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Layout for crystal based fixed-target experiment in IR2
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* Halo particles are intercepted and disposed by the collimation system.

* Part of the secondary halo is intercepted by the crystal and deflected towards the target.

* Local absorbers capture additional losses coming from the crystal+target assembly.

* Parasitic operation means that fixed-target collisions occur in parallel to beam-beam collisions.

* Parasitic operation is possible only if new loss spikes stay within acceptable limits (e.g. not larger than usual
losses).

* For the ALICE case, the setup is optimized to provide a maximum flux of protons on target (PoT) that can be
handled by the detector acquisition system. This is in the order of 107 p/s.
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Double-crystal layout for fixed-target experiment in IR3/IR8
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* Halo particles are intercepted and disposed by the collimation system.

* Part of the secondary halo is intercepted by the crystal and deflected towards the target.

* Local absorbers capture additional losses coming from the crystal+target assembly.

* Parasitic operation means that fixed-target collisions occur in parallel to beam-beam collisions.

* Parasitic operation is possible only if new loss spikes stay within acceptable limits (e.g. not larger than usual
losses).

* Double-crystal layout, with a second crystal directly after the target, allows to study electric and magnetic
dipole moments of short-lived baryons. It’s technical feasibility is more challenging.
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IR2 layouts being considered
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B1 negative crossing ——

deflected beam
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IR2 layouts being considered
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Space constraints

3217m 3259m

S [l “best” “original”
Ap (TCP.D) [deq] 144 168
PoC [1e-3] 2.5 0.6

More than a factor of 4 of difference!
But difficult for crystal installation.




Space constraints

3217m 3259m

=il “best” “original”
Ap (TCP.D) [deq] 144 168
PoC [le-3] 2.5 0.6
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Can we move back to the original
location and recover the performance?
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Space constraints
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Can we move back to the original
location and recover the performance?




Interaction with a primary collimator

Moliére’s multiple-

13.6 5 s i 2
2 scattering theory:
b3) = cp[MeV] (1 i ( X0 )) scattered particles gain

Yo : radiation length

transverse phase space normalized transverse phase space Circle of radius n1:

iy
z

3 = mny sin(g,)
5}23 = ny cos(¢,)

Change of amplitude and phase:

Flouget transformation n = \/ n% 4+ AB? . _@
Z
zg = mn1y/eb sin(¢,) 2 = §= NG -

—sgn(A0) - arccos (%)

nq

. A
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I

a transverse RMS kick.
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Effect of scattering

Scattering angle transforms into the maximum
amplitude growth at the location where the
phase advance is 90° + Ag.

Such a phase advance is desired between the
primary vertical collimator (TCP.D) and the
crystal.

Phase advance close to 0° or 180° is not
favorable.

Phase advance can be modified by changing the
B function.

. ds
Vi) --{/3(S)
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Shift of phase at the crystal

newname=subseq;

OV, DPX, DPY;  Strength of quads 10-4.L2B1 (upstream from IP2)
. is modified to set the desired phase at the crystal.

ull, beta

* [P2 parameters stay unchanged.

e Strength of quads 10-4.R2B1 (downstream from
IP2) is modified to recover the nominal phase.
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Protons on crystal (PoC) vs phase shift

—— phase scan
* default optics

100 125 150 175 200 225 250
Hy(TCP.D — > CRY) [deg]

Original location is nearly at the worst phase
(180deg) for the default optics.

Phase shift by ~65deg allows to increase the
system performance significantly.

The required optics change is minor and easy to
be implemented.
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Protons on crystal (PoC) vs phase shift

—— phase scan
* default optics

100 125 150 175 200 225 250
Hy(TCP.D — > CRY) [deg]

Original location is nearly at the worst phase
(180deg) for the default optics.

Phase shift by ~65deg allows to increase the
system performance significantly.

The required optics change is minor and easy to
be implemented.

Table 3: Normalised strengths of quadrupoles for nominal
and modified optics. IR2 left and IR2 right stand for regions
upstream and downstream from the IP2, respectively.

