Antiproton production in ALICE

Charlotte Van Hulse
UAH

Fixed-target experiments at LHC - strong2020 workshop 22-24 June, 2022

Fixed target at ALICE

Fixed target at ALICE

- $10^{6} \mathrm{p} / \mathrm{s}$ on target
- Feasibility for usage of Pb beam needs to be studied

Realisation of beam interaction with fixed target

$\xrightarrow{\text { LHC beam direction }}$

Realisation of beam interaction with fixed target

Realisation of beam interaction with fixed target

bending of $150 \mu \mathrm{rad}$

The target and FoCal

ALICE

The target and FoCal

ALICE

The target and FoCal

The target and FoCal

Target design

Space constraints in experiment + impact on Focal: target position considered at present:
z=500 cm +/- 20 cm

Target design

Track reconstruction

Track reconstruction via TPC

Motivation for the measurements of anti-protons

$\overline{\mathrm{p}}$ production cross section as input for determination of cosmic $\overline{\bar{p}}$ spectrum

ALICE can measure $\overline{\bar{\rho}}$ with momenta down to $\sim 0 \mathrm{GeV}$.

Simulation studies

- Simulation: PYTHIA8
- Consider target to be at $z=495 \mathrm{~cm}$
- Detector acceptance cuts
- Tracking efficiency and finite resolution of transverse-momentum reconstruction via parametrisation determined using the ALICE simulation and software package (See next talk by Rihan).

Only determined for charged hadrons

TPC acceptance

TOF acceptance

At $z=495 \mathrm{~cm}, 0.30<\eta<1.53$

Anti-proton production

- Tracking efficiency results in 40\% reduction of yield

Anti-protons from (prompt) anti-lambda production

- requirement on pion detection

Anti-deuteron and anti-helium production

- Anti-deuteron production in cosmic rays:
important contribution is expected from the nuclear interactions of primary cosmic rays with intergalactic matter.

Anti-deuteron and anti-helium production

- Anti-deuteron production in cosmic rays:
important contribution is expected from the nuclear interactions of primary cosmic rays with intergalactic matter.
- Production of deuteron in cosmic rays:
- Interaction of cosmic rays nuclei with interstellar matter
- $p+p$-> d π^{+}
- production via coalescence:

Free (anti-)nucleons created in the interaction of cosmic rays with interstellar matter lie sufficiently close in phase-space to form (anti-)deuterons \rightarrow only mechanism for formation of secondary anti-deuterons

Anti-deuteron and anti-helium production

- Anti-deuteron production in cosmic rays:
important contribution is expected from the nuclear interactions of primary cosmic rays with intergalactic matter.
- Production of deuteron in cosmic rays:
- Interaction of cosmic rays nuclei with interstellar matter
- p+p -> d π^{+}
- production via coalescence:

Free (anti-)nucleons created in the interaction of cosmic rays with interstellar matter lie sufficiently close in phase-space to form (anti-)deuterons \rightarrow only mechanism for formation of secondary anti-deuterons

- Various dark-matter models predict high enhancement of anti-deuterons at low kinetic energy

Anti-deuteron and anti-helium production

- Anti-deuteron production in cosmic rays:
important contribution is expected from the nuclear interactions of primary cosmic rays with intergalactic matter.
- Production of deuteron in cosmic rays:
- Interaction of cosmic rays nuclei with interstellar matter
- p+p -> d π^{+}
- production via coalescence:

Free (anti-)nucleons created in the interaction of cosmic rays with interstellar matter lie sufficiently close in phase-space to form (anti-)deuterons \rightarrow only mechanism for formation of secondary anti-deuterons

- Various dark-matter models predict high enhancement of anti-deuterons at low kinetic energy
- Similar production mechanism for anti-helium and likewise a promising detection channels for dark matter

Deuteron and Antideuteron Production Simulation in Cosmic-ray Interactions

Phys. Rev. D 98, 0230122018

Experiment or Laboratory	Reference	Collision	Final states	$\boldsymbol{p}_{\text {lab }}$ $(\mathbf{G e V} / \boldsymbol{c})$	\sqrt{s} $(\mathbf{G e V})$
ITEP $^{\mathrm{a}}$	$[22]$	$\mathrm{p}+\mathrm{Be}$	p	10.1	4.5
CERN $^{\mathrm{a}}$	$[23,24]$	$\mathrm{p}+\mathrm{p}$	$\mathrm{p}, \overline{\mathrm{p}}$	19.2	6.1

the coalescence momentum depends on the collision energy, and is not constant as previous work suggested

Conclusion and outlook

- Feasibility studies show good capabilities of ALICE FT to perform anti-proton measurements down to low E - Future studies:
- Full simulation for anti-proton studies
- Evaluate best selection for anti-^ reconstruction
- Extend studies to other anti-particles, such as anti-deuteron and anti-helium

Back up

With pT cut

