

This project has received funding from the European Union's Horizon 2020 research and innovation programme.

Warsaw University of Technology

Crystal implementation in IR2 and studies for a test-stand in IR3

Marcin Patecki1,a

D. Kikoła¹, K. Dewhurst², A.Fomin^{2,3}, P. Hermes², D. Mirarchi², S. Redaelli²

Acknowledgments:

C. Hadjidakis⁴, L. Massacrier⁴, R. Haque¹

¹Warsaw University of Technology, Faculty of Physics ²CERN, European Organization for Nuclear Research ³Kharkiv Institute of Physics and Technology ⁴Université Paris-Saclay, CNRS, IJCLab ^aMarcin.Patecki@pw.edu.pl

Fixed Target experiments at LHC - Strong2020 Workshop

Layout for crystal based fixed-target experiment in IR2

- Halo particles are intercepted and disposed by the collimation system.
- Part of the **secondary halo** is **intercepted by the crystal** and **deflected towards the target**.
- Local absorbers capture additional losses coming from the crystal+target assembly.
- **Parasitic operation** means that **fixed-target collisions** occur in **parallel to beam-beam collisions**.
- Parasitic operation is possible only if **new loss spikes stay within acceptable limits** (e.g. not larger than usual losses).
- For the ALICE case, the setup is optimized to provide a maximum **flux of protons on target** (PoT) that can be handled by the detector acquisition system. This is in the order of **10**⁷ **p**/**s**.

Double-crystal layout for fixed-target experiment in IR3/IR8

- Halo particles are intercepted and disposed by the collimation system.
- Part of the **secondary halo** is **intercepted by the crystal** and **deflected towards the target**.
- Local absorbers capture additional losses coming from the crystal+target assembly.
- **Parasitic operation** means that **fixed-target collisions** occur in **parallel to beam-beam collisions**.
- Parasitic operation is possible only if **new loss spikes stay within acceptable limits** (e.g. not larger than usual losses).
- **Double-crystal layout**, with a **second crystal directly after the target**, allows to study **electric and magnetic dipole moments of short-lived baryons**. It's technical feasibility is more challenging.

Outline

- Crystal implementation in IR2
- Studies on experimental test-stand with crystals in IR3

Outline

- Crystal implementation in IR2
- Studies on experimental test-stand with crystals in IR3

IR2 layouts being considered

IR2 layouts being considered

Space constraints

Space constraints

Can we move back to the original location and recover the performance?

Space constraints

Can we move back to the original location and recover the performance?

Interaction with a primary collimator

$$\sqrt{\langle \theta_p^2 \rangle} = \frac{13.6}{cp[\text{MeV}]} \sqrt{\frac{s}{\chi_0}} \left(1 + 0.038 \cdot \left(\frac{s}{\chi_0}\right) \right)$$

 χ_0 : radiation length

Molière's multiplescattering theory: scattered particles gain a transverse RMS kick.

Circle of radius n1: $\xi_{\beta} = n_1 \sin(\phi_z)$ $\xi'_{\beta} = n_1 \cos(\phi_z)$

Change of amplitude and phase:

$$n_{k} = \sqrt{n_{1}^{2} + \Delta\theta^{2} \cdot \frac{\beta}{\varepsilon}}$$
$$\Delta\phi = -\operatorname{sgn}(\Delta\theta) \cdot \operatorname{arccos}\left(\frac{n_{k}}{n_{1}}\right)$$

Effect of scattering

- Scattering angle transforms into the maximum amplitude growth at the location where the phase advance is $90^{\circ} \pm \Delta \varphi$.
- Such a phase advance is desired between the primary vertical collimator (TCP.D) and the crystal.
- Phase advance close to 0° or 180° is not favorable.
- Phase advance can be modified by changing the β function.

extract, sequence=lhcb1, from=start_subseq, to=IP2, newname=subseq; save, sequence=subseq, file=subseq.madx, beam=true;

extract, sequence=lhcb1, from=start_subseq, to=end_subseq, newname=subseq_full; save, sequence=subseq_full, file=subseq_full.madx, beam=true;

! _____Match half IR_____ call, file="subseq_full.madx";

use, sequence=subseq_full; select, flag=twiss, clear; select, flag=twiss, column=KEYWORD,NAME,S,L,X,Y,PX,PY,BETX,BETY,ALFY,ALFY,MUX,MUY,DX,DY,DPX,DPY; twiss, beta0=subseq_twiss, file="twiss_subseq.txt", save;

