

Jet physics at sPHENIX Sebastian Tapia Araya Iowa State University

Fixed target experiments at LHC

What is sPHENIX?

- sPHENIX is under construction at BNL in the PHENIX experimental hall
- sPHENIX is the first new detector at any hadron collider in over a decade!
- sPHENIX has unique, purpose-built capabilities never before deployed at RHIC

...to complete the scientific journey started at RHIC over twenty years ago!

sPHENIX physics program

The Goal: Probe the inner work of Quark-Gluon-Plasma

Cold QCD

Spin-orbit correlations in the nucleon CNM effects and hadronization

sPHENIX physics program

Focus of this talk

Cold QCD

Spin-orbit correlations in the nucleon CNM effects and hadronization

sPHENIX detector

15 kHz calo trigger + 10% streaming DAQ10 GB/s data logging

sPHENIX Calorimeter system

- HCAL and EMCAL covering 2π in azimuth, $|\eta| < 1.1$, 15kHz read-out rate
- First mid-rapidity hadronic calorimeter at RHIC
- Allows to capture full jet energy
 - reduce fragmentation bias and improve resolution
- Allows systematic comparison of particle flow vs calo vs track jets
- Allows unbiased jet trigger in p+p

sPHENIX Calorimeter system == Unbiased jet trigger in p+p

Jet R_{AA} up to 70 GeV for central Au+Au

sPHENIX Tracking system

Vertexing:

- MAPS-based micro-VerTeX detector (MVTX)
- 3-layers

Timing:

- Intermediate Silicon Tracker (INTT)
- 4-layers

Momentum:

- Time Projection Chamber (TPC)
- 48-layers
- Δp/p~1% at 5 GeV/c
- R- ϕ resolution ~ 150 μ m

sPHENIX Tracking system

Good efficiency and momentum resolution by combining MVTX and TPC

sPHENIX run plan

2015 20)16	2017	2018			
sPHENIX	Î DOE C	D-0	t DOE CD-	-1/3		
science collaboration	"Missi	on need"	Cost, sch	Cost, sched		
CUIIADUIALIUII	appiovai puicitas					

sPHENIX run plan

20	15	201	.6	2017	2018	2019	2020	2021	2022	2023
										X
sPH scie colla	ENIX nce aborati	f on	f DOE C "Missi appro	CD-0 ion need val	f DOE CD-1 d" Cost, sche purchase	/3A edule, adva approval	ance	Today Installation commissior	and ning	f Start first data taki (< 1 year
Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum	•			
		[GeV]	Weeks	Weeks	z < 10 cm	z <10 cm	Extensiv	e 3-year data ta	king startin	ng in < 1 year
2023	Au+Au	200	24 (28)	9 (13)	3.7 (5.7) nb ^{−1}	4.5 (6.9) nb ⁻¹	¹ Year-1: 0	commissioning a	and first phy	ysics
2024	$p^{\uparrow}p^{\uparrow}$	200	24 (28)	12 (16)	0.3 (0.4) pb ⁻¹ [5 kHz] 4.5 (6.2) pb ⁻¹ [10%-str	45 (62) pb ⁻¹	Year-2: p cold QC	o+p and p+Au ru D physics	uns for heav	vy-ion referen
2024	p [↑] +Au	200		5	0.003 pb ⁻¹ [5 kHz] 0.01 pb ⁻¹ [10%-str]	0.11 pb ⁻¹	Year-3: \	/ery large Au+Aι	u dataset (1	45B events in
2025	Au+Au	200	24 (28)	20.5 (24.5)	13 (15) nb ⁻¹	21 (25) nb ⁻¹				

Jet = shower of particles arising from hard-scattered partons produced in the early stages

Iterative underlying event subtraction procedure: Determine initial UE subtraction (including vn modulation) 3. Apply UE subtraction to seed jets and redetermine the UE estimation 4. Subtract the UE from each tower in the calorimeters

The subtracted towers are then used to produce the anti- k_{T} jets

The subtracted towers are then used to produce the anti- k_{T} jets

- 4. Subtract the UE from each tower in the calorimeters

- Good energy resolution in p+p and Au+Au
- Au+Au is limited by UE fluctuations

sPHENIX Jet physics

Jet Quenching

Jets are known to lose energy when going through the Quark-Gluon-Plasma

Phys. Lett. B 790 (2019) 108

Photon-Jet correlations

$$x_{j\gamma} = p_T^{jet} / p_T^{\gamma}$$

- Jets loss more energy in central collisions
- p_T > 60 GeV

Photon-Jet correlations

• Lower p_T than LHC

Jet substructure

Groomed momentum fraction

 $min(p_{T,1}, p_{T,2})$ $z_g =$ $p_{T,1} + p_{T,2}$

ALI-PUB-521472

models

 No significant modification • Mostly consistent with

Jet substructure

Groomed momentum fraction

 $min(p_{T,1}, p_{T,2})$ $z_g =$ $p_{T,1} + p_{T,2}$

ALI-PUB-521472

models

 No significant modification • Mostly consistent with

sPHENIX projection

- Study evolution of parton shower
 - Lower p_T than LHC

B-tagged Jets

Mass dependence expected due to "dead-cone effect"

