

LHCb

Charm production in PbNe collisions at LHCb

investigating charmonium color screening in a QGP

Frédéric Fleuret – Laboratoire Leprince-Ringuet

Fixed-target experiments at LHC – Strong2020 workshop June 23, 2022

- Charm quarks, QGP and J/ψ sequential suppression
- Experimental results: NA50@17 GeV (SPS)
- LHCb-FT: PbNe @ 70 GeV and outlook

• Heavy quarks and Quark Gluon Plasma (QGP)

Heavy quarks are "special " QGP probes : m_Q >> QGP critical temperature T_c (~160 MeV),

→ Heavy quarks should be produced in *initial* nucleon-nucleon collisions only, the QGP phase shouldn't modify the overall heavy quark yields,

→ QGP phase should modify relative heavy quark (hidden/open) bound state yields

• Heavy quarks and Quark Gluon Plasma (QGP)

Heavy quarks are "special " QGP probes : m_Q >> QGP critical temperature T_c (~160 MeV),

➔ Heavy quarks should be produced in *initial* nucleon-nucleon collisions only, the QGP phase shouldn't modify the overall heavy quark yields,

→ QGP phase should modify relative heavy quark (hidden/open) bound state yields

- Heavy quark hadronization (cc example):
 - − ~90% of $c\bar{c}$ pairs → open charm
 - − ~10% of $c\overline{c}$ pairs → hidden charm (charmonia)

Since most of the produced $c\overline{c}$ pairs hadronize into open charm (~90%), open charm production reflects the *original* charm quark yield.

LHCh

Heavy quarks are "special " QGP probes : m_o >> QGP critical temperature T_c (~160 MeV),

→ Heavy quarks should be produced in *initial* nucleon-nucleon collisions only, the QGP phase shouldn't modify the overall heavy guark yields,

→ QGP phase should modify relative heavy quark (hidden/open) bound state yields

- Heavy quark hadronization ($c\overline{c}$ example):
 - ~90% of $c\bar{c}$ pairs \rightarrow open charm
 - ~10% of $c\bar{c}$ pairs \rightarrow hidden charm (charmonia) Since most of the produced $c\overline{c}$ pairs hadronize into open charm (~90%), open charm production reflects the original charm quark yield.
- Possible QGP effects on quarkonium: .
 - **Color screening:** $Q\overline{Q}$ bound states suppression
 - Color screening in a QGP decreases quarkonium binding
 - Color screening should lead to a suppression of quarkonium production yields

Heavy quarks and Quark Gluon Plasma (QGP)

Heavy quarks are "special " QGP probes : m_Q >> QGP critical temperature T_c (~160 MeV),

➔ Heavy quarks should be produced in *initial* nucleon-nucleon collisions only, the QGP phase shouldn't modify the overall heavy quark yields,

→ QGP phase should modify relative heavy quark (hidden/open) bound state yields

- Heavy quark hadronization ($c\overline{c}$ example):
 - − ~90% of $c\bar{c}$ pairs → open charm

~10% of cc̄ pairs → hidden charm (charmonia)
 Since most of the produced cc̄ pairs hadronize into open charm (~90%),
 open charm production reflects the original charm quark yield.

- Possible QGP effects on quarkonium:
 - Color screening: $Q\overline{Q}$ bound states suppression
 - Color screening in a QGP decreases quarkonium binding
 - Color screening should lead to a suppression of quarkonium production yields
 - Recombination: $Q\overline{Q}$ bound states enhancement
 - At sufficiently high $\sqrt{s_{NN}}$, heavy quarks are abundantly produced.
 - After thermalisation, statistical combination can lead to an enhancement of quarkonium production yields
 - Occurs at high energies only (many cc pairs needed)
 - At high energies: interplay colour screening/recombination

