impact on HEP, e.g. mW determination
- Tensor charge of the nucleon: CP violation and access to BSM physics
- Test the **symmetries** of QCD


- Quark-gluon correlations and quark contribution to hadron mass
- Quark-gluon correlations and **dynamical** generation of quark mass

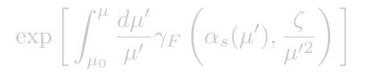
Structure of TMDs & interplay with data

TMD factorization

 $pp \, \longrightarrow \, \gamma^{\cdot} \, / \, Z \, \longrightarrow l \, \overline{l} \, + \, X$

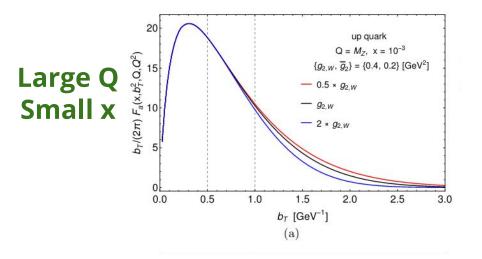
$$\begin{aligned} & \textbf{OCD evolution of a TMD PDF} \\ F_a(x, b_T^2; \mu, \zeta) &= F_a(x, b_T^2; \mu_0, \zeta_0) & \rightarrow \text{TMD distribution} \\ & \times & \exp\left[\int_{\mu_0}^{\mu} \frac{d\mu'}{\mu'} \gamma_F\left(\alpha_s(\mu'), \frac{\zeta}{\mu'^2}\right)\right] & \rightarrow \text{ evolution in } \mu \end{aligned}$$

$$\begin{aligned} & \textbf{Calculable in pQCD} \\ & \times & \left(\frac{\zeta}{\zeta_0}\right)^{-\left[\underbrace{D(b_T\mu_0, \alpha_s(\mu_0))}{\phi} + g_K(b_T; \lambda)\right]} & \rightarrow \text{ evolution in } \zeta \end{aligned}$$

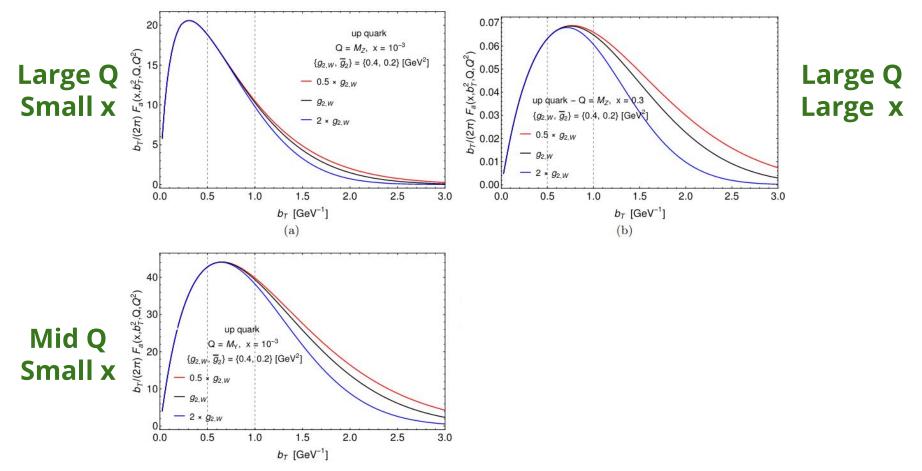

$$\begin{aligned} & \textbf{Non-pert. corrections} \\ & (\text{ large bT}) \\ & \rightarrow \text{ evolution in } \zeta \end{aligned}$$

