

Fixed target experiments at LHC - strong2020 workshop

The LHCspin project

¹ University of Ferrara and INFN, ² INFN - <u>Laboratori Nazionali di Frascati</u>, ³ University of Erlangen

In collaboration with:

R.Engels (fz-juelich), J.Depner (Erlangen), K.Grigoryev (fz-juelich), S. Mariani (INFN-FI), A.Nass (fz-juelich), F.Rathmann (fz-juelich), D.Reggiani (PSI-Zurich), M. Statera A.Vasilyev (Gatchina),

Fixed-Target collisions at LHCb

Fixed-Target collisions at LHCb

Already lots of interesting analyses with SMOG:

- ✓ Charm production in pHe and pAr
- ✓ Charm production in pNe and PbNe (→ Emilie, Frederic)
- ✓ Prompt and detached antiproton production in pHe (→ Saverio)
- ✓ Λ_c polarization in pNe
- ✓ Strangeness enhancement in PbNe vs pNe
- ✓ Cold Nuclear Matter effects in light-hadrons production in p-gas
 ✓ ...

Fixed-Target collisions at LHCb

Already lots of interesting analyses with SMOG:

- ✓ Charm production in pHe and pAr
- ✓ Charm production in pNe and PbNe (→ Emilie, Frederic)
- ✓ Prompt and detached antiproton production in pHe (→ Saverio)
- ✓ Λ_c polarization in pNe
- ✓ Strangeness enhancement in PbNe vs pNe
- ✓ Cold Nuclear Matter effects in light-hadrons production in p-gas
 ✓ …

...and many more to come with SMOG2! (\rightarrow Edoardo)

The LHCspin project

The SMOG2 realization sets the basis for the development of a future **polarized gas target for LHCb**

The LHCspin project aims to bring spin physics at the LHC through the implementation of a new-generation polarized gaseous fixed target in the LHCb spectrometer.

The LHCspin project

The SMOG2 realization sets the basis for the development of a future **polarized gas target for LHCb**

The LHCspin project aims to bring spin physics at the LHC through the implementation of a new-generation polarized gaseous fixed target in the LHCb spectrometer.

The LHCspin project

- ✓ polarized gas target technology well established (HERMES @ DESY, ANKE @ COSY with high performance)
- \checkmark Target experts from HERMES and COSY involved in first person in the design of the apparatus
- ✓ marginal impact on LHC beam lifetime and LHCb mainstream physics program and performances
- ✓ can run in parallel with collider mode (interaction regions well displaced)
- $\checkmark\,$ can benefit from both protons and heavy-ion beams
- ✓ allows also injection of unpolarized gases (H_2 , D_2 , He, N_2 , O_2 , Ne, Ar, ...)
- ✓ broad physics program (next slides)

The physics goals of LHCspin

- Multi-dimensional nucleon structure in a poorly explored kinematic domain
- Measure experimental observables sensitive to both quarks and gluons TMDs
- Make use of new probes (charmed and beauty mesons)
- Complement present and future SIDIS results
- Test non-trivial process dependence of quarks and (especially) gluons TMDs
- Extend our understanding of the strong force in the non-perturbative regime

The physics goals of LHCspin

- Multi-dimensional nucleon structure in a poorly explored kinematic domain
- Measure experimental observables sensitive to both quarks and gluons TMDs
- Make use of new probes (charmed and beauty mesons)
- Complement present and future SIDIS results
- Test non-trivial process dependence of quarks and (especially) gluons TMDs
- Extend our understanding of the strong force in the non-perturbative regime

- Significant experimental progress in the last 15 years!
- main results from SIDIS (HERMES, COMPASS, JLAB, \rightarrow EIC)
- **Drell-Yan** in h-h collisions offers a complementary approach (COMPASS, RHIC)
- Several extractions already available from global analyses
- Now entering the precision era