• Experimentally

- Charmonium production in A+A collisions studied at:
 - **CERN-SPS** (\sqrt{s} =17 GeV) NA38, NA50, NA60 experiments (~0.1 $c\bar{c}$ pair per central PbPb)
 - **BNL-RHIC** (\sqrt{s} =200 GeV) PHENIX, STAR experiments (~1
 - **CERN-LHC** (\sqrt{s} =2.76, 5 TeV) ALICE, CMS experiments
- (~10 $c\bar{c}$ pair per central AuAu)
- (~100 $c\bar{c}$ pair per central PbPb)

- Short summary for J/ψ :
 - NA50 (PbPb@SPS)
 - observed an *anomalous* J/ ψ suppression
 - **PHENIX** (AuAu@RHIC) observed a *similar* suppression (than NA50)
 - ALICE (PbPb@LHC)
- observed a *smaller* suppression (than PHENIX)
- Possible color screening starting at SPS
- Possible recombination occuring at LHC
- With the LHCb Fixed-Target program
 - No recombination: at 70 GeV, expect ~1 $c\bar{c}$ pair per central PbA (w/ big A)
 - Goal: investigate color screening

Color screening and Sequential suppression

- Quarkonium dissociation in a QGP
 - In QGP quarkonium states are expected to « melt » at dissociation temperature $T_d > T_c$
 - Different T_d for different quarkonium states: T_d (J/ ψ) > T_d (χ_c) > T_d (ψ') > T_c

- Sequential suppression
 - Because of different T_d and because of J/ ψ feed-downs, J/ ψ sequential suppression should show up.

PRC91, 024913 (2015)

Color screening and Sequential suppression

• Quarkonium dissociation in a QGP

Sequential suppression

- In QGP quarkonium states are expected to « melt » at dissociation temperature $T_d > T_c$
- Different T_d for different quarkonium states: T_d (J/ ψ) > T_d (χ_c) > T_d (ψ') > T_c

- Alternative (no QGP) scenario: suppression by comoving hadrons
 - Charmonia are suppressed by their interaction with comoving hadrons
 - Smooth suppression
 - Same suppression-starting point
 - Slopes related to binding energy : $S_{\Psi'} > S_{\chi} > S_{J/\Psi}$

PRC91, 024913 (2015)

Experimental results : NA50 @ SPS

- Anomalous suppression at SPS
 - NA50 measured J/ ψ /DY ratio for several *p*A and PbPb
 - Drell-Yan ($q\bar{q} \rightarrow \mu^+\mu^-$) = proxy for N_{coll}
 - L = length of nuclear matter seen by quarkonium state
 - Measured yields in *pA* to evaluate quarkonium nuclear absorption (breakup) when traversing nuclear matter

Experimental results : NA50 @ SPS

- Anomalous suppression at SPS
 - NA50 measured J/ ψ /DY ratio for several *p*A and PbPb
 - Drell-Yan ($q \overline{q} \rightarrow \mu^+ \mu^-$) = proxy for N_{coll}
 - L = length of nuclear matter seen by quarkonium state
 - Measured yields in *pA* to evaluate quarkonium nuclear absorption (breakup) when traversing nuclear matter
 - Expected = measured yields in p+A extrapolated to large L
 - No anomalous suppression: Measured/expected = 1
 - Anomalous suppression: Measured/expected < 1
 - Anomalous suppression *observed in Pb+Pb collisions*
 - Is anomalous suppression due to color screening?

Experimental results : NA50 @ SPS

- Anomalous suppression at SPS
 - NA50 measured J/ ψ /DY ratio for several *p*A and PbPb
 - Drell-Yan ($q \overline{q} \rightarrow \mu^+ \mu^-$) = proxy for N_{coll}
 - L = length of nuclear matter seen by quarkonium state
 - Measured yields in *pA* to evaluate quarkonium nuclear absorption (breakup) when traversing nuclear matter
 - Expected = measured yields in p+A extrapolated to large L
 - No anomalous suppression: Measured/expected = 1
 - Anomalous suppression: Measured/expected < 1
 - Anomalous suppression observed in Pb+Pb collisions
 - Is anomalous suppression due to color screening ?
 - Not clear yet
 - χ_c measurement missing
 - $-~\chi_c$ -> J/ ψ feed-down ~30%
 - Energy density range not large enough
 - LHCb is very well placed to address this question
 - $-\chi_c$ measurement capability
 - − Larger energy \rightarrow larger energy density $\sqrt{s_{NN}}$ =70 GeV@LHC .vs. 17 GeV @ SPS