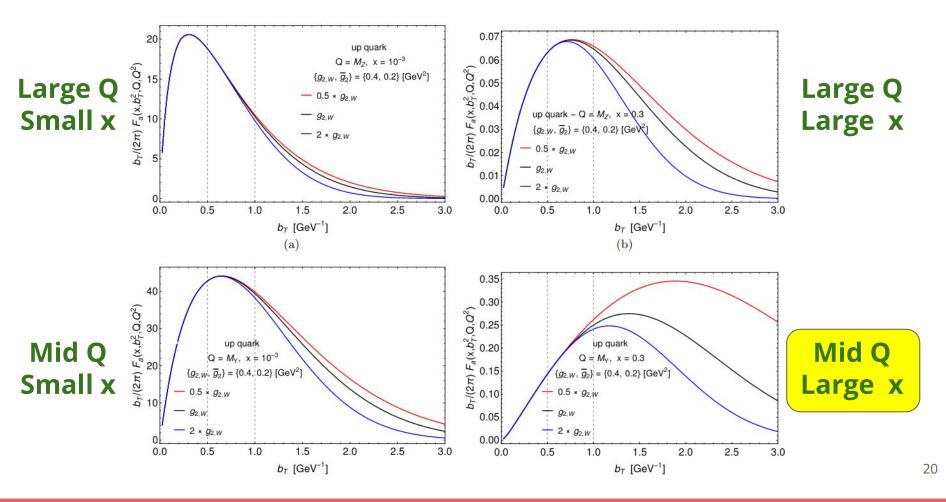
$$F_a(x, b_T^2; \mu_0, \zeta_0) &= \sum_b \underbrace{C_{a/b}(x, b_T^2, \mu_0, \zeta_0)}_{b} \otimes \underbrace{f_b(x, \mu_0)}_{b/b/b} \underbrace{F_{NP}(b_T; \lambda)}_{b/b} \end{aligned}$$

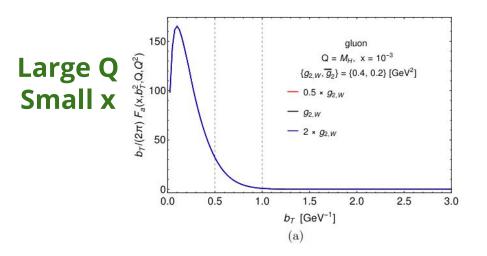
See J.C. Collins' book and many other references, e.g. https://inspirehep.net/literature/1393670