!****matching IP with MO guads**** atch, sequence=subseq full, beta0=subseq twiss; constraint range=IP2, betx=10.0, bety=10.0, alfx=0.0, alfy=0.0, dx=0, dpx=0; constraint range=CRY.FIR.B1, muy=7.262; vary, name=kq10.l2b1; varv, name=kg9.l2b1 varv. name=kg8.l2b1 Optics change in MAD-X varv. name=kg7.l2b1 varv. name=kg6.l2b1: vary, name=kg5.l2b1 vary, name=kg4.l2b1; lmdif, calls=500, tolerance=1e-8; ndmatch: wiss, beta0=subseq_twiss, file="twiss_subseq_aftermatch.txt", save; Match full IR elect. flag=twiss. clear: select, flag=twiss, column=KEYWORD.NAME.S.L.X.Y.PX.PY.BETX.BETY.ALFX.ALFY.MUX.MUY.DX.DY.DPX.DPY; twiss, beta0=subseqfull twiss, file="twiss subseqfull.txt", save; !****matching IP with MQ guads**** match, sequence=subseq_full, beta0=subseq_twiss; constraint range=end subseg. betx=subseqfull_twiss->betx, bety=subseqfull_twiss->bety, alfx=subseqfull twiss->alfx, alfv=subseqfull twiss->alfv, dx=subseqfull_twiss->dx, dpx=subseqfull_twiss->dpx, muy=subseqfull twiss->muy; varv. name=kg10.r2b1: varv. name=kg9.r2b1: varv. name=kg8.r2b1: name=kg7.r2b1 varv. name=kg6.r2b1: varv. name=kg5.r2b1: vary, name=kg4.r2b1; lmdif, calls=500, tolerance=1e-8; ndmatch twiss, beta0=subseq_twiss, file="twiss_subseqfull_aftermatch.txt", save;

!Back to the whole ring
use,sequence=lhcb1;
select, flag=twiss, clear;
select, flag=twiss, column=KEYWORD,NAME,S,L,X,Y,PX,PY,BETX,BETY,ALEX,ALEY,MUX,MUY,DX,DY,DPX,DPY;
twiss, sequence=lhcb1, centre=true, file=twiss_thinb1_aftermatch.txt; save;

Rematch tune & chroma

call, file="slhc/toolkit/rematch_tune.madx"; call, file="slhc/toolkit/rematch_chroma.madx";

Shift of phase at the crystal

- Strength of quads 10-4.L2B1 (upstream from IP2) is modified to set the desired phase at the crystal.
- IP2 parameters stay unchanged.
- Strength of quads 10-4.R2B1 (downstream from IP2) is modified to recover the nominal phase.

Protons on crystal (PoC) vs phase shift

- Original location is nearly at the worst phase (180deg) for the default optics.
- Phase shift by ~65deg allows to increase the system performance significantly.
- The required optics change is minor and easy to be implemented.

Protons on crystal (PoC) vs phase shift

- Original location is nearly at the worst phase (180deg) for the default optics.
- Phase shift by ~65deg allows to increase the system performance significantly.
- The required optics change is minor and easy to be implemented.

Table 3: Normalised strengths of quadrupoles for nominal and modified optics. IR2 left and IR2 right stand for regions upstream and downstream from the IP2, respectively.

	Quadrupole strength $k_1 [10^{-3} m^{-2}]$						
Quadrupole	IR2	2 left	IR2 right				
number	nominal	modified	nominal	modified			
10	-6.39	-6.15	7.30	7.30			
9	7.01	6.89	-6.60	-6.82			
8	-5.41	-3.59	6.71	6.30			
7	7.60	7.42	-6.36	-7.47			
6	-4.91	-4.17	4.33	4.20			
5	2.99	2.88	-3.63	-4.09			
4	-2.80	-2.67	3.74	2.60			

Loss map comparison

- HL-LHC v1.5 optics, $\beta^* = 10m$
- Coll settings:
 - $n_{\sigma}(TCP_{IR7})=6.7$,
 - $n_{\sigma}(CRY_{IR2}) = [7.3, 7.5, 7.9],$
 - $n_{\sigma}(TCS_{IR7})=9.1$,
 - $n_{\sigma}(TCLA_{IR7})=12.7$
- Sixtrack5
- Annular beam halo at 6.7 σ
- 2.1M particles, 300 turns
- No extra losses.

