Simulation Setup	h $^\pm$ results from O2 OO	Fast decay sim A	Fast decay sim D ⁰ 000	Summary and outlook

Open Charm Production in ALICE Fixed Target

Md Rihan Haque

Warsaw University of Technology, Poland

Collaborators: C. Hadjidakis, D. Kikola, L. Massacrier

FT Workshop, June 22-24, 2022

Simulation Setup	h $^\pm$ results from O2	Fast decay sim A	Fast decay sim D ⁰	Summary and outlook
•00				

Motivation for Fixed Target Setup

Motivation:

- ★ Measurement in high x frontier.
- ★ Study longitudinal expansion of QGP.
- ★ Factorization of CNM effects & more [1]
- ★ Variable target system e.g., C, W, Ti.
- ★ $\sqrt{s_{\rm NN}}$ =115 (*p*-*A*) and 72 GeV (*Pb*-*A*).

Fixed Target Setup in ALICE:

- proton beam halo can be channeled with bent crystal [2]
- $\hfill\square$ Optimal Target position: ${\sim}480$ cm.
- Retractable taget setup.
- Smooth integration with ALICE setup.

Technical Challenges:

- ► How TPC responses to inclined tracks? (*i.e.*, -2.5 $\leq \eta \leq$ -1.0).
- > Can we measure Λ , D^0 from FT event ?

¹C. Hadjidakis *et.al.* Phys. Rep., Vol. 911, p1 (2021).
 ²M. Patecki, JACoW-HB2021-MOP26

Simulation Setup	h $^{\pm}$ results from O2	Fast decay sim A	Fast decay sim D ⁰	Summary and outlook
000				

Simulation Configurations

For Charged particles:

- System: proton on Tungsten (W).
- □ Energy: $\sqrt{s_{\rm NN}}$ = 115 GeV/c.
- Generator: HIJING (w. Run-2 software).
- □ Reconstruction: with O2 (Run-3 software).
- □ No. of Events: ~5000 events.
- □ Particles: h^{\pm} (-2.2 $\leq \eta \leq$ -1.2).

For Λ and D^0 particles:

- □ Fast Decay simulation \rightarrow we can decide if wee need full O^2 simulation for Λ and D^0 .
- Generated Λ and D^0 : Flat in p_T with -2.2 $\leq \eta \leq$ -1.2 and $0 \leq \phi \leq 2\pi$.
- $\Box\,$ No. of Fast sim particle: ${\sim}200K$ (per set).
- Decayed with TGenPhaseSpace (Root class).
- □ Topological cuts: Decay length, M_{inv}.
- Sec.Vertex resolution not simulated.

Some known issues with inclined tracks in O2

Known challenges of Fixed targed tracks:

- Inclined FT track cannot cross full TPC.
- \Box TPC N_{cls} is on average lower than collider.
- Track segments not merging in O2
 - \rightarrow Mutiple track segments per MC track.
 - \rightarrow This was not a problem in Run-2.
- Need help from TPC experts!

Work arounds for the issue:

- *o* For efficiency estimation \rightarrow no N_{cls} cut, & unique set of tracks used (no duplicate).
- o For p_T resolution: use $N_{cls} ≥ 70$ → minimum quality cut.
- *o* Permanent solution: waiting for TPC experts to fix this merging issue.

Simulation Setup	h [±] results from O2	Fast decay sim A	Fast decay sim D ⁰	Summary and outlook
	•0			

Simulation Results for charged tracks from FT events

Observations:

Tracking Efficieny for charged tracks:

- ★ Efficiency X Acceptance shown for Target positions = 480 cm and 495 cm.
- ★ Efficiency is similar for two positions.
- ★ Efficiency is lower than collider tracks.
 - \rightarrow But sufficient for analysis.
- $p_{\rm T}$ Resolution of charged tracks:
 - ★ $p_{\rm T}$ resolution estimated with $N_{cls} \ge 70$.
 - ★ p_T resolution does not depend on target position.
 - ★ p_T resolution is smaller than collider tracks. → collider tracks has higher N_{cls}.
 - ★ Reasonably good $p_{\rm T}$ resolution,
 - \rightarrow without any dedicated tracker.

Simulation Setup	h [±] results from O2	Fast decay sim A	Fast decay sim D ⁰	Summary and outlook
	00			

Simulation Results for charged tracks from FT events

Observations:

Tracking Efficieny for charged tracks:

- Efficiency X Acceptance shown for Target positions = 495 cm.
- ★ Efficiency is similar for two positions.
- ★ Fit with PolN and Log function → for continuous value for Fast decay sim.

 $p_{\rm T}$ Resolution of charged tracks:

- ★ $p_{\rm T}$ resolution estimated with $N_{cls} \ge 70$.
- ★ p_T resolution does not depend on target position.
- ★ $p_{\rm T}$ resolution is smaller than collider tracks. → collider tracks has higher N_{cls} .
- ★ Fit with PolN and exp function
 - \rightarrow for continuous value for Fast decay sim.

Some QA plot for Fast decay sim of A

Simulation Setup	h $^\pm$ results from O2	Fast decay sim A	Fast decay sim D ⁰	Summary and outlook
		000		

Fast Simulation Results for \land in FT event

Observations:

Tracking Efficieny for Λ :

- ★ Efficiency X Acceptance shown for DL ≥ 5cm, and M_{inv} cut: M_{pdg}±10MeV.
- ★ Efficiency is lower at low p_T compared to collider events. → sufficient for analysis.

