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Fixed target at ALICE
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ALICE detector  (Run 3)

TPC: |hlab| < 0.9, Muon Detector: 2.5 < hlab < 4 

Run 3 and 4:  New Inner Silicon Tracker, A Muon Forward Tracker
 Continuous readout(*): 50 kHz in Pb-Pb, 200 kHz up to 1 MHz in pp and p-A
(*)The feasible rate also depends on the detector occupancy in a fixed-target mode
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ALICE

Fixed target

2

z≈-4.8 m

1 cm thick 

Be, C, Ti, W, …

If approved, target installation during LHC LS3 (2026-2028)

• 106 p/s on target

• Feasibility for usage of Pb 
beam needs to be studied
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LHC beam direction

istic
H

eavy
Ion

C
olliderand

Tevatron
has

been
conjectured

recently
[6].

In
this

L
etter,w

e
reportthe

study
of

the
volum

e
reflec-

tion
effectw

ith
an

ultrarelativistic
proton

beam
.T

he
study

w
as

undertaken
to

provide
a

base
forthe

developm
entof

a
crystal

collim
ation

system
for

the
C

E
R

N
L

arge
H

adron
C

ollider
in

order
to

reach
its

highest
lum

inosity.
A

nother
goalof

the
study

w
as

to
extend

the
investigations

m
ade

at
the

Institute
for

H
igh

E
nergy

Physics
(IH

E
P)

w
ith

strip
crystals

[7]
and

m
ore

recently
atIH

E
P

and
the

Petersburg
N

uclearPhysics
Institute

w
ith

quasim
osaic

silicon
crystals

successfully
used

in
the

channeling
m

ode
for

the
firsttim

e
[8].C

hanneling
is

the
particle

confinem
entbetw

een
crystal-

line
planes

occurring
w

hen
a

particle
hits

a
crystal

w
ith

m
om

entum
nearly

parallel
to

the
atom

ic
planes,

and
its

transverse
energy

does
notexceed

the
depth

of
the

poten-
tial

w
ell

U
0

betw
een

the
planes

[see
Figs.1(a)

and
1(c)].

C
hanneled

particles
perform

an
oscillatory

m
otion

w
ith

period
!

that
depends

on
the

particle
m

om
entum

and
the

planar
potential

(tens
of

m
icrom

eters
for

ultrarelativistic
protons

in
silicon

lattice).
In

a
bent

crystal,
a

centrifugal
term

,
proportional

to
the

curvature,
reduces

the
potential

w
ell.

For
m

oderate
bending,

the
potential

w
ells

are
pre-

served,
and

the
channeling

rem
ains

effective
[see

Fig.1(b)].
A

particle
w

ith
a

large
transverse

com
ponent

of
the

m
om

entum
cannot

enter
the

channeling
regim

e
at

the
crystal

surface
but

m
ay

arrive
at

a
tangency

point
w

ith
the

bentcrystallographic
planes

w
hile

crossing
the

crystal.
H

ere
tw

o
effects

m
ay

take
place

[Fig.
1(b)]:

either
the

particle
partially

loses
its

transverse
energy

and
gets

trapped
into

the
channel(volum

e
capture),orits

transverse
direction

is
elastically

reversed
by

the
interaction

w
ith

the
potentialbarrier

(volum
e

reflection).
V

olum
e

capture
scales

w
ith

the
particle

energy
E

ap-
proxim

ately
as
E
!

3=2
and

thereby
is

less
probable

at
high

energies
w

here
volum

e
reflection

becom
es

the
dom

inant
effect.

A
lm

ost
all

particles
are

then
subject

to
volum

e
reflection,

resulting
in

a
transverse

kick
that

deflects
them

externally
w

ith
respect

to
the

center
of

curvature
of

the
crystalline

planes
[Fig.

1(d)].
N

um
erical

sim
ulations

predict
that

relativistic
protons

interacting
w

ith
a

bent
silicon

crystal
m

ay
be

reflected
w

ith
a

deflection
angle

up
to

1.5
tim

es
the

critical
angle

"
c "
#2U

o =pc$ 1=2.
A

n
experim

ent
w

as
carried

out
w

ith
a

400
G

eV
proton

beam
from

the
C

E
R

N
Super

Proton
Synchrotron

H
8

ex-
ternal

line,
w

hich
had

a
low

divergence
and

an
intensity

near
10

4
particles

per
second.

