The energy dependence of p_{T}-integrated quarkonium cross sections ${ }^{1}$

Jean-Philippe Lansberg ${ }^{2}$, Maxim Nefedov ${ }^{3}$, Melih Ozcelik ${ }^{4}$

Fixed-target experinemts at the LHC
 CERN, June $23^{\text {d. }}, 2022$

[^0](Unexpected) ${ }^{1} S_{0}^{(1)}$-dominance in η_{c}-production
The η_{c} hadroproduction was found to be dominated by the $c \bar{c}\left[{ }^{1} S_{0}^{(1)}\right]$

[Butenschoen, He, Kniehl, 2015] This is a problem for NRQCD factorization, because roughly the same contribution of color-octet states at $p_{T}>M$ as for J / ψ was expected.

- Color-octet LDMEs for η_{c} are related (up to v^{2} corrections) to LDMEs of J / ψ by heavy-quark spin symmetry
(long wavelength gluons do not "see" heavy quark spin). Strong HQSS violation?
- But CS-dominance at $p_{T} \ll M$ is consistent with NRQCD! \Rightarrow
- TMD factorisation should hold
- p_{T}-integrated cross section should be computable
- For J / ψ and χ_{c}-production large CO contribution to p_{T}-integrated cross sections is expected

Perturbative instability of the η_{c} total cross section

For the p_{T}-integrated cross section of η_{Q} hadroproduction $\left(p+p \rightarrow \eta_{c}+X\right)$, the LO partonic subprocess is simply:

$$
g+g \rightarrow Q \bar{Q}\left[{ }^{1} S_{0}^{(1)}\right]
$$

The NLO correction can be computed in closed form [Kuhn, Mirkes, 93 ;;
Petrelli et.al., 98^{\prime}, and:

Outline

1. η_{c} inclusive hadroproduction, resummation of: $\alpha_{s}^{n} \ln ^{n-1} \frac{\hat{s}}{M^{2}}$ and matching with NLO

- Total cross section
- Rapidity-differential cross section

2. J / ψ inclusive photoproduction

Part 1: η_{c} or η_{b} inclusive hadroproduction: total cross section

Why NLO calculation is unstable?

Collinear factorization for total CS for the state $m={ }^{2 S+1} L_{J}^{(0)}$:

$$
\sigma^{[m]}(\sqrt{S})=\int_{z_{\min }}^{1} \frac{d z}{z} \mathcal{L}_{i j}\left(z, \mu_{F}\right) \hat{\sigma}_{i j}^{[m]}\left(z, \mu_{F}, \mu_{R}\right),
$$

where $i, j=q, \bar{q}, g, z=M^{2} / \hat{s}$ and partonic luminosity:

$$
\mathcal{L}_{i j}\left(z, \mu_{F}\right)=\int_{-y_{\max }}^{+y_{\max }} d y \tilde{f}_{i}\left(\frac{M}{\sqrt{S z}} e^{y}, \mu_{F}\right) \tilde{f}_{j}\left(\frac{M}{\sqrt{S z}} e^{-y}, \mu_{F}\right),
$$

with $\tilde{f}_{j}\left(x, \mu_{F}\right)$ - momentum density PDFs.
NLO coefficient function [Kuhn, Mirkes, 93^{\prime}; Petrelli et.al., 98^{\prime}] in the $z \rightarrow 0$ limit

$$
\hat{\sigma}_{i j}^{[m]}=\sigma_{\mathrm{LO}}^{[m]}\left[A_{0}^{[m]} \delta(1-z)+C_{i j} \frac{\alpha_{s}\left(\mu_{R}\right)}{\pi}\left(A_{0}^{[m]} \ln \frac{M^{2}}{\mu_{F}^{2}}+A_{1}^{[m]}\right)+O\left(z \alpha_{s}, \alpha_{s}^{2}\right)\right],
$$

where $C_{g g}=2 C_{A}=2 N_{c}, C_{q g}=C_{g q}=C_{F}=\left(N_{c}^{2}-1\right) /\left(2 N_{c}\right), C_{q \bar{q}}=0$ and $A_{1}^{[m]}<0$.

Optimal μ_{F} choice?

It is natural to choose μ_{F} such a way, that the negative $A_{1}^{[m]}$ is cancelled [Lansberg, Ozcelik, 2020]:

$$
\hat{\mu}_{F}=M \exp \left[\frac{A_{1}^{[m]}}{2 A_{0}^{[m]}}\right],
$$

is equivalent to resummation of some of the terms $\propto \alpha_{s}^{n} \ln ^{n-1} \frac{1}{z}$ (more on this later). The result (red curve):

Is the systematic resummation of $\propto \alpha_{s}^{n} \ln ^{n-1} \frac{1}{z}$ possible?