Non-perturbative TMD parts

 $F_a(x, b_T^2; \mu, \zeta) = F_a(x, b_T^2; \mu_0, \zeta_0)$



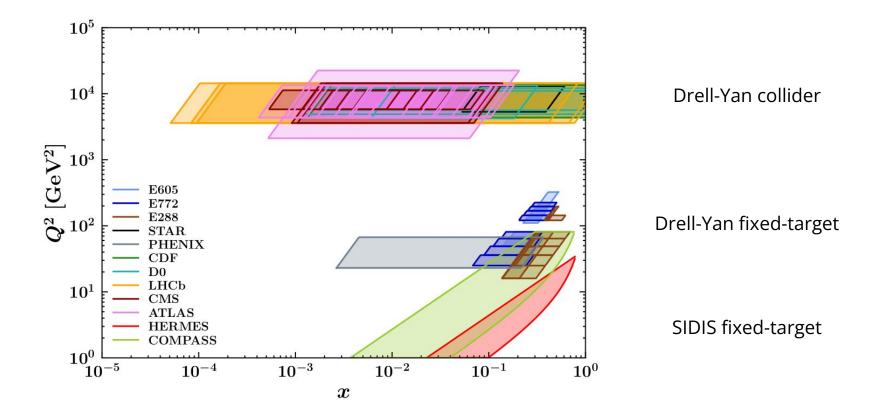

Predictive power - quark TMDs


Predictive power - quark TMDs

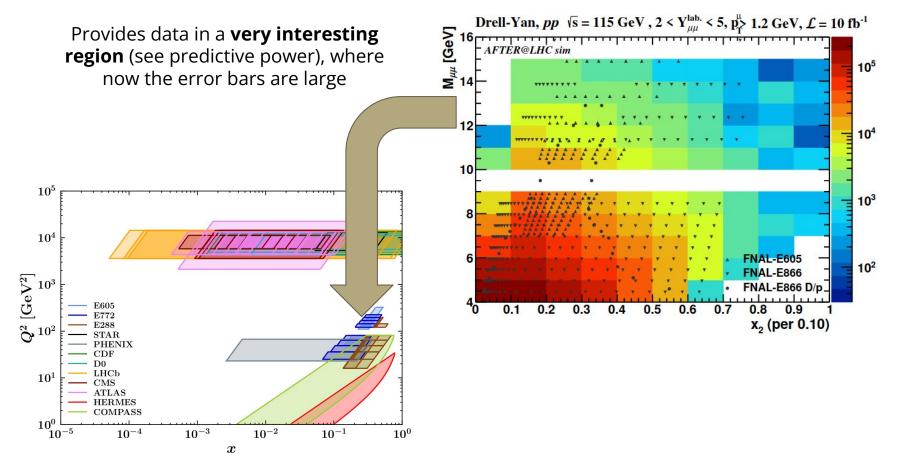
Predictive power - quark TMDs

Predictive power - gluon TMDs

Predictive power - gluon TMDs



Predictive power - gluon TMDs



Data for unpolarized TMDs

MAPTMD22 extraction: <u>https://inspirehep.net/literature/2096333</u>

Data for unpolarized TMDs + DY from FT@LHC

Impact on collinear PDFs

See https://inspirehep.net/literature/1801417

2020 PDFLATTICE REPORT

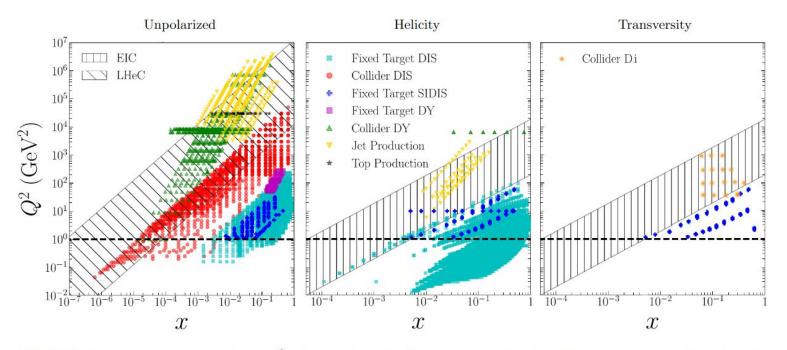


FIG. 1 The kinematic coverage in the (x, Q^2) plane of the hadronic cross-section data for the processes commonly included in global QCD analyses of collinear unpolarized, helicity, and transversity PDFs. The extended kinematic ranges attained by the LHeC and the EIC are also displayed. See Fig. 1 of Ref. (Ethier and Nocera, 2020) for unpolarized nuclear PDFs.

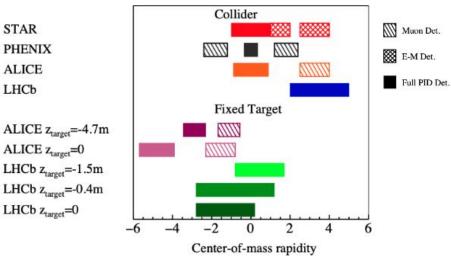
5

Kinematics for FT @ LHC

Energy range similar to RHIC 7 TeV proton beam on a fixed target


c.m.s. ener	'gy: $\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \mathrm{GeV}$	Rapidity shift:	115 GeV
Boost:	$\gamma = \sqrt{s} / (2m_N) \approx 60$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$	
2.76 TeV Pb	beam on a fixed target		-
	$r_{\rm max} = \sqrt{2m} E_{\rm m} = 72 C_{\rm m} V$	Devidity shift.	

c.m.s. ener	$gy: \sqrt{s_{NN}} = \sqrt{2m_N E_{\rm Pb}} \approx 72 {\rm GeV}$	Rapidity shift:
Boost:	$\gamma \approx 40$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$


Hadjidakis et al.: https://inspirehep.net/literature/1680452

Rapidity range

- Entire center-of-mass forward hemisphere $(y_{CM} > 0)$ within 1 degree
- Easy access to (very) large backward rapidity range (y_{CM} < 0) and large parton momentum fraction in the target (x₂)

ALICE and LHCb in fixed target mode with proton beam

C. Hadjidakis at "Synergies LHC/EIC workshop" https://indico.ph.tum.de/event/7014/

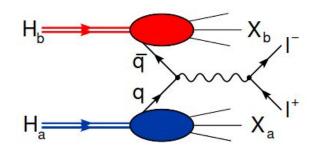
C. Hadjidakis et al.: <u>https://inspirehep.net/literature/1680452</u>