Quadrupole strength k; [1073 m=2]

Quadrupole IR2 left IR2 right
number nominal modified nominal modified
10 -6.39 -6.15 7.30 7.30

9 7.01 6.89 -6.60 -6.82

8 -5.41 -3.59 6.71 6.30

7 7.60 7.42 -6.36 -7.47

6 -4.91 -4.17 4.33 4.20

5 2.99 2.88 -3.63 -4.09
4 -2.80 -2.67 3.74 2.60
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LOSS map
comparison

HL-LHC v1.5 optics, * =
Coll settings:
* n (TCP,,)=6.7,

* n (CRY,)=[7.3,7.5,7.9],

* n (TCS)=9.1,

* n (TCLA)=12.7
Sixtrack5

Annular beam halo at 6.7¢
2.1M particles, 300 turns

10m

IR7

No extra losses.
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LOSS map
comparison

HL-LHC v1.5 optics, f* = 10m
Coll settings:
* n (TCP,,)=6.7,

* n (CRY,)=[7.3,7.5,7.9],

* n (TCS)=9.1,

* n (TCLA)=12.7
Sixtrack5

Annular beam halo at 6.7¢
2.1M particles, 300 turns

IR7

No extra losses.

Significantly more protons on the
crystal and target.

ALICE-FT HL-LHC 5., =3259m, Au=0°
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Assets of having the crystal at s=3259m

* Good space availability for the crystal installation.
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Assets of having the crystal at s=3259m
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Good space availability for the crystal installation. 32
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A single crystal (200prad) can cover both ALICE
polarities. A movable target is then needed.
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Assets of having the crystal at s=3259m
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Protons on target

Protons on Target (PoT) is a fraction of beam halo that
received a correct deflection from the crystal (channelling)
and hit the target.

Number of protons on target per fill can be estimated as:
Tfll
—t

—t
N por= 2POTfT IeXp( )e P(

coll coH

)dt

which for 2018 operation would result in about:
2.7-10" protons per fill --> 7.6-10° protons per second
assuming [Eur. Phys. J. C (2020) 80:929]:

=2556-1.1-10"" p, 750=20h, 7.,;=200h, T;;=10h

HL-LHC beam intensity will be about x2 larger.

ALICE can handle about 107 protons on target per second.

POT Nimp/Ntotar [1073]
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Crystal layout at IR2

Crystal:
* " bending radius: 80 m B nes — ek ——  dofectod B nogk =~
* bending angle: 200 prad 2 -
* length: 16 mm
* material: Si (110)
* s-position: 3259m (Om at IP1) E 4k
Target: Bl i Sl -
* length 5mm T
* material tungsten -
* s-position: 4.8m upstream from the IP2 -
Absorbers: 3200 3250 3300 3350 3400 3450 3500
ADSQT0ES. s [m]
* 3TCSGs: graphite, 1m long, at 100
* 1TCLA: tungsten, 1m long, at 130
* the numer of absorbers may decrease — this will be
studied with FLUKA E deposition simulations. /4[/ CE absorbers
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Summary on IR2 crystal implementation studies

A correct phase advance between the primary collimator and the crystal is crucial for reaching a high
performance of the system.

Phase advance can be adjusted using a minor, local modification of optics. Such optimization is needed
every time optics changes.

S-location 3259m is the only location where one crystal can serve both crossing scenarios. It is also
good in terms of space availability for the crystal installation.

The expected proton flux on target for the crystal at 3259m, after phase advance optimization,
is 7.6:106 p/s (assuming 2018 beam conditions).

ALICE can handle about 107 p/s on target.

All the estimations rely on complex multi-turn tracking simulations. An experimental verification of the
system’s performance and identification of operational challenges is needed in a dedicated test-stand,
possibly to be deployed at IR3.
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Outline

* (rystal implementation in IR2
* Studies on experimental test-stand with crystals in IR3
* This part is presented on behalf of the CERN Collimation Team

* Materials come from P. Hermes et al.
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IR3 test stand for crystal-based fixed target experiments
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Challenges for FT experiments

* Crystals must respect the collimation system
hierarchy.

* Particle losses coming from the layout of
crystals+target must be safely disposed.
* Crystals alignment and angular orientation must be

well controlled due to limited angular acceptance at
7TeV.

* Alarge bending angle (some mrad) and a significant
length (some cm) of CRY?2 is needed.

* An optimized phase-advance between the IR7
primary collimator and CRY1 is needed.
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Experimental verification
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Crystals must respect the collimation system
hierarchy.