Radiation is suppressed $in \theta < m/E$

- *b*-jet found to be **less** suppressed than inclusive jets in central collisions
- p_T > 80 GeV

B-tagged Jets

Mass dependence expected due to "dead-cone effect"

Radiation is suppressed in $\theta < m/E$

- *b*-jet found to be **less** suppressed than inclusive jets in central collisions
- p_T > 80 GeV

- Completely new channel at RHIC - unique sPHENIX capability
- p_T > 15 GeV

B-tagged Jets

Mass dependence expected due to "dead-cone effect"

Large parton mass

Small parton mass

sPHENIX projection $R_{\rm AA}$ SPHENIX BUP 2022 *b*-jet Anti-k₋ R=0.4, 0-10% Au+Au, Year 1-3 p+p: 62pb⁻¹ samp., 60% Eff., 40% Pur. Au+Au: 21nb⁻¹ rec., 40% Eff., 40% Pur. 0.8 0.6 0.4 LIDO, arXiv:2008.07622 [nucl-th] 0.2 pQCD, Phys.Lett. B726 (2013) 251-256 = 2.0 25 30 15 20

Radiation is suppressed in $\theta < m/E$

- Completely new channel at RHIC - unique sPHENIX capability
- p_T > 15 GeV

 Sufficiently large yield to look at b-jet structure, e.g. ratio of z in Au+Au/p+p

$$z_g = \frac{\min(p_{T,1}, p_T)}{p_{T,1} + p_T}$$

Jets: open questions from LHC

Projected R(0.5)/R (0.2) double ratio in 0-10% events

Jets: open questions from LHC

Correlation of jets with the event planes, $\boldsymbol{\psi}$

 Sensitive to overall event geometry & path length energy loss

Jets: open questions from LHC

Correlation of jets with the event planes, ψ

 Sensitive to overall event geometry & path length energy loss

 key info on shape modification and geometry dependence • Difficult to measure at LHC in $p_T < 50$ GeV region where effects may be large

sPHENIX construction — where are we?

sPHENIX construction — where are we?

sPHENIX construction — where are we?

Thank you!!

Jet Substructure at RHIC

Results in the pipeline for PHENIX, STAR...

5

...but PHENIX and STAR were not designed as Jet detectors!

- effects

sPHENIX will enable a full suite of jet measurements with full tracking and calorimetry coverage.

This is necessary to understand hadronization in CNM!

Energy Correlations in Jets

Analyzing N-point Energy Correlators Inside Jets with CMS Open Data https://arxiv.org/pdf/2201.07800.pdf

$$ENC(R_L) = \left(\Pi_{k=1}^N \int d\Omega_{\overrightarrow{n}_k}\right) \delta(R_L - \Delta \hat{R}_L) \cdot \frac{1}{(E_{jet})^N} \langle \epsilon(\overrightarrow{n}_1) \epsilon \langle R_L \rangle + \frac{1}{(E_{jet})^N} \langle \epsilon(\overrightarrow{n}_1) \epsilon \rangle +$$

 ϵ , is the asymptotic energy flow operator

2-points correlation:

$$\frac{1}{\sigma}\frac{d\Sigma}{d\phi} \equiv \frac{1}{N}\sum_{A=1}^{N}\frac{1}{\Delta\phi}\sum_{pairs in \Delta\phi}\frac{E_{T_a}^A E_{T_b}^A}{(E_T^A)^2}$$

More information: arxiv:1205.1689

- TEEC in NLO in $\alpha_{\rm S}$ at the LHC \bullet arxiv:1707.02562
- $\alpha_{\rm S}$ measurement from multijet events by ATLAS

 $\epsilon(\overrightarrow{n}_{2}) \dots \epsilon(\overrightarrow{n}_{N}) \rangle$

Analyzing N-point Energy Correlators Inside Jets with CMS Open Data

Patrick T. Komiske,¹,^{*} Ian Moult,²,[†] Jesse Thaler,¹,[‡] and Hua Xing Zhu³,[§]

¹Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

²Department of Physics, Yale University, New Haven, CT 06511

³Zhejiang Institute of Modern Physics, Department of Physics, Zhejiang University, Hangzhou, 310027, China

Jets of hadrons produced at high-energy colliders provide experimental access to the dynamics of asymptotically free quarks and gluons and their confinement into hadrons. In this paper, we show that the high energies of the Large Hadron Collider (LHC), together with the exceptional resolution of its detectors, allow multipoint correlation functions of energy flow operators to be directly measured within jets for the first time. Using Open Data from the CMS experiment, we show that reformulating jet substructure in terms of these correlators provides new ways of probing the dynamics of QCD jets, which enables direct imaging of the confining transition to free hadrons as well as precision measurements of the scaling properties and interactions of quarks and gluons. This opens a new era in our understanding of jet substructure and illustrates the immense unexploited potential of high-quality LHC data sets for elucidating the dynamics of QCD.

2-Point Correlations in Simulation

Using public code at https://github.com/pkomiske/EnergyEnergyCorrelators from Analyzing N-point Energy Correlators Inside Jets with CMS Open Data https://arxiv.org/pdf/2201.07800.pdf

Details:

- anti-kt R = 0.3
- |η| < 1
- Only charged tracks
- Assuming 90% tracking efficiency