NA50 experiment

- Muon spectrometer \rightarrow designed for high mass dimuons
- 400 GeV/proton \rightarrow Pb beam@158 GeV/nucleon $\rightarrow \sqrt{s_{NN}} = 17$ GeV
- Absorber downstream of the target
 - ΔM_{J/ψ} ~100 MeV/c²
 - No limitation in centrality reach due to occupancy
- Acceptance = one rapidity unit : -0.5< y* < 0.5
- Open charm measurement via semi-leptonic decays
- Normalize J/ ψ production with Drell-Yan ($q\bar{q} \rightarrow \mu^+\mu^-$)
- Cannot measure $\chi_c
 ightarrow J/\psi \gamma$

NA50 experiment

- Muon spectrometer \rightarrow designed for dimuons
- 400 GeV/proton \rightarrow Pb beam@158 GeV/nucleon $\rightarrow \sqrt{s_{NN}} = 17$ GeV
- Absorber downstream of the target
 - ΔM_{J/ψ} ~100 MeV/c²
 - No limitation in centrality reach due to occupancy
- Acceptance = one rapidity unit : -0.5< y* < 0.5
- Open charm measurement via semi-leptonic decays
- Normalize J/ ψ production with Drell-Yan ($q\bar{q} \rightarrow \mu^+\mu^-$)
- Cannot measure $\chi_c \rightarrow J/\psi \gamma$

Detector performances : NA50@SPS .vs. LHCb@LHC

NA50 experiment

- Muon spectrometer \rightarrow designed for dimuons
- 400 GeV/proton \rightarrow Pb beam@158 GeV/nucleon $\rightarrow \sqrt{s_{NN}} = 17 \text{ GeV}$
- Absorber downstream of the target
 - $\Delta M_{J/\psi} \sim 100 \text{ MeV/c}^2$
 - No limitation in centrality reach due to occupancy
- Acceptance = one rapidity unit : -0.5< y* < 0.5
- Open charm measurement via semi-leptonic decays
- Normalize J/ ψ production with Drell-Yan ($q\bar{q} \rightarrow \mu^+\mu^-$)
- Cannot measure $\chi_c
 ightarrow J/\psi \gamma$

LHCb experiment

- Forward spectrometer: vertexing, tracking, Calo, PID, MuonID
- 7 TeV/proton \rightarrow Pb beam@2.75 TeV/nucleon $\rightarrow \sqrt{s_{NN}} \sim$ 70 GeV
- No absorber
 - $\Delta M_{J/\psi} \sim 15 \text{ MeV/c}^2$
 - limitation in centrality reach due to occupancy
- Acceptance = three rapidity units: -2.5 < y* < 0.5
- Open charm measurement via hadronic decays
- Normalize J/ ψ production with open charm
- Can measure $\chi_c o J/\psi \gamma$

Detector performances : NA50@SPS .vs. LHCb@LHC

NA50 experiment

- Muon spectrometer \rightarrow designed for dimuons
- 400 GeV/proton \rightarrow Pb beam@158 GeV/nucleon $\rightarrow \sqrt{s_{NN}} = 17$ GeV
- Absorber downstream of the target
 - $\Delta M_{J/\psi} \sim 100 \text{ MeV/c}^2$
 - No limitation in centrality reach due to occupancy
- Acceptance = one rapidity unit : -0.5< y* < 0.5
- Open charm measurement via semi-leptonic decays
- Normalize J/ ψ production with Drell-Yan ($q\bar{q} \rightarrow \mu^+\mu^-$)
- Cannot measure $\chi_c
 ightarrow J/\psi \gamma$