A
sketch

of
the

experim
ental

layout
is

show
n

in
Fig.2(c).Itconsisted

of
a

high
precision

goniom
eter

(G
),

w
here

the
crystals

under
investigation

w
ere

m
ounted,and

of
various

detectors
to

track
particles.

T
hey

w
ere

posi-
tioned

along
the

beam
line

in
the

vicinity
of

the
crystal

and
in

an
experim

entalarea
atabout70

m
dow

nstream
.

For
the

experim
ent,w

e
prepared

both
quasim

osaic
and

striplike
silicon

crystals
fabricated

according
to

the
tech-

nologies
developed

in
R

efs.[8,9],respectively.In
the

case
of

the
quasim

osaic
crystal,

a
bending

device
[Fig.

2(a)]
sim

ilar
to

the
one

described
in

R
ef.

[10]
w

as
applied.

B
ending

ofthe
striplike

crystalw
asachieved

via
anticlastic

forces
in

a
specially

designed
holder

[Fig.2(b)]
originated

from
R

ef.[11].R
esults

of
m

easurem
ents

w
ith

these
crys-

tals
turned

out
to

be
sim

ilar.
W

e
present

here
results

obtained
w

ith
a

strip
crystaland

then
very

briefly
com

pare
them

to
those

w
ith

a
quasim

osaic
crystal.

T
he

strip
crystalhad

(110)
channeling

planes
bentatan

angle
of

162
#

rad
along

its
3

m
m

length
in

the
beam

direction.
T

he
planar

potential
for

(110)
planes

is
U

0 "
22:7

eV
and

corresponds
to

a
critical

angle
of

10:6
#

rad.
T

he
m

ultiple
scattering

angle
of

400
G

eV
protons

in
this

crystal
is

equal
to

5:3
#

rad
and,

therefore,
is

sm
all

w
ith

respectto
the

critical
angle.

T
he

H
8

beam
line

w
as

adjusted
to

provide
a

divergence
of#8%

1$
#

rad,sm
aller

than
the

criticalangle.T
he

beam
spotsize

w
as

of
about1

m
m

,i.e.,of
the

sam
e

order
of

the
strip

crystalthickness.
T

he
goniom

eter
consists

of
three

high
precision

m
otion

units,tw
o

linear
and

one
angular.W

ith
the

linear
m

otions,
the

crystals
w

ere
positioned

w
ith

respect
to

the
beam

center
w

ith
an

accuracy
of

several
m

icrom
eters

w
ithin

a
range

ofabout10
cm

.W
ith

angularscans,the
crystals

w
ere

aligned
w

ith
respectto

the
beam

axis
w

ith
an

accuracy
of

1:5
#

rad
w

ithin
the

full
turn.

To
increase

its
m

echanical
stability,

the
goniom

eter
w

as
placed

on
a

special
granite

table.

 

FIG
.1

(coloronline).
(a)Periodic

planar
potentialin

a
straight

crystal
for

positively
charged

particles.
T

he
arrow

s
show

a
channeled

particle
w

ith
oscillatory

m
otion

in
the

potentialdepth
and

a
nonchanneled

particle,w
hose

transverse
energy

is
greater

than
the

depth
of

the
potential

w
ellU

o .(c)
Schem

atic
represen-

tation
ofthe

particle
trajectories

in
a

straightcrystal.(b)Periodic
planar

potentialin
a

bentcrystalforpositively
charged

particles.
T

he
arrow

s
show

volum
e-reflected,volum

e-captured,and
chan-

neled
particles.

(d)
Schem

atic
representation

of
the

particle
trajectories

in
a

bent
crystal.
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LHC beam direction
channeled halo beam

bending of 150 μrad

4

Fixed-target implementation
● Internal solid target + a bent crystal 

– a bent crystal installed in front of the LHC Interaction Point 2 deviates the beam 
halo onto a solid target

– bending angle of the crystal: 150 ;rad 
– Target position: ~ -4.7 m  

Studies of the crystal layout 
by A. Fomin, F. Galluccio, 
W. Scandale, M. Patecki 

Drawing courtesy of M. Patecki

See talks of A. Fomin and M. 
Patecki at PBC-FT working group 
meeting, 16 Dec 2020 for details

73 m 4.7 m

M. Patecki

16/12/2020 M. Patecki, Plans for the ALICE-FT studies 4

Consolidation of the crystal layout
• Layout parameters:

• LHC configuration:
• p and ion beam 

• Starting with p beams, then ion beams
• Both can be studied, ion case much more complex.