Resummed coefficient function

Small parameter: $z=\frac{M^{2}}{\hat{s}}$.
LLA $\left(\alpha_{s}^{n} \ln ^{n-1} \frac{1}{z}\right)$ in High-Energy Factorization [Collins, Ellis, 91^{\prime}; Catani, Ciafaloni, Hautmann, 91',94']:

$$
\begin{aligned}
& \hat{\sigma}_{i j}^{[m], \mathrm{HEF}}\left(z, \mu_{F}, \mu_{R}\right)=\int_{-\infty}^{\infty} d \eta \int_{0}^{\infty} d \mathbf{q}_{T 1}^{2} d \mathbf{q}_{T 2}^{2} \mathcal{C}_{g i}\left(\frac{M_{T}}{M} \sqrt{z} e^{\eta}, \mathbf{q}_{T 1}^{2}, \mu_{F}, \mu_{R}\right) \\
& \times \mathcal{C}_{g j}\left(\frac{M_{T}}{M} \sqrt{z} e^{-\eta}, \mathbf{q}_{T 2}^{2}, \mu_{F}, \mu_{R}\right) \int_{0}^{2 \pi} \frac{d \phi}{2} \frac{H^{[m]}\left(\mathbf{q}_{T 1}^{2}, \mathbf{q}_{T 2}^{2}, \phi\right)}{M_{T}^{4}}+O(z)+\mathrm{NLL}
\end{aligned}
$$

The coefficient functions $H^{[m]}$ are known at LO in α_{s} [Hagler et.al, 2000; Knieh, Vasin, Saleev 2006] for $m={ }^{1} S_{0}^{(1,8)},{ }^{3} P_{J}^{(1,8)},{ }^{3} S_{1}^{(8)}$.
The $H^{[m]}$ is a tree-level "squared matrix element" of the $2 \rightarrow 1$-type process:

$$
R_{+}\left(\mathbf{q}_{T 1}, q_{1}^{+}\right)+R_{-}\left(\mathbf{q}_{T 2}, q_{2}^{-}\right) \rightarrow c \bar{c}[m] .
$$

LLA evolution w.r.t. $\ln 1 / z$

In the $\mathrm{LL}(\ln 1 / z)$-approximation, the $Y=\ln 1 / z$-evolution equation for collinearly un-subtracted $\tilde{\mathcal{C}}$-factor has the form:

$$
\tilde{\mathcal{C}}\left(x, \mathbf{q}_{T}\right)=\delta(1-z) \delta\left(\mathbf{q}_{T}^{2}\right)+\hat{\alpha}_{s} \int_{x}^{1} \frac{d z}{z} \int d^{2-2 \epsilon} \mathbf{k}_{T} K\left(\mathbf{k}_{T}^{2}, \mathbf{q}_{T}^{2}\right) \tilde{\mathcal{C}}\left(\frac{x}{z}, \mathbf{q}_{T}-\mathbf{k}_{T}\right)
$$

with $\hat{\alpha}_{s}=\alpha_{s} C_{A} / \pi$ and

$$
K\left(\mathbf{k}_{T}^{2}, \mathbf{p}_{T}^{2}\right)=\delta^{(2-2 \epsilon)}\left(\mathbf{k}_{T}\right) \frac{\left(\mathbf{p}_{T}^{2}\right)^{-\epsilon}}{\epsilon} \frac{(4 \pi)^{\epsilon} \Gamma(1+\epsilon) \Gamma^{2}(1-\epsilon)}{\Gamma(1-2 \epsilon)}+\frac{1}{\pi(2 \pi)^{-2 \epsilon} \mathbf{k}_{T}^{2}}
$$

It is convenient to go from $\left(z, \mathbf{q}_{T}\right)$-space to $\left(N, \mathbf{x}_{T}\right)$-space:

$$
\tilde{\mathcal{C}}\left(N, \mathbf{x}_{T}\right)=\int d^{2-2 \epsilon} \mathbf{q}_{T} e^{i \mathbf{x}_{T} \mathbf{q}_{T}} \int_{0}^{1} d x x^{N-1} \tilde{\mathcal{C}}\left(x, \mathbf{q}_{T}\right)
$$

because:

- Mellin convolutions over z turn into products: $\int \frac{d z}{z} \rightarrow \frac{1}{N}$
- Large logs map to poles at $N=0: \alpha_{s}^{k+1} \ln ^{k} \frac{1}{z} \rightarrow \frac{\alpha_{s}^{k+1}}{N^{k+1}}$
- All collinear divergences are contained inside \mathcal{C} in \mathbf{x}_{T}-space.

Exact LL solution and DLA

In $\left(N, \mathbf{q}_{T}\right)$-space, subtracted \mathcal{C}, which resums all terms $\propto\left(\hat{\alpha}_{s} / N\right)^{n}$ has the form:

$$
\mathcal{C}\left(N, \mathbf{q}_{T}, \mu_{F}\right)=R\left(\gamma_{g g}\left(N, \alpha_{s}\right)\right) \frac{\gamma_{g g}\left(N, \alpha_{s}\right)}{\mathbf{q}_{T}^{2}}\left(\frac{\mathbf{q}_{T}^{2}}{\mu_{F}^{2}}\right)^{\gamma_{g g}\left(N, \alpha_{s}\right)},
$$

where $\gamma_{g g}\left(N, \alpha_{s}\right)$ is the solution of ${ }_{[J a r o s z e w i c z, ~}^{\left.82^{2}\right]}$:

$$
\frac{\hat{\alpha}_{s}}{N} \chi\left(\gamma_{g g}\left(N, \alpha_{s}\right)\right)=1, \text { with } \chi(\gamma)=2 \psi(1)-\psi(\gamma)-\psi(1-\gamma)
$$

where $\psi(\gamma)=d \ln \Gamma(\gamma) / d \gamma$ - Euler's ψ-function. The first few terms:

$$
\gamma_{g g}\left(N, \alpha_{s}\right)=\underbrace{\underbrace{\frac{\hat{\alpha}_{s}}{N}}_{\text {DLA }}+2 \zeta(3) \frac{\hat{\alpha}_{s}^{4}}{N^{4}}+2 \zeta(5) \frac{\hat{\alpha}_{s}^{6}}{N^{6}}+\ldots}_{\text {LLA }}
$$

The function $R(\gamma)$ is

$$
R\left(\gamma_{g g}\left(N, \alpha_{s}\right)\right)=1+O\left(\alpha_{s}^{3}\right) .
$$

Does this work?

The resummation has to reproduce the $A_{1}^{[m]}$ NLO coefficient when expanded up to NLO in α_{s}. And it does. We have performed expansion up to NNLO:

State	$A_{0}^{[m]}$	$A_{1}^{[m]}$	$A_{2}^{[m]}$	$B_{2}^{[m]}$
${ }^{1} S_{0}$	1	-1	$\frac{\pi^{2}}{6}$	$\frac{\pi^{2}}{6}$
${ }^{3} S_{1}$	0	1	0	$\frac{\pi^{2}}{6}$
${ }^{3} P_{0}$	1	$-\frac{43}{27}$	$\frac{\pi^{2}}{6}+\frac{2}{3}$	$\frac{\pi^{2}}{6}+\frac{40}{27}$
${ }^{3} P_{1}$	0	$\frac{5}{54}$	$-\frac{1}{9}$	$-\frac{2}{9}$
${ }^{3} P_{2}$	1	$-\frac{53}{36}$	$\frac{\pi^{2}}{6}+\frac{1}{2}$	$\frac{\pi^{2}}{6}+\frac{11}{9}$

for e.g.
$\hat{\sigma}_{g g}^{[m], \mathrm{HEF}}(z \rightarrow 0)=\sigma_{\mathrm{LO}}^{[m]}\left\{A_{0}^{[m]} \delta(1-z)+\frac{\alpha_{s}}{\pi} 2 C_{A}\left[A_{1}^{[m]}+A_{0}^{[m]} \ln \frac{M^{2}}{\mu_{F}^{2}}\right]\right.$
$\left.+\left(\frac{\alpha_{s}}{\pi}\right)^{2} \ln \frac{1}{z} \cdot C_{A}^{2}\left[2 A_{2}^{[m]}+B_{2}^{[m]}+4 A_{1}^{[m]} \ln \frac{M^{2}}{\mu_{F}^{2}}+2 A_{0}^{[m]} \ln ^{2} \frac{M^{2}}{\mu_{F}^{2}}\right]+O\left(\alpha_{s}^{3}\right)\right\}$,

Matching with NLO of CF

The HEF works only at $z \ll 1$, misses power corrections $O(z)$, while NLO CF is exact in z, but only NLO in α_{s}. We need to match them.

- Simplest prescription: just subtract the overlap at $z \ll 1$:

$$
\begin{aligned}
& \sigma_{\mathrm{NLO}+\mathrm{HEF}}^{[m]}=\sigma_{\mathrm{LO} \mathrm{CF}}^{[m]}+\int_{z_{\min }}^{1} \frac{d z}{z}\left[\check{\sigma}_{\mathrm{HEF}}^{[m], i j}(z)\right. \\
& \left.+\hat{\sigma}_{\mathrm{NLO} \mathrm{CF}}^{[m], i j}(z)-\hat{\sigma}_{\mathrm{NLO} \mathrm{CF}}^{[m], i j}(0)\right] \mathcal{L}_{i j}(z)
\end{aligned}
$$

- Or introduce smooth weights:

$$
\begin{aligned}
& \sigma_{\mathrm{NLO}+\mathrm{HEF}}^{[m]}=\sigma_{\mathrm{LO} \mathrm{CF}}^{[m]}+\int_{z_{\mathrm{min}}}^{1} d z\left\{\left[\check{\sigma}_{\mathrm{HEF}}^{[m], i j}(z) \frac{\mathcal{L}_{i j}(z)}{z}\right] w_{\mathrm{HEF}}^{i j}(z)\right. \\
& \left.+\left[\hat{\sigma}_{\mathrm{NLO} \mathrm{CF}}^{[m], i j}(z) \frac{\mathcal{L}_{i j}(z)}{z}\right]\left(1-w_{\mathrm{HEF}}^{i j}(z)\right)\right\}
\end{aligned}
$$

