

QGP physics in fixed target collisions

Barbara Trzeciak Czech Technical University in Prague

June 22-24, 2022 CERN

Outline

- 1 Fixed target mode at LHC
 - Physics case
- 2 Light flavour probes
 - Charged particle multiplicity and elliptic flow
 - Longitudinal flow decorrelation
 - Global Lambda polarization
- 3 Heavy flavour probes
 - Quarkonium suppression
 - Open HF nuclear modification factor and elliptic flow
 - Open HF directed flow

Fixed target mode at LHC

→ Energy range

7 TeV proton beam on a fixed target

c.m.s. energy:	$\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \mathrm{GeV}$	Rapidity shift:
Boost:	$\gamma = \sqrt{s} / (2m_N) \approx 60$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$

2.76 TeV Pb beam on a fixed target

c.m.s. energy: $\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72 \text{GeV}$		Rapidity shift:
Boost:	$\gamma \approx 40$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$

- \sqrt{s} in-between SPS and top RHIC
- ➔ Effect of boost

- Entire forward hemisphere, y_{cms} > 0, within 1 degree
- Easy access to (very) large backward rapidity range, y_{cms} < 0
- And large parton momentum fraction $x_2 \rightarrow 1 (x_F \rightarrow -1)$

Fixed target mode at LHC

→ Energy range

Physics motivations

- Advance our understanding of the high-x frontier in nucleons and nuclei (gluon and heavy-quark content) and its connection to astroparticle physics
- Unravel the spin of the nucleon: dynamics and spin distributions of quarks and gluons inside (un)polarised nucleons
- Studies of the quark-gluon plasma in heavy-ion collisions at a new energy domain down to the target-rapidity region

Physics case: QGP

- → Study of the quark-gluon plasma between SPS and top RHIC energies of √s_{NN} = 72 GeV over broad rapidity range
- Complete studies as a function of rapidity, centrality and system size
 - $\sqrt{s_{_{\rm NN}}}$ between RHIC 54.4, 62.4 and 200 GeV
 - Scan in $\mu_{\scriptscriptstyle B}$ complementary to RHIC BES programme
 - Scan in target-A and wide rapidity coverage powerful constraints on models

Bulk properties

- Initial state and longitudinal expansion of the medium
 - v_n vs y \rightarrow temperature dependence of η /s
 - Longitudinal flow decorrelation \rightarrow medium transport properties
 - Lambda polarization \rightarrow medium vorticity

$dN_{ch}/d\eta$ and v_2 - initial state

- Event-by-event viscous hydrodynamic model
- → Pb-W, Pb-Ti, Pb-C at 72 GeV with GLISSANDO and UrQMD initial states
 - Model tuned on basics observable from RHIC at 27 and 62 GeV and 200 GeV $_{\rm Phys.\ Rev.\ C\ 103,\ 034902\ (2021)}$

v₂ - temperature dependence

- → v_n vs y → temperature dependence of η/s
- High precision v_n studies will shed light on transverse and longitudinal dynamics in PbA and pA

Longitudinal flow decorrelation

Longitudinal dynamics of heavy-ion collisions

- Long. structure of flow → transport properties of QGP Phys.Rev. C 98, 024913 (2018)
- Sensitive to initial state

Requires:

- Modeling: full (3+1)D QGP evolution, source fluctuations
- Longitudinal fluctuations \rightarrow EbE flow fluctuations in magnitude and direction

longitudinal direction was suggested in CGC model

Factorization ratio r_n

\rightarrow Factorization ratio r_n - measure of the flow decorrelation

$$r_n(\eta) = \frac{\langle q_n(-\eta)q_n^*(\eta_{\rm ref})\rangle}{\langle q_n(\eta)q_n^*(\eta_{\rm ref})\rangle}$$

$$r_n(\eta) = \frac{\langle v_n(-\eta)v_n(\eta_{\rm ref})\cos[n\left(\Psi_n(-\eta) - \Psi_n(\eta_{\rm ref})\right)]\rangle}{\langle v_n(\eta)v_n(\eta_{\rm ref})\cos[n\left(\Psi_n(\eta) - \Psi_n(\eta_{\rm ref})\right)]\rangle}$$

→ Two effects:

- flow magnitude decorrelation
- flow angle decorrelation

Flow decorrelation

- → **STAR**: r₂, r₃ measured at 200 and 27 GeV
 - Stronger decorrelation with decreasing energy

• LHC: CMS: Phys. Rev. C92 (3) (2015) 034911, ATLAS: Eur. Phys. J. C (2018) 78:142

M.Nie, QM19 QM18

Flow decorrelation vs η/y_{beam}

- → **STAR**: r₂, r₃ measured at 200 and 27 GeV
 - → Scaling of $r_2 vs \eta/y_{beam}$ not understood. Choice of reference y w.r.t. beam y ?