• (Run 3) & Run 4
• Crystal:

• Plane (vertical)
• Longitudinal position (-73m from IP2)
• Bending angle (~150 urad)
• Dist. from the beam (~6 𝜎ఉ)

• Target:
• Dist. from the beam (~ 4 mm)

• Absorber:
• Longitudinal position
• Gap
• Length, material

• Performance analysis:
• Machine losses
• Protons on target

16/12/2020 M. Patecki, Plans for the ALICE-FT studies 4

Consolidation of the crystal layout
• Layout parameters:

• LHC configuration:
• p and ion beam 

• Starting with p beams, then ion beams
• Both can be studied, ion case much more complex.

• (Run 3) & Run 4
• Crystal:

• Plane (vertical)
• Longitudinal position (-73m from IP2)
• Bending angle (~150 urad)
• Dist. from the beam (~6 𝜎ఉ)

• Target:
• Dist. from the beam (~ 4 mm)

• Absorber:
• Longitudinal position
• Gap
• Length, material

• Performance analysis:
• Machine losses
• Protons on target

absorber

Realisation of beam interaction with fixed target
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Beampipe supports: RUN3 Vs RUN4
RUN3

TBD
Possible reduction of 
the support structure

RUN4

Supports must be on the TPC 17Supports must be on FoCal Platform

FoCal

Beampipe Layout: RUN3 Vs RUN4
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ALICE

4

Study of gluon saturation,  
through direct photon detection



RUN3

Beampipe supports: RUN3 Vs RUN4
RUN3

TBD
Possible reduction of 
the support structure

RUN4

Supports must be on the TPC 17Supports must be on FoCal Platform

FoCal

Beampipe Layout: RUN3 Vs RUN4

Dimension in mm

RB24
8660

72801380

L3

IP=0

14

8710

~7100

290

7000

~300

Gate Valve will have a limited functionality respect to RUN3 

(dismounting of Compensator Magnet, RB24 upstream dismounting)

RUN4

~1080

290RUN4

Beampipe Layout: RUN3 Vs RUN4

Dimension in mm

RB24
8660

72801380

L3

IP=0

14

8710

~7100

290

7000

~300

Gate Valve will have a limited functionality respect to RUN3 

(dismounting of Compensator Magnet, RB24 upstream dismounting)

RUN4

~1080

290RUN4

valve valve

fixed target

The target and FoCal

ALICE

4

Study of gluon saturation,  
through direct photon detection



RUN3

Beampipe supports: RUN3 Vs RUN4
RUN3

TBD
Possible reduction of 
the support structure

RUN4

Supports must be on the TPC 17Supports must be on FoCal Platform

FoCal

Beampipe Layout: RUN3 Vs RUN4

Dimension in mm

RB24
8660

72801380

L3

IP=0

14

8710

~7100

290

7000

~300

Gate Valve will have a limited functionality respect to RUN3 

(dismounting of Compensator Magnet, RB24 upstream dismounting)

RUN4

~1080

290RUN4

Beampipe Layout: RUN3 Vs RUN4

Dimension in mm

RB24
8660

72801380

L3

IP=0

14

8710

~7100

290

7000

~300

Gate Valve will have a limited functionality respect to RUN3 

(dismounting of Compensator Magnet, RB24 upstream dismounting)

RUN4

~1080

290RUN4

valve valve

fixed target

The target and FoCal

ALICE

4

A

A'

Study of gluon saturation,  
through direct photon detection



RUN3

Beampipe supports: RUN3 Vs RUN4
RUN3

TBD
Possible reduction of 
the support structure

RUN4

Supports must be on the TPC 17Supports must be on FoCal Platform

FoCal

Beampipe Layout: RUN3 Vs RUN4

Dimension in mm

RB24
8660

72801380

L3

IP=0

14

8710

~7100

290

7000

~300

Gate Valve will have a limited functionality respect to RUN3 

(dismounting of Compensator Magnet, RB24 upstream dismounting)