Inverse error weighting method

In the InEW method [Echevarria, et.al., 2018] the weights are calculated from estimates of the error of each contribution:

$$
w_{\mathrm{HEF}}^{i j}(z)=\frac{\left[\Delta \sigma_{\mathrm{HEF}}^{i j}(z)\right]^{-2}}{\left[\Delta \sigma_{\mathrm{HEF}}^{i j}(z)\right]^{-2}+\left[\Delta \sigma_{\mathrm{CF}}^{i j}(z)\right]^{-2}}
$$

- For $\Delta \sigma_{\mathrm{CF}}$ we take the NNLO $\alpha_{s}^{2} \ln \frac{1}{z}$ term of $\hat{\sigma}(z)$ predicted by HEF,
- For $\Delta \sigma_{\text {HEF }}$ we take the $\alpha_{s} O(z)$ part of the NLO CF result for $\hat{\sigma}(z)$.
- In both cases, stability against $O\left(\alpha_{s}^{2}\right)$ (constant in z, unknown) corrections is checked

Matching plots

Plots of the integrand of the total cross section ($g g$ channel) as function of $z=M^{2} / \hat{s}$:

Matched results for η_{c}

- Resummation and matching solves the high-energy instability
- The matched result is significantly different from $\hat{\mu}_{F}$-prescription one (dashed line)
- The description is valid in wide range of energies: data from both fixed-target ($\sqrt{s} \leq 100 \mathrm{GeV}$) and collider-mode ($\sqrt{s} \geq 1 \mathrm{TeV}$) pp-collisions are required to test it!
- However the y-integrated cross section is hard to measure at high energies. Predictions for $d \sigma / d y$ are needed.

Matched results for η_{b}

The K-factor of the matched calculation is constant in energy, unlike in the NLO case. $\Rightarrow \sigma(\sqrt{s})$ is driven by PDFs, not by hard-scattering.

The PDF dependence

There is a spread up to a factor $1.5-2$ for different PDFs at $\sqrt{s} \sim 10$ TeV , but the scale-uncertainty covers it \Rightarrow Beyond-DLA calculation is needed to reduce the uncertainty.

Part 2: η_{c} or η_{b} inclusive hadroproduction: $d \sigma / d y$
$18 / 31$

NLO Collinear factorisation for $d \sigma / d y$

Contribution of the $g g$-channel [Lansberg, ozceli, 2020], terms important at $z \rightarrow 0$ (for $y>0$):

$$
\frac{d \sigma_{\mathrm{NLO}}}{d y}=\sigma_{0} \frac{\alpha_{s} C_{A}}{\pi}\left\{\int_{z_{0}}^{z_{1}} \frac{d z}{z} \int_{w_{\min }(z, y)}^{w_{\max }(z, y)} \frac{d w}{1-w^{2}} 2 \mathcal{L}(z, w, y) a_{1}(z, w)\right.
$$

$$
+\int_{z_{1}}^{z_{2}} \frac{d z}{z}\left[\int_{w_{\min }(z, y)}^{1} d w \frac{\mathcal{L}(z, w, y) a_{1}(z, w)-\mathcal{L}(z, 1, y)}{1-w}+\mathcal{L}(z, 1, y) \ln \frac{1-w_{\min }(z, y)}{2}\right]
$$

$$
\left.+\int_{z_{2}}^{1} \frac{d z}{z} \int_{-1}^{1} d w\left[\frac{\mathcal{L}(z, w, y) a_{1}(z, w)-\mathcal{L}(z, 1, y)}{1-w}+\frac{\mathcal{L}(z, w, y) a_{1}(z, w)-\mathcal{L}(z,-1, y)}{1+w}\right]+\ldots\right\}
$$

where

$$
\begin{aligned}
& \mathcal{L}(z, w, y)=\tilde{f}_{g}\left(\sqrt{\frac{z_{0}}{z} \frac{(1+z)-w(1-z)}{(1+z)+w(1-z)}} e^{y}, \mu_{F}\right) \tilde{f}_{g}\left(\sqrt{\frac{z_{0}}{z} \frac{(1+z)+w(1-z)}{(1+z)-w(1-z)}} e^{-y}, \mu_{F}\right) \\
& a_{1}^{(\mathrm{NLO})}(z, w)=\frac{z^{2}\left(3+w^{2}\right)^{2}\left(w^{4}+6 w^{2}+9\right)}{16\left[(1+z)^{2}-w^{2}(1-z)^{2}\right]^{2}}+O(z), \quad z_{0}=\frac{M^{2}}{S}, z_{1}=\frac{M}{\sqrt{S}} e^{-y} \\
& z_{2}=\frac{M}{\sqrt{S}} e^{y}, w_{\min }(z, y)=-\frac{1+z}{1-z} \frac{z e^{-2 y}-z_{0}}{z e^{-2 y}+z_{0}}, w_{\max }(z, y)=\frac{1+z}{1-z} \frac{z-z_{0} e^{-2 y}}{z+z_{0} e^{-2 y}}
\end{aligned}
$$