Advantages for FT @ LHC

Accessing **high-x** frontier (\rightarrow **nonperturbative** effects)

Achieving **high luminosity** (\rightarrow **precise** information)

Varying **atomic mass number** of the target (\rightarrow explore **nuclear** effects)


Polarizing the target (\rightarrow explore **spin-momentum** correlations)

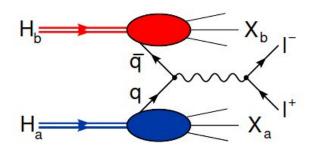
This can be realised at LHC in a **parasitic** mode

Probes for q&g TMDs & projections

C. Hadjidakis et al.: <u>https://inspirehep.net/literature/1680452</u>

Unpolarized Drell-Yan

unpolarized


 $F_{UU}^1 = C[f_1 \bar{f}_1],$ Unpolarized (TMD) PDF

$$F_{UU}^{\cos 2\phi} = \mathcal{C}\left[\frac{2(\vec{h}\cdot\vec{k}_{aT})(\vec{h}\cdot\vec{k}_{bT}) - \vec{k}_{aT}\cdot\vec{k}_{bT}}{M_aM_b}h_1^{\perp}\bar{h}_1^{\perp}\right],$$

Boer-Mulders TMD PDF

No sub-leading twist in literature ..! Important for FT configuration

Unpolarized Drell-Yan

Impact on extraction of unpolarized collinear PDF f1

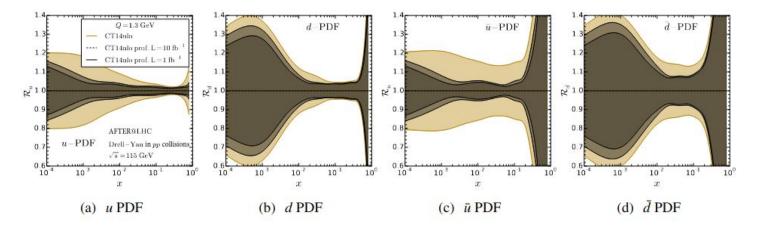
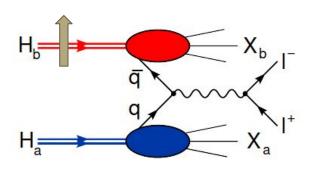


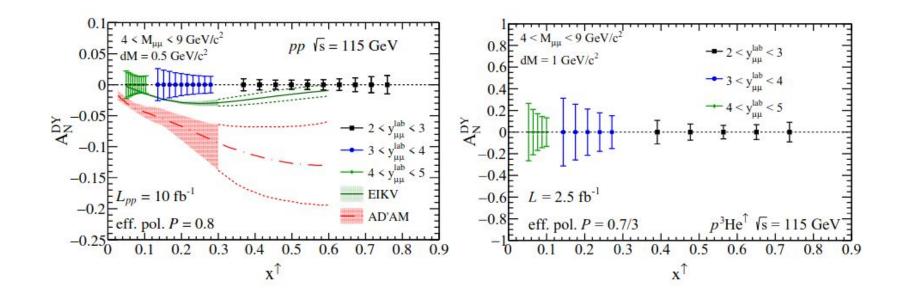
Figure 17: Impact of the DY lepton pair production in pp collisions at $\sqrt{s} = 115$ GeV on the PDF uncertainties. The u, d, \bar{u} and \bar{d} PDFs from CT14 [5] are plotted as a function of x at a scale Q = 1.3 GeV before and after including AFTER@LHCb pseudo-data in the global analysis using the profiling method [193, 194]. Two scenarios with different integrated luminosities were considered: inner band: $\mathcal{L}_{pp} = 10$ fb⁻¹, middle band: $\mathcal{L}_{pp} = 1$ fb⁻¹ (the outer band represents current PDF uncertainties).