Particle losses coming from the layout of
crystals+target must be safely disposed.

Crystals alignment and angular orientation must be
well controlled due to limited angular acceptance at
7TeV.

A large bending angle (some mrad) and a significant
length (some cm) of CRY?2 is needed.

An optimized phase-advance between the IR7
primary collimator and CRY1 is needed.

System performance is evaluated based on complex
multi-turn tracking simulations which must be
verified experimentally.

Methods of adapting the crystal to the dynamic
conditions of the machine must be developed.

Methods of controlling the optimal crystal
position/orientation in the presence of usual machine
imperfections must be developed.

Experimental characterization of a long,
large-bending angle crystal (CRY?2) at high energy
(~TeV) is needed.




Layout for the IR3 test stand

IR3 provides good space availability to host such a
test stand.

Design based on studies described in [Eur. Phys. J. C
(2020) 80:929]

System to be installed in the vertical plane.

One of the existing dipole corrector magnets can be
used as a spectrometer.

This requires moving such a magnet by about 10m
upstream to create a space for the CRY?2 installation.
This would cause about 15% reduction of efficiency
for local orbit correction.

Orbit bump created by the spectrometer can be well
compensated by other orbit correctors nearby.

Installation of the target next to the CRY?2 is under
investigation.

An existing vertical absorber will be used to
intercept losses emerging from CRY2(+Target).
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6400 6500 6600 6700 6800 6900 7000
Distance from IP1(m

Device Position  Angle
(m) (wrad)

CRY1 6431.0 50

Target 6674.5

CRY2 6674.5 7000

MCBWV.4R3.B1 6674.9*

TCLA.A5R3.B1 * 6755
|

Devices already in place

Length Integrated Material
(m) mag. f. (Tm)

0.004 = Si

0.005 = W

0.075 = Si
1.7 1.87 =
100 = W

*) Moved upstream by ~ 10m
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MCBWV. A4R3 as a spectrometer
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https://edms.cern.ch/panoramas/viewer?fov=90.00&id=36409858&lat=-27.06&lon=241.01
* To be checked: available space at BPM position — enough for detector?



https://edms.cern.ch/panoramas/viewer?fov=90.00&id=36409858&lat=-27.06&lon=241.01

Summary on IR3 test stand studies

Experimental verification of crystal based fixed target experiments is crucial for their successful
implementation.

A design of a dedicated test stand to be installed in IR3 is under development.
It could be operated already in Run3.

Already performed studies indicate that the proposed layout meets the design requirements. Further studies
are in progress.
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Thank you for your attention!
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Comparison with ion optics
simulation settings

Only one IR2 optics scenario available for HL-LHC v1.5

Runll ion optics scenarios used for comparison with my modifications
/afs/cern.ch/eng/Ihc/optics/runll/2018/ION
Only optics, no SixTrack studies.

lon optics changes globally (all IRs)
My changes concern IR2 only.



B* =10m and 9.2m
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B* =10m and 6.7m

lon optics 2018

HL-LHC v1.5

with my changes
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Summary of ion optics review

2018 ion optics was analyzed for several IP2 B* values.

A very similar effect is observed as for manual changes of HL-LHC optics.
Lower B* values cause a change of phase advance in a favorable way.

Optics at the region of concern is rather flexible and required
modifications should be easy to be implemented.

This is only a verification of concept. Final optics matching requires a
support from optics experts.
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Challenges of crystal-based fixed target experiments

Rare

VY. A Collimator S— particles
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Graphics: P. Hermes
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IR7 kk_ IR2 / IR3 / IR8
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)

* Crystals must respect the collimation system hierachy;

* Particle losses coming from the layout of crystals+target must be safely disposed;

* Crystals alignment and angular orientation must be well controlled due to limited angular acceptance at 7TeV;

* Alarge bending angle (some mrad) and a significant length (some cm) of CRY?2 is needed;

* An optimized phase-advance between the IR7 primary collimator and CRY1 is needed;

An experimental test stand is planned to be deployed in IR3 to experimentally verify above listed challenges.
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Possible tests iIn Run 3
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28th LHC fixed-target WG | IR3 fixed target experiment run 3 beam test
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28th LHC fixed-target WG | IR3 fixed target experiment run 3 beam test
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