Unpolarized Drell-Yan

- Theoretically cleanest hard h-h scattering process
- LHCb has excellent μ -ID & reconstruction for $\mu^+\mu^-$
- dominant: $\bar{q}(x_{beam}) + q(x_{target}) \rightarrow \mu^+ \mu^-$
- suppressed: $q(x_{beam}) + \bar{q}(x_{target}) \rightarrow \mu^+ \mu^-$
- beam sea quarks probed at small x
- target valence quarks probed at large x

Unpolarized Drell-Yan

- Theoretically cleanest hard h-h scattering process
- LHCb has excellent μ -ID & reconstruction for $\mu^+\mu^-$
- dominant: $\bar{q}(x_{beam}) + q(x_{target}) \rightarrow \mu^+ \mu^-$
- suppressed: $q(x_{beam}) + \bar{q}(x_{target}) \rightarrow \mu^+ \mu^-$
- beam sea quarks probed at small *x*
- target valence quarks probed at large x

Fixed Target experiments at LHC - STRONG-2020 - CERN - June 22-24 2022

Sensitive to unpol. and BM TMDs for $q_T \ll M_{ll}$

 $d\sigma_{UU}^{DY} \propto f_1^{\bar{q}} \otimes f_1^q + \cos 2\phi \ h_1^{\perp,\bar{q}} \otimes h_1^{\perp,q}$

- Theoretically cleanest hard h-h scattering process
- LHCb has excellent μ -ID & reconstruction for $\mu^+\mu^-$
- dominant: $\bar{q}(x_{beam}) + q(x_{target}) \rightarrow \mu^+ \mu^-$
- suppressed: $q(x_{beam}) + \bar{q}(x_{target}) \rightarrow \mu^+ \mu^-$
- beam sea quarks probed at small *x*
- target valence quarks probed at large x

Unpolarized Drell-Yan

- Theoretically cleanest hard h-h scattering process
- LHCb has excellent μ -ID & reconstruction for $\mu^+\mu^-$
- dominant: $\bar{q}(x_{beam}) + q(x_{target}) \rightarrow \mu^+ \mu^-$
- suppressed: $q(x_{beam}) + \overline{q}(x_{target}) \rightarrow \mu^+ \mu^-$
- beam sea quarks probed at small *x*
- target valence quarks probed at large x

Sensitive to unpol. and BM TMDs for $q_T \ll M_{ll}$

 $d\sigma_{UU}^{DY} \propto f_1^{\bar{q}} \otimes f_1^{q} + \cos 2\phi \ h_1^{\perp,\bar{q}} \otimes h_1^{\perp,q}$

- Lattice QCD: $\bar{s}(x) \neq s(x)$ [arXiv:1809.04975]
- proton sea more complex than originally thought!
- H & D targets allow to study the antiquark content of the nucleon
- SeaQuest (E906): $\bar{d}(x) > \bar{u}(x) \implies$ sea is not flavour symmetric!

Transv. polarized Drell-Yan

Transv. polarized Drell-Yan

• Sensitive to quark TMDs through TSSAs

$$A_N^{DY} = \frac{1}{P} \frac{\sigma_{DY}^{\uparrow} - \sigma_{DY}^{\downarrow}}{\sigma_{DY}^{\uparrow} + \sigma_{DY}^{\downarrow}} \implies A_{UT}^{sin\phi_S} \sim \frac{f_1^q \otimes f_{1T}^{\downarrow q}}{f_1^q \otimes f_1^q}, \quad A_{UT}^{sin(2\phi-\phi_S)} \sim \frac{h_1^{\downarrow q} \otimes h_1^q}{f_1^q \otimes f_1^q}, \dots$$

(ϕ : azimuthal orientation of lepton pair in dilepton CM)