Polarized Drell-Yan

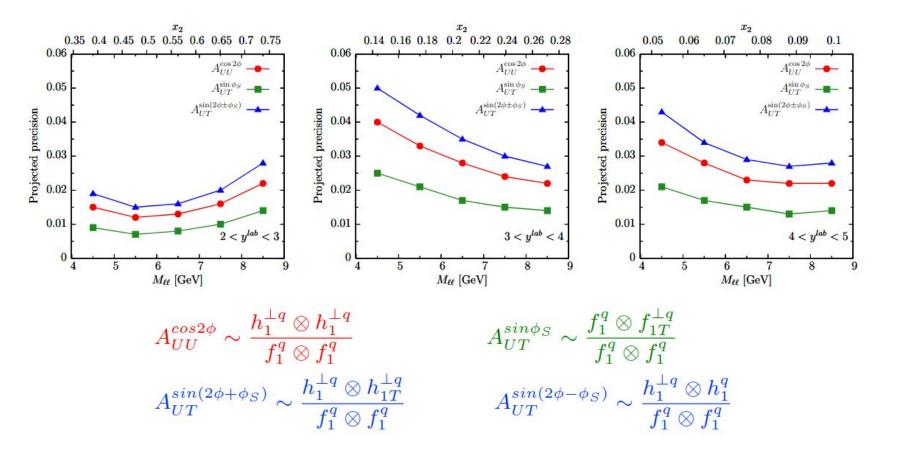
Longitudinally polarized


$$F_{UL}^{\sin 2\phi} = -\mathcal{C}\left[\frac{2(\vec{h}\cdot\vec{k}_{aT})(\vec{h}\cdot\vec{k}_{bT}) - \vec{k}_{aT}\cdot\vec{k}_{bT}}{M_aM_b}h_1^{\perp}\bar{h}_{1L}^{\perp}\right],$$

Transversally polarized


$$F_{UT}^{1} = \mathcal{C}\left[\frac{\vec{h} \cdot \vec{k}_{bT}}{M_{b}} f_{1}\bar{f}_{1T}^{\perp}\right], \qquad F_{UT}^{\sin(2\phi-\phi_{b})} = -\mathcal{C}\left[\frac{\vec{h} \cdot \vec{k}_{aT}}{M_{a}} h_{1}^{\perp}\bar{h}_{1}\right],$$

$$F_{UT}^{\sin(2\phi+\phi_b)} = -\mathcal{C}\left[\frac{2(\vec{h}\cdot\vec{k}_{bT})[2(\vec{h}\cdot\vec{k}_{aT})(\vec{h}\cdot\vec{k}_{bT}) - \vec{k}_{aT}\cdot\vec{k}_{bT}] - \vec{k}_{bT}^2(\vec{h}\cdot\vec{k}_{aT})}{2M_a M_b^2}h_1^{\perp}\bar{h}_{1T}^{\perp}\right],$$



Sivers asymmetry

More asymmetries

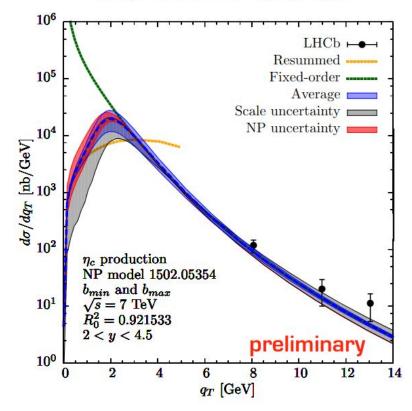
One example for gluon TMDs: eta b,c production

unpolarized

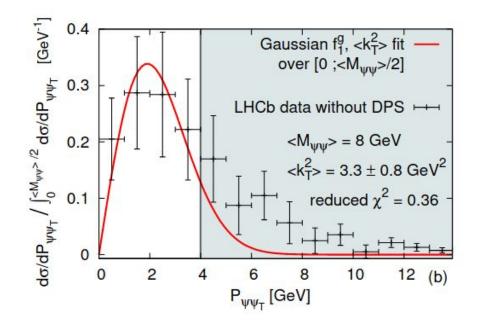
$$\frac{d\sigma_{UU}(\eta_Q)}{dy \, d^2 \boldsymbol{q}_{\scriptscriptstyle T}} = \frac{2}{9} \frac{\pi^3 \alpha_s^2}{M_h^3 \, s} \left\langle 0 | \mathcal{O}_1^{\eta_Q}({}^1S_0) | 0 \right\rangle \left\{ \mathcal{C}\left[f_1^g \, f_1^g\right] - \mathcal{C}\left[w_{UU} \, h_1^{\perp \, g} \, h_1^{\perp \, g}\right] \right\}$$