HEF resummation formula for $d \sigma / d y$

$$
\frac{d \sigma^{[m]}}{d y}=\int_{z_{0}}^{1} \frac{d z}{z} \int_{\bar{w}_{\min }(z, y)}^{\bar{w}_{\max }(z, y)} \frac{d \bar{w}}{1-\bar{w}^{2}} \mathcal{L}(z, \bar{w}, y) \mathcal{H}^{[m]}(z, \bar{w})
$$

where $\mathcal{L}(z, \bar{w}, y)=\tilde{f}_{g}\left(\sqrt{\frac{z_{0}}{z} \frac{1-\bar{w}}{1+\bar{w}}} e^{y}, \mu_{F}\right) \tilde{f}_{g}\left(\sqrt{\frac{z_{0}}{z} \frac{1+\bar{w}}{1-\bar{w}}} e^{-y}, \mu_{F}\right)$, $\bar{w}_{\min }(z, y)=-\frac{z e^{-2 y}-z_{0}}{z e^{-2 y}+z_{0}}, \bar{w}_{\max }(z, y)=\frac{z-z_{0} e^{-2 y}}{z+z_{0} e^{-2 y}}$, and:

$$
\begin{aligned}
\mathcal{H}^{[m]}(z, \bar{w}) & =\int_{0}^{2 \pi} \frac{d \phi}{2} \int_{0}^{\infty} d \mathbf{q}_{T 1}^{2} d \mathbf{q}_{T 2}^{2} \mathcal{C}_{g g}\left(\sqrt{\frac{z M_{T}^{2}}{M^{2}} \frac{1-\bar{w}}{1+\bar{w}}}, \mathbf{q}_{T 1}^{2}, \mu_{F}, \mu_{R}\right) \\
& \times \mathcal{C}_{g g}\left(\sqrt{\frac{z M_{T}^{2}}{M^{2}} \frac{1+\bar{w}}{1-\bar{w}}}, \mathbf{q}_{T 2}^{2}, \mu_{F}, \mu_{R}\right) \frac{H^{[m]}\left(\mathbf{q}_{T 1}, \mathbf{q}_{T 2}\right)}{M_{T}^{4}}
\end{aligned}
$$

where $M_{T}^{2}=M^{2}+\left(\mathbf{q}_{T 1}+\mathbf{q}_{T 2}\right)^{2}$.

Expanding the resummation up to NLO

Cross-check $\int_{-\infty}^{+\infty} d y \frac{d \sigma}{d y}=\sigma \Leftrightarrow$

$$
\left.\int_{-1}^{1} \frac{d \bar{w}}{1-w^{2}} \mathcal{H}_{\mathrm{NLO}}^{\left[{ }^{1} S_{0}\right]}(z, \bar{w})=\sigma_{0}^{[1} S_{0}\right] \frac{2 C_{A} \alpha_{s}}{\pi}\left[-1+\ln \frac{M^{2}}{\mu_{F}^{2}}+O(z)\right]
$$

The $d \sigma^{(\mathrm{HEF})} / d y$, expanded uo to NLO in α_{s}, can be put into the same form as NLO partonic cross section on slide 17, but with slightly different function a_{1} :

$$
a_{1}^{(\text {HEF })}(z, w)=\frac{2 z^{2}\left[(1+w)^{3} \theta(w)+(1-w)^{3} \theta(-w)\right]}{\left[(1+z)^{2}-w^{2}(1-z)^{2}\right]^{2}}
$$

The difference between $a_{1}^{(\mathrm{NLO})}$ and $a_{1}^{(\mathrm{HEF})}$ leads to $O(z)$-effects. Should the matching be done in $2 D(z$ and $w)$?

Part 3: J / ψ inclusive photoproduction
$22 / 31$
$\gamma(q)+p(P) \rightarrow J / \psi(p)+X @ \mathrm{NLO}$
The LO CS partonic process is

$$
\gamma+g \rightarrow c \bar{c}\left[{ }^{3} S_{1}^{(1)}\right]+g
$$

The CS contribution is $>50 \%$ of p_{T}-diff. cross section even at NLO. For p_{T}-integrated CS one has $\left(z=\frac{p_{J / \psi} P}{q_{\gamma} P}\right)$:

$23 / 31$

J / ψ photoproduction at FT LHC?

Table from [Lansberg et al., 2018]

System	$\begin{aligned} & \sqrt{s_{N N}} \\ & (\mathrm{GeV}) \end{aligned}$	$\begin{gathered} \mathcal{L}_{A B}{ }^{5} \\ \left(\mathrm{pb}^{-1} \mathrm{yr}^{-1}\right) \end{gathered}$	$\begin{gathered} \hline E_{\gamma \max }^{\mathrm{B} \text { rest }} \\ (\mathrm{GeV}) \end{gathered}$	$\begin{aligned} & \sqrt{s_{\gamma_{N}}^{\max }} \\ & (\mathrm{GeV}) \end{aligned}$	$\begin{gathered} \hline E_{\gamma \max }^{\mathrm{cms}} \\ (\mathrm{GeV}) \end{gathered}$
AFTER@LHC					
$p \mathrm{H}^{\uparrow}$	115	1.0×10^{4}	1050	44	8.6
$p \mathrm{D}^{\uparrow}$	115	1.1×10^{4}	520	30	4.2
$p^{3} \mathrm{He}^{\uparrow}$	115	3.7×10^{4}	520	30	4.2
PbH^{\uparrow}	72	0.12	74	12	0.97
PbD^{\uparrow}	72	8.8×10^{-2}	62	11	0.82
$\mathrm{Pb}^{3} \mathrm{He}^{\uparrow}$	72	8.3×10^{-2}	62	11	0.82
RHIC (STAR)					
$p^{\uparrow} p^{\uparrow}$ (2017)	510	400	3190	77	15
$\mathrm{Au}^{\uparrow} p^{\uparrow}$ (2023)	200	1.75	570	33	2.7