Transv. polarized Drell-Yan

• Sensitive to quark TMDs through TSSAs

$$A_N^{DY} = \frac{1}{P} \frac{\sigma_{DY}^{\uparrow} - \sigma_{DY}^{\downarrow}}{\sigma_{DY}^{\uparrow} + \sigma_{DY}^{\downarrow}} \implies A_{UT}^{sin\phi_S} \sim \frac{f_1^q \otimes f_{1T}^{\downarrow q}}{f_1^q \otimes f_1^q}, \quad A_{UT}^{sin(2\phi-\phi_S)} \sim \frac{h_1^{\downarrow q} \otimes h_1^q}{f_1^q \otimes f_1^q}, \quad \dots$$

(ϕ : azimuthal orientation of lepton pair in dilepton CM)

- Extraction of qTMDs does not require knowledge of FF
- Verify sign change of Sivers function wrt SIDIS

 $\left.f_{1T}^{\perp}\right|_{DY}=-f_{1T}^{\perp}\big|_{SIDIS}$

• Test flavour sensitivity using both H and D targets

			gluon pol.	
		U	Circularly	Linearly
nucleon pol.	U	f_1^g		$h_1^{\perp g}$
	L		g^g_{1L}	$h_{1L}^{\perp g}$
	Т	$f_{1T}^{\perp g}$	g_{1T}^g	$h_1^g,h_{1T}^{\perp g}$

Theory framework well consolidated ...but experimental access still extremely limited!

Theory framework well consolidated ...but experimental access still extremely limited! Similar naming/notation of quark TMDs, but there are important differences!

- the **linearity gTMD** (h_1^g) is completely unrelated to the quark transversity (h_1^q) , and has no collinear counterpart
- different naïve-time-reversal properties

	T-even	T-odd
q	$\mathbf{h_1^q}$	$\mathbf{h_1^{\perp q}}$
g	$h_1^{\perp g}$	h_1^g

Theory framework well consolidated ...but experimental access still extremely limited! Similar naming/notation of quark TMDs, but there are important differences!

- the **linearity gTMD** (h_1^g) is completely unrelated to the quark transversity (h_1^q) , and has no collinear counterpart
- different naïve-time-reversal properties

		T-even	T-odd
	q	$\mathbf{h_1^q}$	$\mathbf{h_1^{\perp q}}$
ſ	g	$h_1^{\perp g}$	h ^g ₁

- Also the gTMD phenomenology is enriched by the **process dependence** originating by ISI/FSI encoded in the **gauge links**.
- The gluon correlator depends on 2 path-dependent gauge links, resulting in a more complex process dependence

• Depending on their combinations, there are 2 independent versions of each gTMD that can probed in different processes and can have different magnitude and width and different x and k_T dependencies!

Theory framework well consolidated ...but experimental access still extremely limited! Similar naming/notation of quark TMDs, but there are important differences!

- the **linearity gTMD** (h_1^g) is completely unrelated to the quark transversity (h_1^q) , and has no collinear counterpart
- different naïve-time-reversal properties

	T-even	T-odd
q	h ₁ ^q	$\mathbf{h_1^{\perp q}}$
g	$h_1^{\perp g}$	h ^g ₁

- Also the gTMD phenomenology is enriched by the **process dependence** originating by ISI/FSI encoded in the **gauge links**.
- The gluon correlator depends on 2 path-dependent gauge links, resulting in a more complex process dependence

- Depending on their combinations, there are 2 independent versions of each gTMD that can probed in different processes and can have different magnitude and width and different x and k_T dependencies!
- E.g. there are 2 types of f_1^g and $h_1^{\perp g}$: [++] = [--] Weizsacker-Williams (WW) ; [+-] = [-+] DiPole (DP)
- 2 indep. GSF: $f_{1T}^{\perp g[+,+]}$ "f-type" \rightarrow antisymm. colour structure ; $f_{1T}^{\perp g[+,-]}$ "d-type" \rightarrow symm. colour structure

In high-energy hadron collisions, heavy quarks are dominantly produced through gg fusion:

The most efficient way to access the gluon dynamics inside the proton at LHC is to **measure heavy-quark observables**

In high-energy hadron collisions, heavy quarks are dominantly produced through gg fusion:

The most efficient way to access the gluon dynamics inside the proton at LHC is to **measure heavy-quark observables**

• Inclusive quarkonia production in (un)polarized pp interaction $(pp^{(\uparrow)} \rightarrow [Q\bar{Q}]X)$ turns out to be an ideal observable to access gTMDs (assuming TMD factorization)

In high-energy hadron collisions, heavy quarks are dominantly produced through gg fusion:

The most efficient way to access the gluon dynamics inside the proton at LHC is to measure heavy-quark observables

• Inclusive quarkonia production in (un)polarized pp interaction $(pp^{(\uparrow)} \rightarrow [Q\bar{Q}]X)$ turns out to be an ideal observable to access gTMDs (assuming TMD factorization)

• TMD factorization requires $q_T(Q) \ll M_Q$. Can look at **associate quarkonia production**, where only the relative q_T needs to be small:

E.g.: $pp^{(\uparrow)} \rightarrow J/\psi + J/\psi + X \quad (\rightarrow \text{Alice})$

In high-energy hadron collisions, heavy quarks are dominantly produced through gg fusion:

The most efficient way to access the gluon dynamics inside the proton at LHC is to **measure heavy-quark observables**

• Inclusive quarkonia production in (un)polarized pp interaction $(pp^{(\uparrow)} \rightarrow [Q\bar{Q}]X)$ turns out to be an ideal observable to access gTMDs (assuming TMD factorization)

E.g.: $pp^{(\uparrow)} \rightarrow J/\psi + J/\psi + X \quad (\rightarrow \text{Alice})$

First extraction of f_1^g from LHCb di- J/ψ production data at 13 TeV [Lansberg et. al.]

 $\Gamma_T^{\mu\nu}(x, \boldsymbol{p}_T) = \frac{x}{2} \left\{ g_T^{\mu\nu} \frac{\epsilon_T^{\rho\sigma} p_{T\rho} S_{T\sigma}}{M_p} (f_{1T}^{\perp g}(x, \boldsymbol{p}_T^2) + \dots \right\}$

	2		gluon pol.	8
		U	Circularly	Linearly
nucleon pol.	U	f_1^g		$h_1^{\perp g}$
	L		g^g_{1L}	$h_{1L}^{\perp g}$
	Т	$f_{1T}^{\perp g}$	g_{1T}^g	$h_1^g,h_{1T}^{\perp g}$

- sensitive to color exchange among IS and FS and to gluon OAM
- expected to be quite small (quasi-saturation of Burkardt sum rule by $f_{1T}^{\perp q}$ and QCD predictions in large- N_c limit)

Probing the gluon Sivers funct.

 $\Gamma_T^{\mu\nu}(x, \boldsymbol{p}_T) = \frac{x}{2} \left\{ g_T^{\mu\nu} \frac{\epsilon_T^{\rho\sigma} p_{T\rho} S_{T\sigma}}{M_n} \left(f_{1T}^{\perp g}(x, \boldsymbol{p}_T^2) + \dots \right) \right\}$

			gluon pol.	8
		U	Circularly	Linearly
nucleon pol.	U	f_1^g		$h_1^{\perp g}$
	L		g^g_{1L}	$h_{1L}^{\perp g}$
	Т	$f_{1T}^{\perp g}$	g_{1T}^g	$h_1^g,h_{1T}^{\perp g}$

- Sheds light on spin-orbit correlations of unpol. gluons inside a transv. pol. proton
- sensitive to color exchange among IS and FS and to gluon OAM
- expected to be quite small (quasi-saturation of Burkardt sum rule by $f_{1T}^{\perp q}$ and QCD predictions in large- N_c limit)
- can be accessed through the measurement of the TSSAs in inclusive heavy meson production