Transversally polarized

$$\frac{d\sigma_{UT}(\eta_b)}{dyd^2 \boldsymbol{q}_T} = \frac{2}{9} \frac{\pi^3 \alpha_s^2}{M_h^3 s} \left\langle 0 | \mathcal{O}_1^{\eta_b}({}^1S_0) | 0 \right\rangle | \boldsymbol{S}_{TB} | \sin\phi_S \times \left\{ \mathcal{C} \left[w_{UT}^{(A)} f_1^g f_1^{\pm g} f_{1T}^{\pm g} \right] - \mathcal{C} \left[w_{UT}^{(B)} h_1^{\pm g} h_1^g \right] - \mathcal{C} \left[w_{UT}^{(C)} h_1^{\pm g} h_{1T}^{\pm g} \right] \right\}$$


Longitudinally polarized

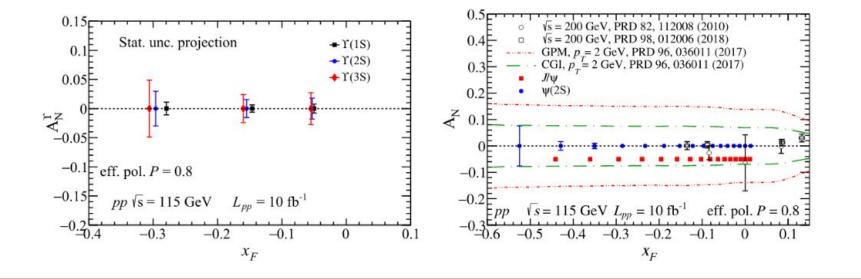
 $\frac{d\sigma_{UL}}{dyd^2\boldsymbol{q}_T} = 0 \qquad \rightarrow \text{non-zero signal..? Twist 3 gluon TMDs}$


Eta c at LHCb

Lansberg et al. - ongoing work

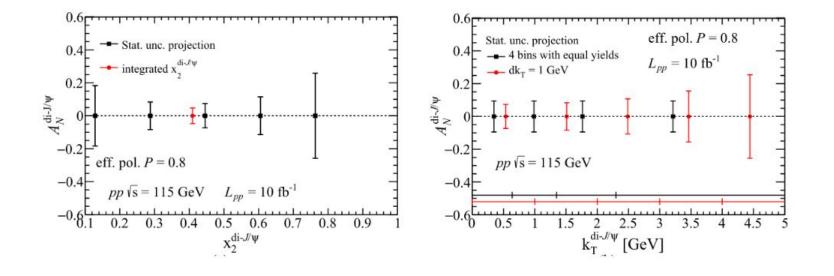
full transverse momentum spectrum: low qT matched with high qT region

Di-J/Psi at LHCb



First "extraction" of unpolarized gluon TMD PDF

Lansberg at al. : https://inspirehep.net/literature/1628653


C. Hadjidakis et al., 1807.00603; D. Kikola et al. Few Body Syst. 58 (2017) 139

- A_N for all quarkonia (J/ψ, ψ', χ_c, Υ(nS), χ_b & η_c) can be measured [So far, only J/ψ by PHENIX with larger uncertainties]
- ▶ Also access to polarised neutron (³He[↑]) at the per cent level for J/ψ
- Completely new perspectives to study the gluon Sivers effect
- Di- J/ψ allow one to study the k_T dependence of the gluon Sivers function for the very first time

C. Hadjidakis et al., 1807.00603; D. Kikola et al. Few Body Syst. 58 (2017) 139

- A_N for all quarkonia $(J/\psi, \psi', \chi_c, \Upsilon(nS), \chi_b \& \eta_c)$ can be measured [So far, only J/ψ by PHENIX with larger uncertainties]
- Also access to polarised neutron (${}^{3}\text{He}^{\uparrow}$) at the per cent level for J/ψ
- Completely new perspectives to study the gluon Sivers effect
- Di- J/ψ allow one to study the k_T dependence of the gluon Sivers function for the very first time