Loss map comparison

- HL-LHC v1.5 optics, $\beta^* = 10m$
- Coll settings:
 - $n_{\sigma}(TCP_{IR7})=6.7$,
 - $n_{\sigma}(CRY_{IR2}) = [7.3, 7.5, 7.9],$
 - $n_{\sigma}(TCS_{IR7})=9.1$,
 - $n_{\sigma}(TCLA_{IR7})=12.7$
- Sixtrack5
- Annular beam halo at 6.7σ
- 2.1M particles, 300 turns
- No extra losses.
- Significantly more protons on the crystal and target.

Assets of having the crystal at s=3259m

- Good space availability for the crystal installation.
- •

Assets of having the crystal at s=3259m

- Good space availability for the crystal installation.
- A single crystal (200µrad) can cover both ALICE polarities. A movable target is then needed.

.

Assets of having the crystal at s=3259m

- Good space availability for the crystal installation.
- A single crystal (200µrad) can cover both ALICE polarities. A movable target is then needed.
- About a factor of 2 increase of protons on target (PoT) when the crystal is at the optimal phase comparing to crystal at s=3217m at default optics.

Protons on target

- Protons on Target (PoT) is a fraction of beam halo that received a correct deflection from the crystal (channelling) and hit the target.
- Number of protons on target per fill can be estimated as: $N_{PoT} = \frac{1}{2} PoT \int_{0}^{T_{BU}} \frac{1}{\tau_{coll}} I_{0} \exp\left(\frac{-t}{\tau_{BO}}\right) \exp\left(\frac{-t}{\tau_{coll}}\right) dt$

which for 2018 operation would result in about:

2.7·10¹⁰ protons per fill --> 7.6·10⁶ protons per second assuming [Eur. Phys. J. C (2020) 80:929]:

 $I_0 = 2556 \cdot 1.1 \cdot 10^{11} p$, $\tau_{BO} = 20 h$, $\tau_{coll} = 200 h$, $T_{fill} = 10 h$

- HL-LHC beam intensity will be about x2 larger.
- ALICE can handle about 10⁷ protons on target per second.

Crystal layout at IR2

Crystal:

EEAN 2

269.4

269.4

Summary on IR2 crystal implementation studies

- A correct phase advance between the primary collimator and the crystal is crucial for reaching a high performance of the system.
- Phase advance can be adjusted using a **minor, local modification of optics**. Such optimization is needed **every time optics changes**.
- S-location 3259m is the **only location** where **one crystal** can serve **both crossing scenarios**. It is also **good in terms of space availability** for the crystal **installation**.
- The **expected proton flux on target** for the crystal at 3259m, after phase advance optimization, is **7.6·10⁶ p/s** (assuming 2018 beam conditions).
- ALICE can handle about **10**⁷ **p**/**s** on target.
- All the **estimations rely on** complex multi-turn tracking **simulations**. An **experimental verification** of the system's performance and **identification of operational challenges** is needed in a **dedicated test-stand**, possibly to be deployed at **IR3**.

References

• Publications:

- A Local Modification of HL-LHC Optics for Improved Performance of the Alice Fixed-Target Layout, IPAC'22 MOPOST024, waiting for publication.
- Status of layout studies for fixed-target experiments in ALICE based on crystal-assisted halo splitting, https://accelconf.web.cern.ch/hb2021/papers/mop26.pdf
- A fixed-target programme at the LHC: Physics case and projected performances for heavy-ion, hadron, spin and astroparticle studies https://doi.org/10.1016/j.physrep.2021.01.002
- LHC fixed target experiments: Report from the LHC Fixed Target Working Group of the CERN Physics Beyond Colliders Forum https://doi.org/10.23731/CYRM-2020-004
- Physics opportunities for a fixed-target programme in the ALICE experiment https://cds.cern.ch/record/2671944
- Layouts for fixed-target experiments and dipole moment measurements of short-lived baryons using bent crystals at the LHC https://doi.org/10.1140/epjc/s10052-020-08466-x

• Presentations:

- F. Galluccio, W. Scandale Proposal for beam splitting in LHC IR2 https://indico.cern.ch/event/853688/contributions/3620725/
- A. Fomin, Updates on IP2 FT layouts https://indico.cern.ch/event/981210/contributions/4132813
- D. Kikoła, A fixed-target program in the ALICE experiment https://indico.cern.ch/event/1002356/contributions/4229546/
- M. Patecki, Status of the crystal based ALICE fixed target layout, https://indico.ijclab.in2p3.fr/event/7201/contributions/22532/

Outline

- Crystal implementation in IR2
- Studies on experimental test-stand with crystals in IR3
 - This part is presented on behalf of the CERN Collimation Team
 - Materials come from P. Hermes et al.