 $A_N = \frac{1}{P} \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} \propto \left[f_{1T}^{\perp g}(x_a, k_{\perp a}) \otimes f_g(x_b, k_{\perp b}) \otimes d\sigma_{gg \to QQg} \right] \sin \phi_S + \cdots$

 $\Gamma_T^{\mu\nu}(x, \boldsymbol{p}_T) = \frac{x}{2} \left\{ g_T^{\mu\nu} \frac{\epsilon_T^{\rho\sigma} p_{T\rho} S_{T\sigma}}{M_n} f_{1T}^{\perp g}(x, \boldsymbol{p}_T^2) \right\}$

	2		gluon pol.	
		U	Circularly	Linearly
leon pol.	U	f_1^g		$h_1^{\perp g}$
	L		g^g_{1L}	$h_{1L}^{\perp g}$
nuc	Т	$f_{1T}^{\perp g}$	g_{1T}^g	$h_1^g,h_{1T}^{\perp g}$

- sensitive to color exchange among IS and FS and to gluon OAM
- expected to be quite small (quasi-saturation of Burkardt sum rule by $f_{1T}^{\perp q}$ and QCD predictions in large- N_c limit)
- can be accessed through the measurement of the TSSAs in inclusive heavy meson production

$$A_N = \frac{1}{P} \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} \propto \left[f_{1T}^{\perp g}(x_a, k_{\perp a}) \otimes f_g(x_b, k_{\perp b}) \otimes d\sigma_{gg \to QQg} \right] \sin \phi_S + \cdots$$

Predictions for pol. FT meas. at LHC (LHCspin-like) [Phys. Rev. D 102, 094011 (2020)]

Fixed Target experiments at LHC - STRONG-2020 - CERN - June 22-24 2022

0 5 P_{T} (GeV) Fixed Target experiments at LHC - STRONG-2020 - CERN - June 22-24 2022

Probing the gluon Sivers funct.

- Sheds light on spin-orbit correlations of unpol. gluons inside a transv. pol. proton
- sensitive to color exchange among IS and FS and to gluon OAM
- expected to be quite small (quasi-saturation of Burkardt sum rule by $f_{1T}^{\perp q}$ and QCD predictions in large- N_c limit)
- can be accessed through the measurement of the TSSAs in inclusive heavy meson production

$$A_N = \frac{1}{P} \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} \propto \left[f_{1T}^{\perp g}(x_a, k_{\perp a}) \otimes f_g(x_b, k_{\perp b}) \otimes d\sigma_{gg \to QQg} \right] \sin \phi_S + \cdots$$

			gluon pol.	ia
		U	Circularly	Linearly
leon pol.	U	f_1^g		$h_1^{\perp g}$
	L		g^g_{1L}	$h_{1L}^{\perp g}$
nuc	Т	$f_{1T}^{\perp g}$	g_{1T}^g	$h_1^g,h_{1T}^{\perp g}$

 D^0, \overline{D}^0 $J/\psi, \psi'$

HCspin: [-500.-300] m

- probe collective phenomena in heavy-light systems through ultrarelativistic collisions of heavy nuclei with trasv. pol. deuterons
- polarized light target nuclei offer a unique opportunity to control the orientation of the formed fireball by measuring the elliptic flow relative to the polarization axis (ellipticity).

- probe collective phenomena in heavy-light systems through ultrarelativistic collisions of heavy nuclei with trasv. pol. deuterons
- polarized light target nuclei offer a unique opportunity to control the orientation of the formed fireball by measuring the elliptic flow relative to the polarization axis (ellipticity).

Unpol. deuterons: the fireball is azimuthally symmetric and $v_2 \approx 0$.

- probe collective phenomena in heavy-light systems through ultrarelativistic collisions of heavy nuclei with trasv. pol. deuterons
- polarized light target nuclei offer a unique opportunity to control the orientation of the formed fireball by measuring the elliptic flow relative to the polarization axis (ellipticity).