But could the cuts on $z=\frac{p_{J / \psi} P}{q_{\gamma} P}$ be made?

Why?

$$
\frac{d \sigma_{\gamma p}}{d z}=\frac{M^{2}}{S_{\gamma p}} \int_{0}^{S_{\gamma p} / M^{2}-1} d \eta f_{i}\left(\frac{M^{2}}{S_{\gamma p}}(\eta+1), \mu_{F}\right) \frac{d \hat{\sigma}_{i \gamma}(\eta, z)}{d z}
$$

where $z=\frac{P p}{P q}=\frac{p^{-}}{q^{-}}, \eta=\frac{\hat{s}}{M^{2}}-1$ with $\hat{s}=S_{\gamma p} x$.
Plots of the integrand:

Asymptotics $\hat{\sigma}_{\mathrm{NLO}}(\eta \rightarrow \infty)$

\hat{\sigma}_{i \gamma} \propto c_{i \gamma}^{(0)}(\eta)+4 \pi \alpha_{s}\left[c_{i \gamma}^{(1)}(\eta)+\bar{c}_{i \gamma}^{(1)}(\eta) \ln \frac{\mu_{F}^{2}}{m_{c}^{2}}+\frac{\beta_{0}}{8 \pi^{2}} c_{i \gamma}^{(0)}(\eta)\right]
\]

Numerical NLO result
(FDC code, Yu Feng)

$c^{(1)}$ and $\bar{c}^{(1)}$ at $\eta \rightarrow \infty$ from HEF as function of $p_{T \text { min }}^{J / \psi}$

$\gamma(q)+p(P) \rightarrow J / \psi(p)+X$ in HEF

HEF resummed partonic cross section:
$\frac{d \hat{\sigma}_{i \gamma}^{\mathrm{HEF}}(\eta, z)}{d z}=\frac{1}{2 z M^{2}} \int_{1 / z}^{1+\eta} \frac{d y}{y} \int_{0}^{\infty} d \mathbf{q}_{T}^{2} \mathcal{C}_{g i}\left(\frac{y}{\eta+1}, \mathbf{q}_{T}^{2}, \mu_{F}, \mu_{R}\right) \mathcal{H}\left(y, \mathbf{q}_{T}^{2}, z\right)$,
actually resums $\ln \frac{1}{z_{+}}=\ln \frac{\eta+1}{y}$. Is resummation of only $\ln (1+\eta)$ possible? Yes.
The \mathcal{H} is the integral of the HEF coefficient function (H) :

$$
R_{+}\left(\mathbf{q}_{T 1}, q_{1}^{+}\right)+\gamma(q) \rightarrow c \bar{c}\left[{ }^{3} S_{1}^{(1)}\right](p)+g(k)
$$

over the PS of the gluon $\left(y=q_{1}^{+} q^{-} / M^{2}\right)$:

$$
\begin{aligned}
& \mathcal{H}\left(y, \mathbf{q}_{T 1}^{2}, z\right)=\int_{0}^{\infty} \frac{d k^{+} d k^{-}}{2(2 \pi)^{2}} \int d^{2} \mathbf{p}_{T} H\left(\hat{s}, \hat{t}, \hat{u},\left(\mathbf{q}_{T 1} \cdot \mathbf{p}_{T}\right), \mathbf{q}_{T 1}^{2}\right) \\
& \times \delta\left(q^{-}(1-z)-k^{-}\right) \delta\left(q_{1}^{+}-\frac{M_{T}^{2}}{q_{-}}-k^{+}\right) \delta\left(k^{+} k^{-}-\left(\mathbf{q}_{T 1}-\mathbf{p}_{T}^{2}\right)^{2}\right)
\end{aligned}
$$

InEW matching results

Cross-check with our "in-house" NLO code

We have developed the numerically-efficient NLO code for calculation of scaling-functions c_{1} and \bar{c}_{1} which is based on the Catani-Seymour dipole-subtraction formalism (as opposed to phase-space slicing used by FDC). The validation of the code is in progress:

Comparison of $c_{1}(\eta)$ with the FDC result (crosses). Small systematic difference is still present at $\eta<1$.

Comparison of $d c_{1} / d z d \rho$ at $\eta=1000$ against analytic $\eta \rightarrow \infty$ asymptotics from HEF (crosses). Strong cross-check of analytics and the NLO code.