 $p_{\rm T}$ Resolution of Λ :

- *p*_T resolution estimated from Λ reconstructed with smeared daughters.
- ★ Pt resolution sufficient for analysis, → without any dedicated tracker for FT.
- ★ Caveats: The Λ efficiency should also depend on resolution of Sec. (V0-)Vertex, purity/mis-identification of daughters (π and p) → has not been estimated!

Note: Primary V_z resolution = 2.4 cm for FT. ALICE Efficiency: Analysis Note Id 959.

 Simulation Setup
 h[±] results from O2
 Fast decay sim Λ
 Fast decay sim D^U
 Summary and outlook

 000
 00
 000
 000
 0000
 00000

Fast Simulation Results for \land **in FT event**

Observations:

Tracking Efficieny for Λ:

- ★ Efficiency X Acceptance decreases with increasing decay length cut.
- ★ With larger decay length cuts, efficiency decreases. → Still sufficient for analysis.

 $p_{\rm T}$ Resolution of Λ :

- ★ $p_{\rm T}$ resolution does not depend on decay length cut, → only depends on N_{cls}.
- ★ p_T resolution is sufficient for analysis, → without any dedicated tracker for FT.
- ★ Caveats: The Λ efficiency should also depend on resolution of Sec. (V0-)Vertex, purity/mis-identification of daughters (π and p) → has not been estimated!

Note: Primary V_z resolution = 2.4 cm for FT. ALICE Efficiency: Analysis Note Id 959.

Some QA plot for Fast decay sim of D^0

Simulation Setup	h $^\pm$ results from O2	Fast decay sim A	Fast decay sim D ⁰	Summary and outlook
			000	

Fast Simulation Results for D⁰ in FT event

Observations:

Tracking Efficieny of D⁰ with DL cut:

- ★ Top Fig: Simulated decay length of D^0 .
- ★ Most of D⁰ decays within target → \geq 90% within 1cm.
- ★ Rec.vertex method not feasible for D⁰ → use combinatorial method to select D⁰ in FT events.

Tracking Efficieny of D^0 w/o DL cut:

- ★ EfficiencyXAcceptance is sufficient for analysis.
- ★ Combinatorial background study for S/B → Use model for background π , K.
- ★ Caveats: The D^0 results should also depend on on the purity/mis-identification of daughter π and $K \rightarrow$ not estimated!

Note: Primary V_z resolution = 2.4 cm for FT. ALICE Efficiency: JHEP 01(2022)174.

Simulation Setup	h $^\pm$ results from O2	Fast decay sim A	Fast decay sim D ⁰	Summary and outlook
			000	

Fast Simulation Results for D⁰ in FT event

Observations:

 p_T resolution of D^0 :

- ★ $p_{\rm T}$ resolution does not depend on decay length, → only depends on N_{cls}.
- ★ Minimum requirement TPC $N_{cls} \ge 70$.
- ★ $p_{\rm T}$ resolution is sufficient for analysis, → without any dedicated tracker for FT.

Tracking Efficieny of D^0 w/o DL cut:

- ★ EfficiencyXAcceptance is sufficient for analysis.
- ★ Combinatorial background study for S/B → Use model for background π , K.
- ★ Caveats: The D^0 results should also depend on on the purity/mis-identification of daughter π and $K \rightarrow$ not estimated!

Note: Primary V_z resolution = 2.4 cm for FT. ALICE Efficiency: JHEP 01(2022)174

Simulation Setup	h [±] results from O2 OO	Fast decay sim A	Fast decay sim D ⁰ 000	Summary and outlook
Summary an	d Outlook			

Summary:

- I Tracking efficiency and $p_{\rm T}$ resolution measured for Fixed Target setup in ALICE.
- **2** Efficiency and Resolution for charged particles \approx 70% and 5% for $p_{\rm T}$ ~1 GeV/c.
- **I** Charged particle response is used as proxy for decay daughter of $\Lambda \& D^0$.
- I Fast Decay Simulation of Λ:
 - Efficiency and $p_{\rm T}$ resolution are sufficient for analysis (without extra detector).
 - Tracking efficiency and resolution has weak dependence on Target position.
- Fast Decay Simulation study of D⁰:
 - Sec. vertex method cannot be used for FT events → not feasible.
 - Combinatorial method shows that D⁰ reconstruction efficiency is sufficient for analysis

★ Caveats:

– Effects of purity of daughters (for Λ , D^0), and sec.vertex resolution (for Λ) have not been estimated yet.

Outlook:

- Do full simulation of Λ, D⁰ to see effects of daughter mis-idenfitication, sec. vertex resolution etc.
- Estimate S/B and Significance of D^0 signal for Combinatorial Method.
- Physics Performance study using the detector responses.
- ★ This Project is funded by the European Union's Horizon 2020 program (grant agreement No 824093).

Simulation Setup	h [±] results from O2	Fast decay sim A	Fast decay sim D ⁰	Summary and outlook
				00000

Back up

Target Position sketch-I

Target Position sketch-II

Vertex Resolutions (Run-2 AliRoot Simulation)

Md Rihan Haque

WUT Poland