- probe collective phenomena in heavy-light systems through ultrarelativistic collisions of heavy nuclei with trasv. pol. deuterons
- polarized light target nuclei offer a unique opportunity to control the orientation of the formed fireball by measuring the elliptic flow relative to the polarization axis (ellipticity).

More physics reach with unpolarized FT reactions

- Intrinsic heavy-quark [S.J. Brodsky et al., Adv. High Energy Phys. 2015 (2015) 231547]
 - 5-quark Fock state of the proton may contribute at high x!
 - charm PDFs at large x could be larger than obtained from conventional fits

More physics reach with unpolarized FT reactions

- Intrinsic heavy-quark [S.J. Brodsky et al., Adv. High Energy Phys. 2015 (2015) 231547]
 - 5-quark Fock state of the proton may contribute at high x!
 - charm PDFs at large x could be larger than obtained from conventional fits
- **pA collisions** (using unpolarized gas: He, N, Ne, Ar, Kr, Xe)
 - constraints on nPDFs (e.g. on poorly understood gluon antishadowing at high x)
 - studies of parton energy-loss and absorption phenomena in the cold medium
 - reactions of interest for cosmic-ray physics and DM searches

More physics reach with unpolarized FT reactions

- Intrinsic heavy-quark [S.J. Brodsky et al., Adv. High Energy Phys. 2015 (2015) 231547]
 - 5-quark Fock state of the proton may contribute at high x!
 - charm PDFs at large x could be larger than obtained from conventional fits
- pA collisions (using unpolarized gas: He, N, Ne, Ar, Kr, Xe)
 - constraints on nPDFs (e.g. on poorly understood gluon antishadowing at high x)
 - studies of parton energy-loss and absorption phenomena in the cold medium
 - reactions of interest for cosmic-ray physics and DM searches
- **PbA collisions at** $\sqrt{s_{NN}} \approx 72 \text{ GeV}$ (using unpolarized gas: He, N, Ne, Ar, Kr, Xe) - Study of **QGP formation** (search for predicted **sequential quarkonium suppression**)

 $c\overline{c}$ states: J/ψ , χ_c , ψ' ,... Different binding energies, different dissociation temperatures \rightarrow **medium thermometer**

L. L. Pappalardo

The LHCspin apparatus

The LHCspin apparatus consists of a **new-generation HERMES-like polarized gaseous fixed target** to be installed usptream of the VELO

The LHCspin apparatus

The LHCspin apparatus consists of a **new-generation HERMES-like polarized gaseous fixed target** to be installed usptream of the VELO

The LHCspin apparatus

The LHCspin apparatus consists of a **new-generation HERMES-like polarized gaseous fixed target** to be installed usptream of the VELO

140001021-0

- Compact superconductive dipole magnet for static transverse field ٠ to maintain polarization inside the cell and avoid beam-induced depolarization
- Required B = 300 mT with $\Delta B/B \sim 10\%$ ٠

and the second second

140001021-0

- Compact superconductive dipole magnet for static transverse field ٠ to maintain polarization inside the cell and avoid beam-induced depolarization
- Required B = 300 mT with $\Delta B/B \sim 10\%$ •
- Need to modify main flange of VELO vessel (inward) •
- No need for additional detectors ٠

LMCH21-N a standard to be

140001021-0

- **Compact superconductive dipole magnet for static transverse field** ٠ to maintain polarization inside the cell and avoid beam-induced depolarization
- Required $B = 300 \ mT$ with $\Delta B/B \sim 10\%$ •
- Need to modify main flange of VELO vessel (inward) •
- No need for additional detectors •
- Possibility to switch from dipole magnet to solenoid to realize • a Longitudinal polarized target in Run5

• Need to develop a new-generation compact ABS and diagnostic system to fit into the limited available space in the VELO alcove