Analytic results for $\eta \rightarrow \infty$ asymptotics of $d \hat{\sigma} / d p_{T}$
Can be derived via expansion of HEF formula up to NLO and applying IBP-reduction to \mathbf{q}_{T}-integrals.

$$
\begin{aligned}
& \frac{d c_{1}(z, \rho, \eta \rightarrow \infty)}{d z d \rho}=c_{1}^{(\mathrm{R})}(z, \rho) \\
& +c_{1}^{(1)}(z, \rho) \ln \left[\frac{z^{2}(1-z)^{2}}{\left(\rho+(1-z)^{2}\right)^{2}}\right]+c_{1}^{(2)}(z, \rho) \ln \left[\frac{(\rho+1-z)^{2}}{(1-z)(\rho+2-z)}\right] \\
& +\frac{c_{1}^{(3)}(z, \rho)}{\sqrt{(1+\rho)\left((2-3 z)^{2}+(2-z)^{2} \rho\right)}} \\
& \times \ln \left[\frac{\rho(2-z)-(3-2 z) z+2-\sqrt{(\rho+1)\left(\rho(z-2)^{2}+(2-3 z)^{2}\right)}}{\rho(2-z)-(3-2 z) z+2+\sqrt{(\rho+1)\left(\rho(z-2)^{2}+(2-3 z)^{2}\right)}}\right]
\end{aligned}
$$

where $\rho=\mathbf{p}_{T}^{2} / M^{2}$ and

$$
\begin{aligned}
& c_{1}^{(1)}(z, \rho)=\frac{-z^{3}}{(\rho+1)^{2}\left(\rho+(z-1)^{2}\right)^{2}(\rho-2 z+1)^{4}} \\
& \times\left\{5(\rho+1)^{4}+4(2 \rho+1) z^{6}-(\rho+1)(23 \rho+31) z^{5}+(\rho+1)(\rho(12 \rho+77)+89) z^{4}\right. \\
& -2(\rho+1)(\rho+3)(\rho(\rho+18)+21) z^{3}+2(\rho+1)^{2}(\rho(3 \rho+32)+47) z^{2} \\
& \left.\quad-(\rho+1)^{3}(11 \rho+35) z\right\}
\end{aligned}
$$

Conclusions and outlook

- The high-energy instability of the NLO cross section is related with lack of the $\alpha_{s}^{n} \ln ^{n-1} \hat{s} / M^{2}$ corrections in $\hat{\sigma}$ at $\hat{s} \gg M^{2}$.
- The HEF at DLA is the formalism to solve this problem if the standard fixed-order PDFs are to be used.
- Matching between NLO CF $\left(\hat{s} \sim M^{2}\right)$ and $\operatorname{HEF}\left(\hat{s} \gg M^{2}\right)$ has been performed for η_{c} inclusive hadroproduction and J / ψ inclusive photoproduction total cross sections.
- The matched calculation for $d \sigma / d y$ is in progress.
- Future plans (6 months):
- $\chi_{c J}$ production in DLA + NLO CF (relevant for FT LHC phenomenology),
- p_{T}-distribution of J / ψ in photoproduction in DLA + NLO CF,
- More distant future:
- Next-to-DLA corrections

Thank you for your attention!

Expanding the resummation up to NLO, part 1

Substituting the Mellin-space expressions for $\mathcal{C}_{g g}$ we obtain (recall that $\left.\gamma_{N}=\frac{\alpha_{s} C_{A}}{\pi N}\right)$:

$$
\begin{aligned}
& \mathcal{H}^{[m]}(z, \bar{w})=\int \frac{d N_{1} d N_{2}}{(2 \pi i)^{2}} z^{-\frac{N_{1}+N_{2}}{2}}\left(\frac{1-\bar{w}}{1+\bar{w}}\right)^{-\frac{N_{1}-N_{2}}{2}} F^{[m]}\left(N_{1}, N_{2}\right), \\
& F^{[m]}\left(N_{1}, N_{2}\right)=\gamma_{N_{1}} \gamma_{N_{2}} \int_{0}^{2 \pi} \frac{d \phi}{2} \int_{0}^{\infty} \frac{d \mathbf{q}_{T 1}^{2} d \mathbf{q}_{T 2}^{2}}{\mathbf{q}_{T 1}^{2} \mathbf{q}_{T 2}^{2}}\left(\frac{\mathbf{q}_{T 1}^{2}}{\mu_{F}^{2}}\right)^{\gamma_{N_{1}}}\left(\frac{\mathbf{q}_{T 2}^{2}}{\mu_{F}^{2}}\right)^{\gamma_{N_{2}}} \\
& \times \frac{H^{[m]}\left(\mathbf{q}_{T 1}, \mathbf{q}_{T 2}\right)}{M_{T}^{4}}\left(\frac{M^{2}}{M_{T}^{2}}\right)^{\frac{N_{1}+N_{2}}{2}}=\mathrm{LO}+\frac{\alpha_{s} C_{A}}{\pi}\left[\frac{1}{N_{1}}+\frac{1}{N_{2}}\right] \\
& \times \int_{0}^{2 \pi} \frac{d \phi}{2} \int_{0}^{\infty} \frac{d \mathbf{q}_{T 1}^{2}}{\mathbf{q}_{T 1}^{2}}\left[\frac{H^{[m]}\left(\mathbf{q}_{T 1}, 0\right)}{\left(M^{2}+\mathbf{q}_{T 1}^{2}\right)^{2}}\left(\frac{M^{2}}{M^{2}+\mathbf{q}_{T 1}^{2}}\right)^{\frac{N_{1}+N_{2}}{2}}-\frac{H^{[m]}(0,0)}{M^{4}} \theta\left(\mu_{F}^{2}-\mathbf{q}_{T 1}^{2}\right)\right] \\
& +O\left(\alpha_{s}^{2}\right), \\
& \text { for } m={ }^{1} S_{0}: H^{\left[{ }^{1} S_{00}\right]}\left(\mathbf{q}_{T 1}, 0\right)=\frac{M^{4} \sigma_{0}^{[1} S_{0]}}{\pi} 2 \sin ^{2} \phi .
\end{aligned}
$$