LHCb experiment

- Forward spectrometer: vertexing, tracking, Calo, PID, MuonID
- 7 TeV/proton \rightarrow Pb beam@2.75 TeV/nucleon $\rightarrow \sqrt{s_{NN}} \sim$ 70 GeV
- No absorber
 - $\Delta M_{J/\psi} \sim 15 \text{ MeV/c}^2$
 - limitation in centrality reach due to occupancy
- Acceptance = three rapidity units: -2.5 < y* < 0.5
- Open charm measurement via hadronic decays
- Normalize J/ ψ production with open charm
- Can measure $\chi_c \rightarrow J/\psi \gamma$

- Looking for anomalous J/ψ suppression with LHCb-FT
 - LHCb-FT $\rightarrow \sqrt{s_{NN}} \sim 70$ GeV .vs. NA50 $\rightarrow \sqrt{s_{NN}} \sim 17$ GeV
- Which target should we operate with LHCb? (to compare to NA50 PbPb collisions)
 - Multiplicity is related to event centrality and center-of-mass energy
 - Multiplicity can be used to compare different A+B collisions at different $\sqrt{s_{NN}}$

Peripheral collisions						Central collisions		
System \ centrality	100 – 60%	60 – 50%	50 – 40%	40 – 30%	30 – 20%	20 – 10 %	10 – 0%	(ba
PbNe – 71 GeV	108.6	254.4	392.5	588.0	814.5	1086.0	1494.9	sed o
PbAr – 71 GeV	123,6	308,8	496,5	806,6	1228,3	1711,9	2372,7	n epo
PbKr – 71 GeV	196,9	533,6	919,1	1451,2	2205,5	2986,6	4084,3	S-LHO
PbXe – 71 GeV	201,4	581,7	1031,0	1587,3	2400,2	3541,7	5065,7	C-v34(
PbPb – 17 GeV	124,2	331,6	605,9	919,6	1338,7	2035,8	2980,5	<u>)</u>

- PbAr @ 71 GeV multiplicity ≡ PbPb@17 GeV multiplicity → PbAr @ 71 GeV is a good starting point to compare with NA50
- But multiplicity in PbAr too large for Run1+Run2 LHCb setup (saturation of the vertex Locator, drop of reconstruction efficiency)

LHCb-FT: PbNe data

protons (Pb) on target 10^{-1}

- Data taken during 2018 PbPb run ٠
 - From nov. 9, 2018 to Dec. 2, 2018 —
 - 2500 GeV Pb beam —
 - 33 fills: Two main filling schemes —
 - 15 fills with 100 ns, 648 Pb, **52 Coll**, **596 non-Coll**
 - 18 fills with 75 ns, 733 Pb, 468 Coll, 265 non-Coll ٠
 - **Use non-Coll bunches only** _
 - Very small contamination due to debunched ions (<0.3%) —

• Signal

- $J/\psi/D^0$ ratio as a function of the number of binary nucleon-nucleon collisions N_{coll}
 - Centrality determined by energy deposit in the electromagnetic calorimeter
 - N_{coll} estimated from Glauber model to data

