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• Halo particles are intercepted and disposed by the collimation system.

• Part of the secondary halo is intercepted by the crystal and deflected towards the target.

• Local absorbers capture additional losses coming from the crystal+target assembly.

• Parasitic operation means that fixed-target collisions occur in parallel to beam-beam collisions.

• Parasitic operation is possible only if new loss spikes stay within acceptable limits (e.g. not larger than usual 
losses).

• For the ALICE case, the setup is optimized to provide a maximum flux of protons on target (PoT) that can be 
handled by the detector acquisition system. This is in the order of 107 p/s.
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Double-crystal layout for fixed-target experiment in IR3/IR8

• Halo particles are intercepted and disposed by the collimation system.

• Part of the secondary halo is intercepted by the crystal and deflected towards the target.

• Local absorbers capture additional losses coming from the crystal+target assembly.

• Parasitic operation means that fixed-target collisions occur in parallel to beam-beam collisions.

• Parasitic operation is possible only if new loss spikes stay within acceptable limits (e.g. not larger than usual 
losses).

• Double-crystal layout, with a second crystal directly after the target, allows to study electric and magnetic 
dipole moments of short-lived baryons. It’s technical feasibility is more challenging.
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Outline

• Crystal implementation in IR2

• Studies on experimental test-stand with crystals in IR3
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IR2 layouts being considered
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IR2 layouts being considered

crystal
target

s [m]
3217m
“best”

3259m
“original”

Δμ (TCP.D) [deg] 144 168

PoC [1e-3] 2.5 0.6

More than a factor of 4 of difference!

“best” s original s

absorbers
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“best”

3259m
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More than a factor of 4 of difference!
But difficult for crystal installation.
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Interaction with a primary collimator

Flouqet transformation

Circle of radius n1:

Change of amplitude and phase:
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Effect of scattering

● Scattering angle transforms into the maximum 
amplitude growth at the location where the 
phase advance is 90º ± Δφ.

● Such a phase advance is desired between the 
primary vertical collimator (TCP.D) and the 
crystal.

● Phase advance close to 0º or 180º is not 
favorable.

● Phase advance can be modified by changing the 
β function.
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Shift of phase at the crystal

Optics change in MAD-X

● Strength of quads 10-4.L2B1 (upstream from IP2) 
is modified to set the desired phase at the crystal.

● IP2 parameters stay unchanged.

● Strength of quads 10-4.R2B1 (downstream from 
IP2) is modified to recover the nominal phase.
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Protons on crystal (PoC) vs phase shift
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Protons on crystal (PoC) vs phase shift
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Loss map 
comparison Reference, no 

crystal

IR2

IR3

IR7

• HL-LHC v1.5 optics, β* = 10m
• Coll settings:

● n
σ
(TCP

IR7
)=6.7, 

● n
σ
(CRY

IR2
)=[7.3, 7.5, 7.9], 

● n
σ
(TCS

IR7
)=9.1, 

● n
σ
(TCLA

IR7
)=12.7

• Sixtrack5
• Annular beam halo at 6.7σ
• 2.1M particles, 300 turns

• No extra losses.
• Significantly more protons on the 

crystal and target.

IR3

IR7IR2
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Assets of having the crystal at s=3259m
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Assets of having the crystal at s=3259m
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Assets of having the crystal at s=3259m

TCP TCS
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Protons on target
• Protons on Target (PoT) is a fraction of beam halo that 

received a correct deflection from the crystal (channelling) 
and hit the target. 

• Number of protons on target per fill can be estimated as:

which for 2018 operation would result in about: 

2.7∙1010 protons per fill --> 7.6∙106 protons per second 

assuming [Eur. Phys. J. C (2020) 80:929]:

• HL-LHC beam intensity will be about x2 larger.

• ALICE can handle about 107 protons on target per second. 

N PoT=
1
2

PoT ∫
0

T fill

1
τcoll

I0 exp(
−t
τBO

)exp (
−t
τcoll

)dt

I0=2556⋅1.1⋅1011 p , τBO=20 h , τcoll=200 h , T fill=10 h
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Crystal layout at IR2

crystal

absorbers

target

Crystal:
● bending radius: 80 m 
● bending angle:  200 μrad
● length:       16 mm
● material:      Si (110)
● s-position:        3259m (0m at IP1)

Target:
● length               5mm
● material      tungsten
● s-position:        4.8m upstream from the IP2

Absorbers:
● 3 TCSGs: graphite, 1m long, at 10σ
● 1 TCLA: tungsten, 1m long, at 13σ
● the numer of absorbers may decrease – this will be 

studied with FLUKA E deposition simulations.
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Summary on IR2 crystal implementation studies
• A correct phase advance between the primary collimator and the crystal is crucial for reaching a high 

performance of the system.

• Phase advance can be adjusted using a minor, local modification of optics. Such optimization is needed 
every time optics changes.

• S-location 3259m is the only location where one crystal can serve both crossing scenarios. It is also 
good in terms of space availability for the crystal installation.