Expanding the resummation up to NLO, part 2

$$
\begin{gathered}
F_{\text {NL O }}^{\left[{ }^{[} S_{0}\right]}\left(N_{1}, N_{2}\right)=\sigma_{0}^{1{ }_{1}^{1}} S_{0]} \frac{\alpha_{s} C_{A}}{\pi} \frac{N_{1}+N_{2}}{N_{1} N_{2}} \int_{0}^{\infty} \frac{d \mathbf{q}_{T 1}^{2}}{\mathbf{q}_{T 1}^{2}}\left[\left(\frac{M^{2}}{M^{2}+\mathbf{q}_{T 1}^{2}}\right)^{2+\frac{N_{1}+N_{2}}{2}}-\theta\left(\mu_{F}^{2}-\mathbf{q}_{T 1}^{2}\right)\right] \\
=\sigma_{0}^{\left.1 S_{01}\right]} \frac{\alpha_{s} C_{A}}{\pi}\left[\frac{1}{N_{1}}+\frac{1}{N_{2}}\right]\left[\ln \frac{M^{2}}{\mu_{F}^{2}}-\left(\gamma_{E}+\psi\left(2+\frac{N_{1}+N_{2}}{2}\right)\right)\right] .
\end{gathered}
$$

Using the fact that $-\gamma_{E}-\psi(N)=\int_{0}^{1} d x \frac{x^{N-1}}{(1-x)_{+}}$we can express:

$$
\begin{aligned}
& \left.\int_{\bar{w}_{\min }}^{\bar{w}_{\max }} \frac{d \bar{w}}{1-\bar{w}^{2}} \mathcal{H}_{\mathrm{NLO}}^{\left[{ }^{1} S_{0}\right]}(z, \bar{w}) \mathcal{L}(z, \bar{w}, y)=\sigma_{0}^{[1} S_{0}\right] \frac{\alpha_{s} C_{A}}{\pi}\left\{\int_{\bar{w}_{\min }}^{\bar{w}_{\max }} d \bar{w} \Delta(z, \bar{w}) \mathcal{L}(z, \bar{w}, y) \ln \frac{M^{2}}{\mu_{F}^{2}}\right. \\
& \left.\quad+\mathcal{F}\left[\mathcal{L}(z, \bar{w}, y) \theta\left(\bar{w}-\bar{w}_{\min }\right) \theta\left(\bar{w}_{\max }-\bar{w}\right)\right]\right\}
\end{aligned}
$$

where $\Delta(z, w)=\delta\left(w-\frac{1-z}{1+z}\right)+\delta\left(w+\frac{1-z}{1+z}\right)$ and the functional

$$
\mathcal{F}[f]=2 z^{2} \int_{-1}^{1} \frac{d \bar{w}}{1-\bar{w}^{2}}\left\{\frac{(1-\bar{w}) \theta\left(\frac{1-z}{1+z}+\bar{w}\right)}{(1+\bar{w})-z(1-\bar{w})}\left[\frac{1-\bar{w}}{1+\bar{w}} \theta(-\bar{w}) f(\bar{w})-\frac{1}{z} f\left(-\frac{1-z}{1+z}\right)\right]\right.
$$

$$
\left.+\frac{(1+\bar{w}) \theta\left(\frac{1-z}{1+z}-\bar{w}\right)}{(1-\bar{w})-z(1+\bar{w})}\left[\frac{1+\bar{w}}{1-\bar{w}} \theta(\bar{w}) f(\bar{w})-\frac{1}{z} f\left(\frac{1-z}{1+z}\right)\right]\right\}
$$

[^0]: ${ }^{1}$ Based on JHEP 05 (2022) 083 [hep-ph/2112.06789] and ongoing work
 ${ }^{2}$ Université Paris-Saclay, CNRS, IJCLab, Orsay, France
 ${ }^{3}$ NCBJ, Warsaw, Poland
 ${ }^{4}$ Institute for Theoretical Particle Physics, KIT, Karlsruhe, Germany