→ Energy and system size studies of interest
 → r₃ more sensitive to IS fluctuations

M.Nie, QM19

Decorrelation predictions - FTE@LHC

→ Event-by-event viscous hydrodynamic model: predictions for FTE@LHC

\rightarrow r_n definition

• Fixed-target with two acceptance windows

$$r_n^{\rm FT}(\eta - \eta_C) = \frac{\langle q_n(-\eta + 2\eta_C)q_n^*(\eta_{\rm ref})\rangle}{\langle q_n(\eta)q_n^*(\eta_{\rm ref})\rangle}$$

- TPC: $-2.9 < \eta < -1.6$
- Muon det: $-1.0 < \eta_{
 m ref} < -0.5$
- Decorrelation around the center of the pseudo-rapidity bin:

$$\eta_C = -2.25$$

Strong decorrelation, increasing with decreasing system size
 Significant differences between different IS models

Global Lambda polarization

- → Non-central collisions: large orbital angular momentum
- → Hadron spin alignment, P_H, with J via parton scattering: QCD spin-orbit coupling
- Hydro: thermal vorticity in fluid cells considered.
 Local thermodynamic equilibrium: vorticity transferred to hadron spin

Becattini F, Csernai L, Wang DJ. Phys. Rev. C88034905(2013), Erratum: Phys. Rev.C 93 6 069901(2016)

Global Lambda polarization (2)

- → Non-central collisions: large orbital angular momentum
- → Hadron spin alignment, P_H, with J via parton scattering: QCD spin-orbit coupling
- Hydro: thermal vorticity in fluid cells considered.
 Local thermodynamic equilibrium: vorticity transferred to hadron spin

Fluid vorticity $\rightarrow \Lambda$, anti- Λ in same direction

$$\omega = k_B T (P_\Lambda + P_{\bar{\Lambda}}) / \hbar$$

Magnetic field $\rightarrow \Lambda$, anti- Λ in opposite direction

$$\mathbf{B} = \frac{\mathbf{T}}{2\mu_{\Lambda}} (\mathbf{P}_{\Lambda} - \mathbf{P}_{\bar{\Lambda}})$$

Measurement of Lambda polarization

- → Non-central collisions: large orbital angular momentum → vorticity
- → Late-stage magnetic field sustained by the QGP $\rightarrow \Lambda$, anti- Λ splitting (?)

- Parity-violating decay of hyperon
 - Daughter proton preferentially decays along the Λ 's spin (opposite for anti- Λ)
- Polarization measured via the distribution of the azimuthal angle of the daughter proton in the hyperon rest frame

Global Lambda polarization at FTE@LHC

- → Rapidity dependence → powerful constraints on models
- → (Local lambda polarization, $P_z \rightarrow$ additional constrains on shear viscosity)

Global Lambda polarization at FTE@LHC (2)

- → System size dependence → P_H increases not only with decreasing energy but also with smaller system size
- → With good statistics: Lambda, anti-Lambda splitting → magnetic field at freeze-out

Nuclear Physics A 929 (2014) 184–190

Heavy flavour probes

CEUFI

- Unique access to heavy-flavour probes at this energy domain
 - Quarkonium suppression in QGP \rightarrow thermodynamic properties of QGP
 - Open heavy-flavour → heavy-flavour energy loss, transport parameters of the QGP, hadronization
 - Directed flow $v_1 \rightarrow$ initial tilt of the produced matter, QGP conductivity

Quarkonium studies

- Suppression of quarkonia in the medium colour screening effect, recombination
- Effects beyond the static screening, feed down, cold nuclear matter effects
 - Quarkonium sequential suppression as the medium thermometer ? Bottomonia may provide clearer picture
 - Charmonia significantly larger cross sections

CMS PAS HIN-21-007

Quarkonium studies at FTE@LHC

- Quarkonia suppression in the medium colour screening effect, recombination
 - Measurements of quarkonium states down to 0 $\ensuremath{p_{\tau}}$ in pp, p-A and Pb-A
 - Negligible contribution from recombination
 - Possibility to measure Upsilon(nS) state suppression

Few Body Syst. 58 (2017) 5, 148

→ With high charmonium rates – interesting to access χ_c and η_c , J/ ψ – J/ ψ and J/ ψ – D correlations

Open HF measurements - D

- Simultaneous measurements of D meson elliptic flow and nuclear modification factor, in different systems
 - charm diffusion coefficient ($\rm D_{s})$ and its temperature dependence
 - energy loss mechanism (collisional vs radiative)

Open HF measurements

- Simultaneous measurements of D meson elliptic flow and nuclear modification factor, in different systems
 - charm diffusion coefficient (D_s) and its temperature dependence
 - energy loss mechanism (collisional vs radiative)

- Correlation studies → potentially more constrains for energy loss models
- → HF μ can be studied with ALICE muon arms at: -1.6 < y_{CMS} < -0.5

Open HF in small systems

FF

- ➔ p-A collisions: cold nuclear matter effects, collectivity in small systems, QGP ?
- Simultaneous measurements of D meson R_{pA} and v_2 in different systems

