Hadron production studies with LHCb

Sara Sellam, Universidade de Santiago de Compostela

Fixed target experiments at LHC workshop

sara.sellam@usc.es

LHCb Detector

- From heavy flavour physics to a general-purpose detector in the forward region.
- Forward detector fully instrumented in $2 < \eta < 5$.
- Excellent tracking, momentum resolution, and particle identification.

JINST 3 (2008)S08005

IJMPA 30 (2015) 1530022

LHCb Dataset

$$Q^2 \sim m^2 + p_{\rm T}^2, \qquad x \sim -$$

Prompt charged hadron production in *pPb* and *pp* at 5 TeV

decays of shorter-lifetime particles. Long lived particles :

 $\pi^{-}, K^{-}, p, \Xi^{-}, \Sigma^{+}, \Sigma^{-}, \Omega^{-}, e^{-}, \mu^{-}(+cc.)$

$$R_{pPb}(\eta, p_{T}) = \frac{1}{A} \frac{d^2 \sigma_{pPb}(\eta, p_{T})/dp_{T} d\eta}{d^2 \sigma_{pp}(\eta, p_{T})/dp_{T} d\eta} \qquad A=208$$

 \mathcal{L} : integrated luminosity.

Prompt : Any lepton or hadron with a mean lifetime $\tau > 0.3 \times 10^{-10} s$ produced directly in the collision or from

Phys. Rev. Lett. 128, 142004

Datasets at:
$$\sqrt{s_{NN}} = 5TeV$$

Ъ		T •
Beam	Acceptance	Luminosi
pp	$2 < \eta < 4.8$	3.49 ± 0.07
p P b	$1.6 < \eta < 4.3$	42.73 ± 0.98
$\mathrm{Pb}p$	$-5.2 < \eta < -2.5$	38.71 ± 0.97

 $N^{\rm ch} = N^{\rm candidates}$ $\mathcal{E}_{reco}\mathcal{E}_{sel}$

> N^{candidates}: selected long tracks. *P* : purity of the signal. ε_{reco} : reconstruction efficiency ε_{sel} : selection efficiency \mathcal{L} : integrated luminosity.

Prompt charged hadron production in *pPb* and *pp* at 5*TeV*

$$\frac{d^{2}\sigma}{dp_{\mathrm{T}}d\eta} \bigg|_{p\mathrm{Pb},pp} = \frac{1}{\mathscr{L}} \cdot \frac{N^{ch}(\eta, p_{\mathrm{T}})}{\Delta p_{\mathrm{T}}\Delta \eta}$$

• Precise double differential cross-sections measured in multiple η range.

sara.sellam@usc.es

Nuclear modification factor

Forward rapidity:

- Strong suppression at forward rapidity down to ~ 0.3 at low \approx^{a} p_T .
- Discrepancy with theoretical prediction is observed at low p_T .

Backward rapidity:

- Enhancement at backward rapidity for $p_T > 1.5 GeV/c$.
- Pseudo-rapidity-dependent shape.
- Theoretical predictions do not reproduce the data. \bullet

0.80.6

0.4

0.2

1.8

0.6

0.4

0.2

Charged hadron R_{pPb} : (x_{exp}, Q_{exp}^2) dependence

Approximations to (x, Q^2) :

$$Q_{exp}^2 \equiv m^2 + p_T^2$$
, $m = 256 \text{ MeV}$

$$x_{exp} \equiv \frac{Q_{exp}}{\sqrt{s_{NN}}} e^{-\eta}$$

Continuous evolution of R_{pPb} with x_{exp} at different Q_{exp}^2 between forward, central and backward η region.

Charged hadron R_{pPb} : (x_{exp}, Q_{exp}^2) dependence

Approximations to (x, Q^2) :

$$Q_{exp}^2 \equiv m^2 + p_T^2$$
, $m = 256 \text{ MeV}$

$$x_{exp} \equiv \frac{Q_{exp}}{\sqrt{s_{NN}}} e^{-\eta}$$

Continuous evolution of R_{pPb} with x_{exp} at different Q_{exp}^2 between forward, central and backward η region.

Charged hadron R_{pPb} : (x_{exp}, Q_{exp}^2) dependence

Approximations to (x, Q^2) :

$$Q_{exp}^2 \equiv m^2 + p_T^2$$
, $m = 256 \text{ MeV}$

$$x_{exp} \equiv \frac{Q_{exp}}{\sqrt{s_{NN}}} e^{-\eta}$$

Continuous evolution of R_{pPb} with x_{exp} at different Q_{exp}^2 between forward, central and backward η region.

Neutral pion production in pPb and pp

- Neutral pion production is sensitive to cold nuclear matter (CNM) effects.
- First π^0 production measurements in the forward and backward.
- Input needed for direct photon production measurement.

Data sets:

pPb and Pbp data at $\sqrt{s_{NN}} = 8.16$ TeV. *pp* interpolated between 5 and 13TeV.