Conclusions and outlook

Spin and transverse dynamics

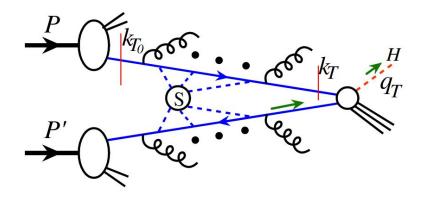
High x frontier

Heavy Ion collisions

Astroparticle physics

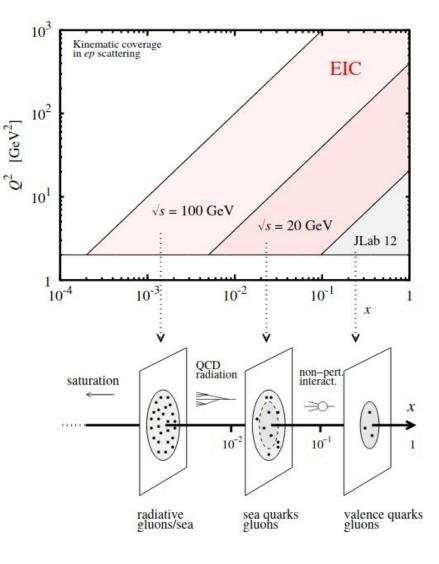
The physics reach of the LHC complex can greatly be extended at a very limited cost with the adjunction of an ambitious and long term research program using the LHC beams in the fixed-target mode.

> Different possible technical implementations: see next talks



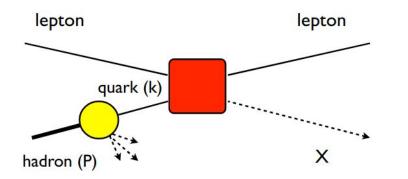
TMD factorization

$$pp \, \longrightarrow \, \gamma^{\cdot} \, / \, Z \, \longrightarrow l \, {ar l} \, + \, X$$


 $\frac{d\sigma}{dq_T} \sim \mathcal{H} f_1(x_a, k_{Ta}, Q, Q^2) f_1(x_b, k_{Tb}, Q, Q^2) \,\delta^{(2)} \big(q_T - k_{Ta} - k_{Tb}\big) + \mathcal{O}(q_T/Q) + \mathcal{O}(\Lambda/Q)$

- TMDs & partonic cross section: same IR poles = same non-perturbative physics
- **observed transverse momentum** : handle on transverse momenta of **quarks**
- quark transverse momentum : radiative (perturbative) and intrinsic (non-perturbative) components
- Renormalization = **evolution** equations tell us how to distinguish between the two

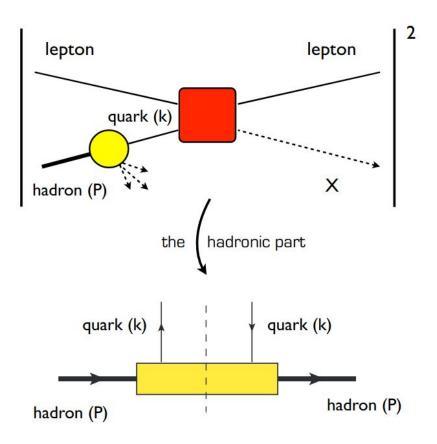
SIDIS coverage


Importance of complementary experiments

from JLab 12 GeV, Hermes, Compass to the EIC

zooming into hadron structure

PDFs: operator definition



Scattering process with hadron in initial state : (e.g. Deep Inelastic Scattering - DIS)

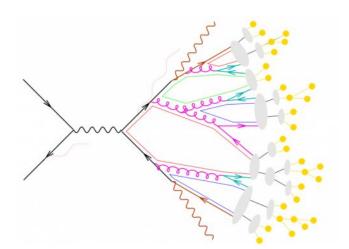
need a "hadron \rightarrow parton" transition

(Parton Distribution Function)