RUN4

~1080

290RUN4

Beampipe Layout: RUN3 Vs RUN4

Dimension in mm

RB24
8660

72801380

L3

IP=0

14

8710

~7100

290

7000

~300

Gate Valve will have a limited functionality respect to RUN3 

(dismounting of Compensator Magnet, RB24 upstream dismounting)

RUN4

~1080

290RUN4

valve valve

fixed target

The target and FoCal

ALICE

4

A

A'

AA'

Beampipe Layout: RUN3 Vs RUN4

Dimension in mm

RB24
8660

72801380

L3

IP=0

14

8710

~7100

290

7000

~300

Gate Valve will have a limited functionality respect to RUN3 

(dismounting of Compensator Magnet, RB24 upstream dismounting)

RUN4

~1080

290RUN4

LHC beam pipe
transverse vacuum ‘chamber'valve
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Target system design and integration

Cynthia Hadjidakis       IJCLab       June 21st 2022 

Target system

ALICE-FT 
• Integration and vacuum constraints: 

- z~-4.8 m from IP2 seems feasible given 
integration constraints 

- FoCal detector behind the target system 
- Beam pipe vacuum ~10-10-10-11 mbar 

• Target design 
- Step motor for a retractable target with 

linear motion 
- Transverse beam pipe of ~30 cm to stay 

outside of FoCal acceptance 
• Aim at Run 4 Transverse pipe

LHC beam pipe
ALICE-FT project CERN-PBC-Notes-2019-004

Target design

Space constraints in experiment + impact on Focal:

target position considered at present: 

z=500 cm +/- 20 cm

5
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LHC beam pipe
ALICE-FT project CERN-PBC-Notes-2019-004

Target design
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Advantages of fixed target mode at LHC

Cynthia Hadjidakis       IJCLab       June 21st 2022 

• Several advantages of fixed-target mode: 
• Accessing high-x frontier (yCM < 0 and parton momentum fraction x > 0.5) 
• Achieving high luminosity 
• Varying atomic mass number of the target 
• Polarising the target 

• This can be realised at LHC in a parasitic mode!

ALICE and LHCb in fixed target mode 
with proton beamRapidity coverage for 2 < ηlab < 5 detector

(4) √s = 5.02 TeV collider mode 
(1) √s = 115 GeV fixed target mode 
(2) √s = 72 GeV fixed target mode 

Space constraints in experiment + impact on Focal:

target position considered at present: 

z=500 cm +/- 20 cm

5



Track reconstruction

11

ALICE TPC tracking performances

Tracking efficiency for charged particles

• p-W simulations, √sNN = 115 GeV 
• Time Projection Chamber (TPC) tracking and event 

reconstruction  
• Tracking algorithm improved in order to reconstruct 

large angle particles in the TPC 
• Simulations with Run2 are promising (see below) 
• Issue in Run3 simulation (splitting tracks in 

reconstruction) under discussion with Ruben and 
David (thanks!), similar efficiency and resolution as 
in Run2 simulation expected 

• Continuous read-out of the TPC in Run3 and HLT 
fixed-target event trigger: if not possible (to define a 
FT trigger during reconstruction), then run in FT 
mode only

TPC

Md Rihan Haque
Vertex efficiency vs MC primary tracks

Track reconstruction via TPC

6



Motivation for the measurements of anti-protons
 p production cross section as input for determination of cosmic p spectrum

high-E p from interaction of primary cosmic rays (p, 4He, 
12C, 14N, 16O) with interstellar matter  (p, 4He)


slow p from p beam with fixed target of C, N, O, He

⇳

7

ALICE can measure p with momenta down to ~ 0 GeV.



Simulation studies

• Simulation: PYTHIA8


• Consider target to be at z=495 cm


• Detector acceptance cuts


• Tracking efficiency and finite resolution of transverse-momentum reconstruction 

via parametrisation determined using the ALICE simulation and software package


   (See next talk by Rihan).


  Only determined for charged hadrons

8
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• requirement on pion detection

results in 80% reduction of yield



Anti-deuteron and anti-helium production
• Anti-deuteron production in cosmic rays:


important contribution is expected from the nuclear interactions of primary cosmic rays with intergalactic matter. 