• Neutral pions are reconstructed from to pairs of photons: $\pi^0 \rightarrow \gamma^{cnv} \gamma^{cal}$

Kinematic coverage: $1.5 < p_T < 10 \text{ GeV/c}$

 $2.5 < \eta_{cms} < 3.5$ $-4 < \eta_{cms} < -3$

10

Neutral pion production in pPb and pp

- Signal yield is fitted with a two-sided Crystal Ball function.
- Bremsstrahlung : Combination of converted photons with bremsstrahlung radiation.
- Combinatorial background: constructed with a proxy sample of charged tracks.

• Yields are then corrected by detector effects using simulation.

arXiv:2204.10608

11

Neutral pion production in pPb and pp

 $R_{pPb}(\eta, p_{T}) = \frac{1}{A} \frac{d^2 \sigma_{pPb}(\eta, p_{T})/dp_{T} d\eta}{d^2 \sigma_{pp}(\eta, p_{T})/dp_{T} d\eta}$

Forward rapidity:

- Strong suppression of π^0 production.
- Results are compatible with prompt charged particles measurements.
- R_{pPb} is in agreement with nPDFs calculations.

Backward rapidity:

- Enhancement of π^0 production in p_T .
- R_{pPb} Less pronounced than in charged particles :

=> Might Indicates that there is a brayon enhancement, as observed in other experiments.

• Excess over reweighted nPDFs predictions => contribution from additional effects ?

sara.sellam@usc.es

Backward rapidity

arXiv:2204.10608

Nuclear modification of prompt π , K and p at 5 TeV

• This analysis is based on the R_{pPb} of prompt charged particles at 5 TeV.

The goal is to measure :

Nuclear modification factor Effects of nuclear matter: Forward-to-backward ratio: $\mathbf{R}_{FB}^{h}(\eta_{cms}, p_{T}) = \frac{\mathrm{d}^{2}\sigma_{p\mathrm{Pb}}^{h}(\eta_{cms}, p_{T})/\mathrm{d}p_{T}\mathrm{d}\eta_{cms}}{\mathrm{d}^{2}\sigma_{\mathrm{Pb}p}^{h}(\eta_{cms}, p_{T})/\mathrm{d}p_{T}\mathrm{d}\eta_{cms}}$ Baryon-to-meson ratio: $R_{B/M}(\eta_{cms}, p_T) = \frac{d^2 \sigma_{Baryons}(\eta_{cms}, p_T)/dp_T d\eta_{cms}}{d^2 \sigma_{meson}(\eta_{cms}, p_T)/dp_T d\eta_{cms}}$ $h = \pi, K, p$

Phys. Rev. Lett. 128, 142004

 $\mathbf{R}_{p\mathrm{Pb}}^{h}(\eta_{cms}, p_{T}) = \frac{1}{A} \frac{\mathrm{d}^{2} \sigma_{p\mathrm{Pb}}^{h}(\eta_{cms}, p_{T})/\mathrm{d}p_{T} \mathrm{d}\eta_{cms}}{\mathrm{d}^{2} \sigma_{pp}^{h}(\eta_{cms}, p_{T})/\mathrm{d}p_{T} \mathrm{d}\eta_{cms}}$

13

Nuclear modification factor

$\mathbf{R}_{p\mathrm{Pb}}^{h}(\eta_{cms}, \boldsymbol{p}_{T}) = \frac{1}{A} \frac{\mathrm{d}^{2} \sigma_{p\mathrm{Pb}}^{h}(\eta_{cms}, p_{T})/\mathrm{d}p_{T} \mathrm{d}\eta_{cms}}{\mathrm{d}^{2} \sigma_{pp}^{h}(\eta_{cms}, p_{T})/\mathrm{d}p_{T} \mathrm{d}\eta_{cms}}$

N^h	number of prompt charged hadrons.	
\mathcal{L}	is the luminosity.	
η_{cms}	is the pseudo rapidity in the cms frame	
ϵ_{reco}	is the reconstruction efficiency	
ϵ_{sel}	is the selection efficiency	
ϵ_{PID}	is the PID efficiency	
ϵ_{TM}	is the Truth Matching efficiency	
Р	is the Purity	

sara.sellam@usc.es

$$\frac{\mathrm{d}^{2}\sigma^{h}}{\mathrm{d}p_{T}\mathrm{d}\eta_{cms}}\bigg|_{pp,p\mathrm{Pb},\mathrm{Pb}p} = \frac{1}{\mathcal{L}}\frac{N^{h}(\eta_{cms},p_{T})}{\Delta p_{T}\Delta \eta_{cm}}$$
$$N^{h} = N^{h}_{cand} \frac{\mathrm{P}^{h}}{\epsilon_{reco}\epsilon_{sel}\epsilon_{\mathbf{PID}}(1/\epsilon_{TM})}$$
$$h = \pi, \mathrm{K}, p$$

$$P^{h} = 1 - (f^{h}_{fake} + f^{h}_{sec} + f^{h}_{misID})$$

SMOG:fixed-target program

SMOG: System for Measuring Overlap with Gas.

sara.sellam@usc.es

Conclusion

- Hadron production in pPb collisions at LHCb provide unique access to the saturation region.
- Future measurements in SMOG will provide a better understanding of the high x saturation region.

• R_{pA} in SMOG can offer a better understanding of the enhancement observed in the large-x region.

 \rightarrow Nuclear modification factor of light hadrons with SMOG samples for example in pNe/pHe?.