PDFs: operator definition

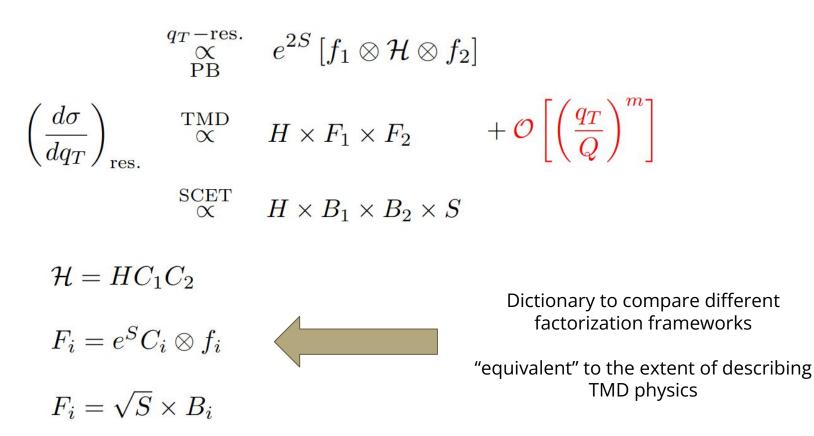
PDFs defined as traces of Φ :

 $F^{[U]}ig(x,k_T^2ig) \, \sim \, {
m Tr}\,[\Phi\,\Gamma] \;, \; \Gamma \, = \, \gamma^+\,, \, \ldots$


(**8 functions** that depend on parton kinematics and gauge link U)

Hadronic part described as a **universal** "quark-quark correlation function" in space-time

 $\left\langle \Phi_{ij}(k,P)\,=\,\mathrm{F.T.}\left\langle P
ightert \overline{\psi_j}(0)\,U\,\psi_i(\xi) \Bigert P
ight
angle$


Hadronization and fragmentation functions (FFs)

"Maps" of hadron formation in momentum space

 $D_1^h(z)$ single-hadron collinear FF single-hadron TMD FF $D_1^h(z, P_T^2)$ $D_1^{\,h_1\,h_2}(z,\zeta)$ di-hadron FF J(s)inclusive jet FF $\mathcal{G}^h(s,z)$ in-jet FF

Different frameworks, same observable

SCETlib [https://confluence.desy.de/display/scetlib]

CuTe [https://cute.hepforge.org/]

SCET

TMD factorization

arTeMiDe [https://teorica.fis.ucm.es/artemide/]

Nanga Parbat (MAPTMD22 analysis) [https://github.com/MapCollaboration/NangaParbat]

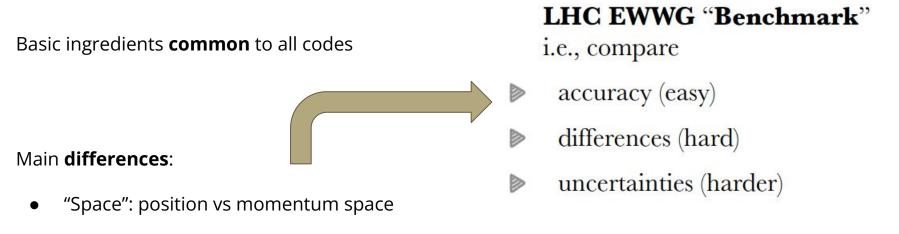
DYRes/DYTurbo, DYqT, etc. [https://gitlab.cern.ch/DYdevel/DYTURBO]

ReSolve [https://github.com/fkhorad/reSolve]

ResBos [https://resbos.hepforge.org/]

qT resummation

Parton branching


RadISH [https://arxiv.org/pdf/1705.09127.pdf]

PB-TMDs [https://arxiv.org/pdf/1906.00919.pdf]

G. Bozzi at SarWors 2021 - https://agenda.infn.it/event/27742/

Excellent accuracy **BUT** only unpolarized and leading twist!

- Perturbative QCD: PDF evolution, scale variation, matching with fixed-order
- Non-perturbative QCD: treatment of Landau pole, intrinsic-kT

Event generators

Based on TMDs:

- Cascade (PB TMDs) [https://cascade.hepforge.org/]
- gmctrans/TMDgen
 - parton model level TMDs
 - includes polarization and higher twist, but no evolution: too primitive for EIC?
 - semi-inclusive

[https://wiki.bnl.gov/eic/index.php/Gmc trans

Hermes collaboration + independent work]

Exclusive generators with transverse momentum effects

- Pythia [https://pythia.org/]
- Herwig [https://herwig.hepforge.org/]
- Geneva [https://stash.desy.de/projects/GENEVA]

...