• Production of deuteron in cosmic rays:


• Interaction of cosmic rays nuclei with interstellar matter


• p+p -> d 𝜋+


• production via coalescence:


Free (anti-)nucleons created in the interaction of cosmic rays with interstellar matter lie sufficiently close 


in phase-space to form (anti-)deuterons → only mechanism for formation of secondary anti-deuterons


• Various dark-matter models predict high enhancement of anti-deuterons at low kinetic energy


• Similar production mechanism for anti-helium and likewise a promising detection channels for dark matter 

13
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FIG. 1. (Color online) Invariant differential cross sections as function of rapidity (y) are calculated with different MC models
for protons a), and antiprotons b) in p+p collisions at 158 GeV/c. Results for two bins of transverse momentum (pT ) are
compared with data from experiments NA49 [19] and NA61 [20].

Experiment or Reference Collision Final states plab

√

s Phase Space
Laboratory (GeV/c) (GeV)

ITEP a [22] p+Be p 10.1 4.5 1≤ p ≤7.5 GeV/c; θ = 3.5 deg
CERN a [23, 24] p+p p, p̄ 19.2 6.1 2≤ p ≤19 GeV/c;

p+Be p, p̄ 0.72 ≤ θ ≤ 6.6 deg
CERN a [24] p+p p 24 6.8 2≤ p ≤9 GeV/c; θ = 6.6 deg

NA61/SHINE [25] p+C p 31 7.7 0≤ p ≤25 GeV/c; 0≤ θ ≤ 20.6 deg
[20] p+p p, p̄ pT ≤ 1.5 GeV/c; 0.1≤ y ≤2.0

NA61/SHINE [20] p+p p, p̄ 40 8.8 pT ≤ 1.5 GeV/c; 0.1≤ y ≤2.0
Serpukhov a [26, 27] p+p p, p̄ 70 11.5 0.48≤ pT ≤ 4.22 GeV/c; θlab = 9.2 deg

[28] p+Be p, p̄
[29] p+Al p, p̄

NA61/SHINE [20] p+p p, p̄ 80 12.3 pT ≤ 1.5 GeV/c; 0.1≤ y ≤2.0
CERN-NA49 [19] p+p p, p̄ 158 17.5 pT ≤ 1.9 GeV/c; xF ≤1.0

[30] p+C p, p̄
CERN-NA61 [20] p+p p, p̄ pT ≤ 1.5 GeV/c; 0.1≤ y ≤2.0
CERN-SPS a [31, 32] p+Be p, p̄ 200 19.4 23≤ p ≤197 GeV/c

p+Al p, p̄ θlab = 3.6 mr, θlab = 0
Fermilab a [33, 34] p+p p, p̄ 300 23.8 0.77 ≤ pT ≤ 6.91 GeV/c;

p+Be p, p̄ θlab = 4.4 deg, θcm = 90 deg
Fermilab a [33, 34] p+p p, p̄ 400 27.4 0.77 ≤ pT ≤ 6.91 GeV/c; θlab = 4.4 deg

p+Be p, p̄
CERN-ISR [35] p+p p, p̄ 1078 45.0 0.1< pT <4.8 GeV/c; 0.0≤ y ≤1.0
CERN-ISR [35] p+p p, p̄ 1498 53.0 0.1< pT <4.8 GeV/c; 0.0≤ y ≤1.0

CERN-LHCb [36] p+He p̄ 6.5× 103 110 0.0≤ pT ≤4.0 GeV/c; 12≤ p ≤110
CERN-ALICE [37] p+p p, p̄ 4.3× 105 900 0.0≤ pT ≤2.0 GeV/c; -0.5≤ y ≤0.5
CERN-ALICE [37] p+p p, p̄ 2.6× 107 7000 0.0≤ pT ≤2.0 GeV/c; -0.5≤ y ≤0.5

a No feed-down correction

TABLE I. List of experimental data on proton and antiproton production in p+p and p+A collisions considered in this work
to compare with simulations.

[40] was used to estimate invariant differential cross sec- tions as a function of rapidity (y) using EPOS-LHC [39],

Phys. Rev. D 98, 023012 2018

Deuteron and Antideuteron Production Simulation in Cosmic-ray Interactions 
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the coalescence momentum depends on the collision energy,  and is not constant as previous work suggested



Conclusion and outlook

• Feasibility studies show good capabilities of ALICE FT to perform anti-proton measurements down to low E 


• Future studies:


• Full simulation for anti-proton studies


• Evaluate best selection for anti-Λ reconstruction


• Extend studies to other anti-particles, such as anti-deuteron and anti-helium


15
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