- No evidence of anomalous J/ψ suppression : is it expected?
 - Back-Of-The-Envelope calculation indicates that charge particle multiplicity Eur. Phys. J. C 39, 335–345 (2005) for most central PbNe@68.5 GeV is similar to mid-central PbPb@17 GeV 40 $B_{\mu\mu}\sigma(J/\psi)/\sigma(DY)_{2.9.4.5}$ 35 σ_{J/ψ}/σ_D₀ $\sqrt{s_{_{NN}}}$ = 68.5 GeV 30 LHCb preliminary 10^{-2} → PbNe 25 α ' = 0.82 \pm 0.07 20 15 V NA50 Pb-Pb 2000 **Most central PbNe** 10 Centrality=(24.5±8.5)% O NA38 S-U 1992 5 0 0.5 1.5 2.5 2 3 3.5 4 4.5 10^{2} 10 \mathcal{N} ϵ (GeV/fm³) coll B.O.T.E. calculation **Most central PbNe** dN_{ch}/dr range averas 30-40% 20 - 30% 10-20% 0-10% 1_N 1-4122.439 21 11.71.0 4.58 0.97 2_N 62.0 PbNe – 71 GeV 254.4 392.5 588.0 814.5 1086.0 1494.9 41 - 8170 2510.40.9 5.830.78 108.6 6.70 0.66 3_N 81 - 120101.210129 9.30.9 PbAr - 71 GeV 123,6 308,8 496,5 806,6 1228,3 1711,9 2372,7 4N120 - 173147.28.3 7.44 0.57 138 0.9 173-226 200.0 1797.2 5_N 38 1.00.48 533.6 1451.2 2205.5 2986.6 4084,3 196.9 9191 PbKr - 71 GeV 226-279 253.0 22041 6.28.53 279-332 305.7 26043 5.11.1 0.32PbXe - 71 GeV 201,4 581.7 1031,0 1587.3 2400.2 3541,7 5065,7 7_N 332-385 358.1 297 327 4.1 8_N 41 1.2 9.13 0.25124,2 331,6 919,6 1338,7 2035,8 2980,5 PbPb – 17 GeV 605,9 385-438 410.1 36 3.2 1.2 9.30 0.18 9_N

438-835 487.9

352 27 2.3

+ Run2) 9 fb⁻¹

(Run1

Next at LHC Run 3

Next at LHC Run 3

- Storage cell (SMOG2) installed upstream of the nominal IP
 - (PVz in [-500, -300] mm)
 - Two retractable halves coping with Velo opening
 - Gas density increase by up to two orders of magnitude for the same gas flow
 - H₂, D₂, He, N₂, O₂, Ne, Ar, Kr, Xe gases (potentially) injectable
 - Don't interfere with regular collider events

- The LHCb-Fixed Target program offers the opportunity to **test sequential suppression** as an effect of quarkonium color screening in a QGP
 - Measure all quarkonium states (including χ_c)
 - Measure open charm

- LHCb has successfully operated and analyse PbNe collisions at 68.5 GeV
 - No evidence of anomalous J/ψ suppression observed
 - Small statistical sample (~500 J/ ψ)
- With LHCb upgrade
 - **SMOG2:** Strong increase of statistical samples
 - Improvement of detector performances for high-mult events
 - Full performances expected for PbAr

- The LHCb-Fixed Target program offers the opportunity to test sequential suppression as an effect of quarkonium color screening in a QGP
 - Measure all quarkonium states (including χ_c)
 - Measure open charm
- LHCb has successfully operated and analyse PbNe collisions at 68.5 GeV
 - No evidence of anomalous J/ψ suppression observed
 - Small statistical sample (~500 J/ ψ)
- With LHCb upgrade
 - **SMOG2:** Strong increase of statistical samples
 - Improvement of detector performances for high-mult events
 - Full performances expected for PbAr

Looking for anomalous J/ ψ suppression in PbNe@68.5 GeV

- $J/\psi/D^0$ ratio as a function of the number of binary nucleon-nucleon collisions N_{coll}
 - Centrality determined by energy deposit in the electromagnetic calorimeter
 - N_{coll} estimated from Glauber model to data

- Ratio fitted with a power law function,

assuming $\begin{array}{c} \sigma_{D^0} \propto N_{coll} \\ \sigma_{J/\psi} \propto N_{coll}^{\alpha'} \end{array} \Rightarrow \quad \frac{\sigma_{J/\psi}}{\sigma_{D^0}} \propto N_{coll}^{\alpha'-1} \end{array}$

- No evidence of anomalous J/ψ suppression
- $\sigma_{J/\psi} \propto N_{coll}^{\alpha'}$ can be related to the (old fashion) $\sigma_{J/\psi} \propto AB^{\alpha}$ (see Felipe Garcia's thesis)
 - $α' = 0.82 \pm 0.07 → α = 0.88 \pm 0.05$

 $N_{\rm coll}$