Antiproton production in ALICE

Charlotte Van Hulse UAH

Fixed-target experiments at LHC – strong2020 workshop 22–24 June, 2022

AdTCM

Fixed target at ALICE

Fixed target at ALICE

ALICE

fixed target

ALICE

fixed target

fixed target

Target designion pump RB24 Beam Loss Central Monitor beam pipe

Space constraints in experiment + impact on Focal: target position considered at present: z=500 cm +/-20 cm

Space constraints in experiment + impact on Focal: target position considered at present: z=500 cm +/-20 cm

Track reconstruction

6

Motivation for the measurements of anti-protons

 \overline{p} production cross section as input for determination of cosmic \overline{p} spectrum

high-E p from interaction of primary cosmic rays (p, ⁴He, ¹²C, ¹⁴N, ¹⁶O) with interstellar matter (p, ⁴He)

slow p from p beam with fixed target of C, N, O, He

ALICE can measure \overline{p} with momenta down to ~ 0 GeV.

Û

Simulation studies

- Simulation: PYTHIA8
- Consider target to be at z=495 cm
- Detector acceptance cuts
- Tracking efficiency and finite resolution of transverse-momentum reconstruction via parametrisation determined using the ALICE simulation and software package (See next talk by Rihan).

Only determined for charged hadrons

TPC acceptance

Optimised acceptance via full simulation, see Rihan's talk: $1.2 < \eta < 2.2$

TOF acceptance

At z=495 cm, 0.30<η<1.53

Anti-proton production

 Tracking efficiency results in 40% reduction of yield

Anti-protons from (prompt) anti-lambda production

- Anti-deuteron production in cosmic rays:

important contribution is expected from the nuclear interactions of primary cosmic rays with intergalactic matter.

- Anti-deuteron production in cosmic rays:
- Production of deuteron in cosmic rays:
 - Interaction of cosmic rays nuclei with interstellar matter
 - p+p -> d π⁺
 - production via coalescence:

Free (anti-)nucleons created in the interaction of cosmic rays with interstellar matter lie sufficiently close in phase-space to form (anti-)deuterons \rightarrow only mechanism for formation of secondary anti-deuterons

important contribution is expected from the nuclear interactions of primary cosmic rays with intergalactic matter.

- Anti-deuteron production in cosmic rays:
- Production of deuteron in cosmic rays:
 - Interaction of cosmic rays nuclei with interstellar matter
 - p+p -> d π⁺
 - production via coalescence:

Free (anti-)nucleons created in the interaction of cosmic rays with interstellar matter lie sufficiently close in phase-space to form (anti-)deuterons \rightarrow only mechanism for formation of secondary anti-deuterons

Various dark-matter models predict high enhancement of anti-deuterons at low kinetic energy

important contribution is expected from the nuclear interactions of primary cosmic rays with intergalactic matter.

- Anti-deuteron production in cosmic rays:
- Production of deuteron in cosmic rays:
 - Interaction of cosmic rays nuclei with interstellar matter
 - p+p -> d π⁺
 - production via coalescence:

Free (anti-)nucleons created in the interaction of cosmic rays with interstellar matter lie sufficiently close in phase-space to form (anti-)deuterons \rightarrow only mechanism for formation of secondary anti-deuterons

- Various dark-matter models predict high enhancement of anti-deuterons at low kinetic energy

important contribution is expected from the nuclear interactions of primary cosmic rays with intergalactic matter.

Similar production mechanism for anti-helium and likewise a promising detection channels for dark matter