• The expected proton flux on target for the crystal at 3259m, after phase advance optimization, 
is 7.6∙106 p/s (assuming 2018 beam conditions).

• ALICE can handle about 107 p/s on target.

• All the estimations rely on complex multi-turn tracking simulations. An experimental verification of the 
system’s performance and identification of operational challenges is needed in a dedicated test-stand, 
possibly to be deployed at IR3.
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Outline

• Crystal implementation in IR2

• Studies on experimental test-stand with crystals in IR3

● This part is presented on behalf of the CERN Collimation Team

● Materials come from P. Hermes et al.
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IR3 test stand for crystal-based fixed target experiments

• Crystals must respect the collimation system 
hierarchy.

• Particle losses coming from the layout of 
crystals+target must be safely disposed.

• Crystals alignment and angular orientation must be 
well controlled due to limited angular acceptance at 
7TeV.

• A large bending angle (some mrad) and a significant 
length (some cm) of CRY2 is needed.

• An optimized phase-advance between the IR7 
primary collimator and CRY1 is needed.

26
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• System performance is evaluated based on complex 
multi-turn tracking simulations which must be 
verified experimentally.

• Methods of adapting the crystal to the dynamic 
conditions of the machine must be developed.

• Methods of controlling the optimal crystal 
position/orientation in the presence of usual machine 
imperfections must be developed.

• Experimental characterization of a long, 
large-bending angle crystal (CRY2) at high energy 
(~TeV) is needed.

Experimental verificationChallenges for FT experiments



Layout for the IR3 test stand
28

Device Position 
(m)

Angle 
(μrad)

Length 
(m)

Integrated 
mag. f. (Tm)

Material

CRY1 6431.0 50 0.004 - Si

Target 6674.5 - 0.005 - W

CRY2 6674.5 7000 0.075 - Si

MCBWV.4R3.B1 6674.9* - 1.7 1.87 -

TCLA.A5R3.B1 6755 - 100 - W

Devices already in place 

• IR3 provides good space availability to host such a 
test stand.

• Design based on studies described in [Eur. Phys. J. C 
(2020) 80:929]

• System to be installed in the vertical plane.
• One of the existing dipole corrector magnets can be 

used as a spectrometer.
• This requires moving such a magnet by about 10m 

upstream to create a space for the CRY2 installation. 
This would cause about 15% reduction of efficiency 
for local orbit correction.

• Orbit bump created by the spectrometer can be well 
compensated by other orbit correctors nearby.

• Installation of the target next to the CRY2 is under 
investigation.

• An existing vertical absorber will be used to 
intercept losses emerging from CRY2(+Target).

*) Moved upstream by ~ 10m



MCBWV.A4R3 as a spectrometer
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https://edms.cern.ch/panoramas/viewer?fov=90.00&id=36409858&lat=-27.06&lon=241.01
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● To be checked: available space at BPM position → enough for detector?

https://edms.cern.ch/panoramas/viewer?fov=90.00&id=36409858&lat=-27.06&lon=241.01


Summary on IR3 test stand studies

• Experimental verification of crystal based fixed target experiments is crucial for their successful 
implementation.

• A design of a dedicated test stand to be installed in IR3 is under development.

• It could be operated already in Run3.

• Already performed studies indicate that the proposed layout meets the design requirements. Further studies 
are in progress.
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Thank you for your attention!



Extra slides



Comparison with ion optics
simulation settings

• Only one IR2 optics scenario available for HL-LHC v1.5

• RunII ion optics scenarios used for comparison with my modifications

• /afs/cern.ch/eng/lhc/optics/runII/2018/ION

• Only optics, no SixTrack studies.

• Ion optics changes globally (all IRs)

• My changes concern IR2 only.



β* = 10m and 9.2m

Ion optics 2018 HL-LHC v1.5
with my changes

Qualitatively very 
 similar effect



β* = 10m and 6.7m

Ion optics 2018 HL-LHC v1.5
with my changes

Qualitatively very 
 similar effect



Summary of ion optics review

● 2018 ion optics was analyzed for several IP2 β* values.

● A very similar effect is observed as for manual changes of HL-LHC optics.

● Lower β* values cause a change of phase advance in a favorable way.

● Optics at the region of concern is rather flexible and required 
modifications should be easy to be implemented.

● This is only a verification of concept. Final optics matching requires a 
support from optics experts.

 



PoC (s=3217)
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Challenges of crystal-based fixed target experiments

• Crystals must respect the collimation system hierachy;

• Particle losses coming from the layout of crystals+target must be safely disposed;

• Crystals alignment and angular orientation must be well controlled due to limited angular acceptance at 7TeV;

• A large bending angle (some mrad) and a significant length (some cm) of CRY2 is needed;

• An optimized phase-advance between the IR7 primary collimator and CRY1 is needed;

An experimental test stand is planned to be deployed in IR3 to experimentally verify above listed challenges.
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28th LHC fixed-target WG | IR3 fixed target experiment run 3 beam test 39

Possible tests in Run 3
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Backup

BPMW.4R3.B1
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