IR3 test stand for crystal-based fixed target experiments

Challenges for FT experiments

- Crystals must respect the collimation system hierarchy.
- Particle losses coming from the layout of crystals+target must be safely disposed.
- Crystals alignment and angular orientation must be well controlled due to limited angular acceptance at 7TeV.
- A large bending angle (some mrad) and a significant length (some cm) of CRY2 is needed.
- An optimized phase-advance between the IR7 primary collimator and CRY1 is needed.

IR3 test stand for crystal-based fixed target experiments

Challenges for FT experiments

- Crystals must respect the collimation system hierarchy.
- Particle losses coming from the layout of crystals+target must be safely disposed.
- Crystals alignment and angular orientation must be well controlled due to limited angular acceptance at 7TeV.
- A large bending angle (some mrad) and a significant length (some cm) of CRY2 is needed.
- An optimized phase-advance between the IR7 primary collimator and CRY1 is needed.

Experimental verification

- System performance is evaluated based on complex multi-turn tracking simulations which must be verified experimentally.
- Methods of adapting the crystal to the dynamic conditions of the machine must be developed.
- Methods of controlling the optimal crystal position/orientation in the presence of usual machine imperfections must be developed.
- Experimental characterization of a long, large-bending angle crystal (CRY2) at high energy (~TeV) is needed.

Layout for the IR3 test stand

- IR3 provides good space availability to host such a test stand.
- Design based on studies described in [Eur. Phys. J. C (2020) 80:929]
- System to be installed in the vertical plane.
- One of the existing dipole corrector magnets can be used as a spectrometer.
- This requires moving such a magnet by about 10m upstream to create a space for the CRY2 installation. This would cause about 15% reduction of efficiency for local orbit correction.
- Orbit bump created by the spectrometer can be well compensated by other orbit correctors nearby.
- Installation of the target next to the CRY2 is under investigation.
- An existing vertical absorber will be used to intercept losses emerging from CRY2(+Target).

Device	Position (m)	Angle (µrad)	Length (m)	Integrated mag. f. (Tm)	Material
CRY1	6431.0	50	0.004	-	Si
Target	6674.5	-	0.005	-	W
CRY2	6674.5	7000	0.075	-	Si
MCBWV.4R3.B1	6674.9*	-	1.7	1.87	-
TCLA.A5R3.B1	6755	-	100	-	W

Devices already in place

*) Moved upstream by ~ 10m

MCBWV.A4R3 as a spectrometer

https://edms.cern.ch/panoramas/viewer?fov=90.00&id=36409858&lat=-27.06&lon=241.01

• To be checked: available space at BPM position \rightarrow enough for detector?

Summary on IR3 test stand studies

- Experimental verification of crystal based fixed target experiments is crucial for their successful implementation.
- A design of a dedicated test stand to be installed in IR3 is under development.
- It could be operated already in Run3.
- Already performed studies indicate that the proposed layout meets the design requirements. Further studies are in progress.

Thank you for your attention!

Extra slides

Comparison with ion optics simulation settings

- Only one IR2 optics scenario available for HL-LHC v1.5
- Runll ion optics scenarios used for comparison with my modifications
- /afs/cern.ch/eng/lhc/optics/runII/2018/ION
- Only optics, no SixTrack studies.
- Ion optics changes globally (all IRs)
- My changes concern IR2 only.

$\beta^* = 10m \text{ and } 9.2m$

$\beta^* = 10m \text{ and } 6.7m$

Summary of ion optics review

- 2018 ion optics was analyzed for several IP2 β^* values.
- A very similar effect is observed as for manual changes of HL-LHC optics.
- Lower β^* values cause a change of phase advance in a favorable way.
- Optics at the region of concern is rather flexible and required modifications should be easy to be implemented.
- This is only a verification of concept. Final optics matching requires a support from optics experts.

PoC (s=3217)

Challenges of crystal-based fixed target experiments

- Crystals must respect the collimation system hierachy;
- Particle losses coming from the layout of crystals+target must be safely disposed;
- Crystals alignment and angular orientation must be well controlled due to limited angular acceptance at 7TeV;
- A large bending angle (some mrad) and a significant length (some cm) of CRY2 is needed;
- An optimized phase-advance between the IR7 primary collimator and CRY1 is needed;

An experimental test stand is planned to be deployed in IR3 to experimentally verify above listed challenges.

Possible tests in Run 3

Backup