Experiment or	Reference	Collision	Final states	p_{lab}	\sqrt{s}	Phase Space
Laboratory				(GeV/c)	(GeV)	
ITEP ^a	[22]	p+Be	р	10.1	4.5	$1 \le p \le 7.5 \mathrm{GeV}/c; \theta = 3.5 \mathrm{deg}$
CERN ^a	[23,24]	p+p	$\mathrm{p},\bar{\mathrm{p}}$	19.2	6.1	$2 \le p \le 19 \mathrm{GeV}/c;$
		p+Be	$\mathrm{p},\bar{\mathrm{p}}$			$0.72 \le \theta \le 6.6 \deg$
$\rm CERN~^{a}$	[24]	p+p	р	24	6.8	$2 \le p \le 9 \mathrm{GeV}/c; \theta = 6.6 \deg$
NA61/SHINE	[25]	p+C	р	31	7.7	$0 \le p \le 25 \mathrm{GeV}/c; \ 0 \le \theta \le 20.6 \mathrm{deg}$
	[20]	p+p	$\mathrm{p}, ar{\mathrm{p}}$			$p_T \le 1.5 \text{GeV}/c; 0.1 \le y \le 2.0$
NA61/SHINE	[20]	p+p	$\mathrm{p}, ar{\mathrm{p}}$	40	8.8	$p_T \le 1.5 \text{GeV}/c; 0.1 \le y \le 2.0$
$\operatorname{Serpukhov}^{\mathrm{a}}$	[26, 27]	p+p	$\mathrm{p}, ar{\mathrm{p}}$	70	11.5	$0.48 \le p_T \le 4.22 \text{GeV}/c; \theta_{lab} = 9.2 \text{deg}$
	[28]	p+Be	$\mathrm{p}, ar{\mathrm{p}}$			
	[29]	p+Al	$\mathrm{p}, ar{\mathrm{p}}$			
NA61/SHINE	[20]	p+p	$\mathrm{p}, ar{\mathrm{p}}$	80	12.3	$p_T \le 1.5 \text{GeV}/c; \ 0.1 \le y \le 2.0$
CERN-NA49	[19]	p+p	$\mathrm{p}, ar{\mathrm{p}}$	158	17.5	$p_T \le 1.9 \text{GeV}/c; \ x_F \le 1.0$
	[30]	p+C	$\mathrm{p}, \mathrm{ar{p}}$			
CERN-NA61	$\overline{\left[20\right]}$	p+p	$\mathrm{p}, ar{\mathrm{p}}$			$p_T \le 1.5 \text{GeV}/c; \ 0.1 \le y \le 2.0$
CERN-SPS $^{\rm a}$	[31, 32]	p+Be	$\mathrm{p}, \mathrm{ar{p}}$	200	19.4	$23 \le p \le 197 \mathrm{GeV}/c$
		p+Al	$\mathrm{p}, ar{\mathrm{p}}$			$\theta_{lab} = 3.6 \text{ mr}, \ \theta_{lab} = 0$
Fermilab $^{\rm a}$	[33, 34]	p+p	$\mathrm{p}, ar{\mathrm{p}}$	300	23.8	$0.77 \le p_T \le 6.91 \text{GeV}/c;$
		p+Be	$\mathrm{p}, ar{\mathrm{p}}$			$\theta_{lab} = 4.4 \text{ deg}, \ \theta_{cm} = 90 \text{ deg}$
Fermilab $^{\rm a}$	[33, 34]	p+p	$\mathrm{p}, ar{\mathrm{p}}$	400	27.4	$0.77 \le p_T \le 6.91 \text{GeV}/c; \theta_{lab} = 4.4 \deg$
		p+Be	$\mathrm{p}, \mathrm{ar{p}}$			
CERN-ISR	[35]	p+p	${ m p, ar{p}}$	1078	45.0	$0.1 < p_T < 4.8 \text{GeV}/c; \ 0.0 \le y \le 1.0$
CERN-ISR	$\overline{\left[35\right]}$	p+p	$\mathrm{p}, \mathrm{ar{p}}$	1498	53.0	$0.1 < p_T < 4.8 \text{GeV}/c; \ 0.0 \le y \le 1.0$
CERN-LHCb	$\overline{[36]}$	p+He	$\overline{\mathrm{p}}$	$6.5 \times \ 10^{3}$	110	$0.0 \le p_T \le 4.0 \text{GeV}/c; \ 12 \le p \le 110$
CERN-ALICE	[37]	$\mathbf{p} + \mathbf{p}$	$\mathbf{p}, \mathbf{\bar{p}}$	4.3×10^{5}	900	$0.0 \le p_T \le 2.0 \text{GeV}/c; -0.5 \le y \le 0.5$
CERN-ALICE	$\begin{bmatrix} 37 \end{bmatrix}$	p+p	$\mathbf{p}, \mathbf{ar{p}}$	2.6×10^{7}	7000	$0.0 \le p_T \le 2.0 \text{GeV}/c; \ -0.5 \le y \le 0.5$

the coalescence momentum depends on the collision energy, and is not constant as previous work suggested

Phys. Rev. D 98, 023012 2018

Conclusion and outlook

- Future studies:
 - Full simulation for anti-proton studies
 - Evaluate best selection for anti-Λ reconstruction
- Extend studies to other anti-particles, such as anti-deuteron and anti-helium

• Feasibility studies show good capabilities of ALICE FT to perform anti-proton measurements down to low E

Back up

With pT cut