 \Rightarrow HF μ can be studied with ALICE muon arms at: -1.6 < y _{_{CMS}} < -0.5

HF directed flow, v_1

Insights into initial tilt of matter and strong EM field in non-central HI collisions

→ v₁: sensitivity to the three-dimensional spatial profile of initial conditions and pre-equilibrium early time dynamics in the evolution

$$v_1 = \langle cos(\phi_p) \rangle = \langle p_x/p_T \rangle$$

HF directed flow, v_1

- Insights into initial tilt of matter and strong EM field in non-central HI collisions
- Heavy-quarks:
 - produced early, shifted from the bulk
 - formation time comparable to when B is maximum

- → Effect much larger than for light hadrons → strong sensitivity to the initial tilt and QGP transport parameters
- → v_1 increases with rapidity; EM field: splitting between D⁰ and $\overline{D^0}$

- AFTER@LHC: high-statistics measurements in an energy domain between the SPS and top RHIC, in an unexplored rapidity domain
- → Study of the quark-gluon plasma at
 √s_{NN} = 72 GeV over broad rapidity range
- Complete studies as a function of rapidity, centrality and system size
 - $\sqrt{s_{_{\rm NN}}}$ between RHIC 54.4, 62.4 and 200 GeV
 - Scan in $\mu_{\rm B}$ complementary to RHIC BES programme
 - Scan in target-A and wide rapidity coverage powerful constraints on models

GRANTOVÁ AGENTURA ČESKÉ REPUBLIK

Backup

Anisotropic Flow in HI

- Collision geometry: initial spacial anisotropy
- Multiple interactions between (thermalized) constituents of the medium → azimuthal momentum space anisotropy of particle emission → flow
- Asymmetry between the in-plane and out-of-plane directions.

HF Elliptic Flow

- Heavy-flavour elliptic flow, v₂
 - Low p_{τ} : Collective motion of the system; HQ thermalization ?
 - High p_{τ} : Path-length dependent parton energy loss
- Strong charm quark coupling with the medium at RHIC

Open HF in small systems

- P-A collisions: cold nuclear matter effects, collectivity in small systems, QGP ?
- Simultaneous measurements of D meson elliptic flow and nuclear modification factor, in different systems

- ALICE: target at z = -4.7 m, with 1cm long solid targets
- → Similar precision expected in 10-20, 20-40% centrality intervals
- \Rightarrow Quarkonia and HF μ can be studied with ALICE muon arms at: -1.6 < y_{_{CMS}} < -0.5

Quarkonium R

- Precise measurements of charmonium states vs rapidity
- Measurement of the 3 Y(nS) state suppression

- Possibility to access $\chi_{_{\rm C}}$ and $\eta_{_{\rm C}},$ J/ ψ – J/ ψ and J/ ψ – D correlations

Few Body Syst. 58 (2017) 5, 148 *arXiv:* 1807.00603

Decorrelation predictions FT

Event-by-event viscous hydrodynamic model → Pb-W, Pb-Ti, Pb-C at 72 GeV

→ r definition

 Asymmetric system (CMS, Phys. Rev. C92 (3) (2015) 034911):

$$\sqrt{\frac{\langle q_n(-\eta)q_n^*(\eta_{\mathrm{ref}})\rangle}{\langle q_n(\eta)q_n^*(\eta_{\mathrm{ref}})\rangle}}\frac{\langle q_n(\eta)q_n^*(-\eta_{\mathrm{ref}})\rangle}{\langle q_n(-\eta)q_n^*(-\eta_{\mathrm{ref}})\rangle}.$$

Strong decorrelation, increasing with decreasing system size Significant differences between different IS models QGP in FXT | B.Trzeciak | FTE@LHC, CERN, 22.06.2022

34

STAR r₂ vs models

→ STAR r₂ vs models

M.Nie, QM19

Local hyperon polarization

• Anisotropic flow \rightarrow Longitudinal polarization P₇ (thermal vorticity + shear term)

 \rightarrow 2nd P₇ increase with centrality: additional constraint on shear viscosity

Physics case: QGP (3)

- → Study of the quark-gluon plasma between SPS and top RHIC energies of √s_{NN} = 72 GeV over broad rapidity range
- > Complete studies as a function of rapidity, centrality and system size \rightarrow scan in μ_{B}
- > Explore the longitudinal expansion of the QGP
 - Particle yields and $v_n \rightarrow$ temperature dependence of the shear viscosity
- Unique access to hard probes at this energy domain
 - Quarkonium suppression in QGP \rightarrow thermodynamic properties of the QGP
 - D meson R_{AA} and $v_2 \rightarrow$ heavy-flavour energy loss, transport properties of the QGP
- ➔ p-A, lighter ions and high-multiplicity pp collisions
 - Test of collectivity in small systems
 - factorization of CNM effects from pA to AB → Drell-Yan (insensitive to QGP formation)