- Need to develop a new-generation compact ABS and diagnostic system to fit into the limited available space in the VELO alcove
- Coating studies for the cell walls are ongoing. Crucial for target polarization (back-up slides)

The jet target hypothesis

Alternative solution with jet target also under evaluation:

- lower density ($\sim 10^{12} \text{ atoms}/cm^2$) \rightarrow about a factor of 40 smaller
- higher polarization (up to 90%)
- lower systematics in P measurement

The jet target hypothesis

Alternative solution with jet target also under evaluation:

- lower density ($\sim 10^{12} \text{ atoms}/cm^2$) \rightarrow about a factor of 40 smaller
- higher polarization (up to 90%)
- lower systematics in P measurement

Pure Jet Target

The jet target hypothesis

Alternative solution with jet target also under evaluation:

Pure Jet Target

- lower density ($\sim 10^{12} \text{ atoms}/cm^2$) \rightarrow about a factor of 40 smaller
- higher polarization (up to 90%)
- lower systematics in P measurement

Jet Target + SMOG2

Target

Beam

Target $\begin{cases} \bullet I_0 = 6.5 \cdot 10^{16} s^{-1} \text{ (HERMES)} \\ \bullet C_{\text{tot}} = 17.4 \text{ l/s} \text{ (20 cm cell)} \\ \bullet \theta = 3.7 \cdot 10^{13} \text{ atoms/cm}^2 \end{cases} \begin{cases} \bullet 1.2 \cdot 10^{11} \text{ p/bunch (RUN3)} \\ \bullet 2808 \text{ bunches} \\ \bullet I_{beam} = 3.8 \cdot 10^{18} \text{ p/s} \end{cases}$

Beam

 $\mathcal{L}_{pH}(300 \ K) \approx 1.4 \cdot 10^{32} \ \mathrm{cm}^{-2} \mathrm{s}^{-1}$ $L_{pH}(Run \ 4) \approx 5 \ f b^{-1}$

Target Beam • $I_0 = 6.5 \cdot 10^{16} s^{-1}$ (HERMES) • $C_{tot} = 17.4$ l/s (20 cm cell) • 2808 bunches $I_{beam} = 3.8 \cdot 10^{18} \ p/s$ θ = 3.7 ·10¹³ atoms/cm²

hours of data-taking / polarity 15 20 25 30 0 5 10 Polarisation degree: $P = 1.00 \pm 0.00$ 0.25 $P = 1.0 \pm 0.05$ 0.025 $P = 0.75 \pm 0.05$ 0.20 % 10.20 % 0.020 10 LHCspin gas: H $\theta = 3.72e + 13 cm^{-2}$ Å 0.015 0.15 ∛ © Based on pHe SMOG results 0.10 V 0.010 0.05 0.005 70000 0 10000 20000 30000 40000 50000 60000 $J/\psi \rightarrow \mu^+ \mu^-$ yield / polarity

$\mathcal{L}_{pH}(300 \ K) \approx 1.4 \cdot 10^{32} \ \mathrm{cm}^{-2} \mathrm{s}^{-1}$ $L_{pH}(Run \ 4) \approx 5 \ f b^{-1}$

TargetBeam(• $I_0 = 6.5 \cdot 10^{16} s^{-1}$ (HERMES)(• $1.2 \cdot 10^{11}$ p/bunch (RUN3)• $C_{tot} = 17.4$ l/s (20 cm cell)(• $1.2 \cdot 10^{11}$ p/bunch (RUN3)• $\theta = 3.7 \cdot 10^{13}$ atoms/cm²(• $1.2 \cdot 10^{11}$ p/bunch (RUN3)• $I_{beam} = 3.8 \cdot 10^{18}$ p/s $\mathcal{L}_{pH}(Run 4) \approx 5 \ fb^{-1}$

Expected yields for Run4 (Run4+Run5):

Channel	Events / week	Total events
$J/\psi ightarrow \mu^+\mu^-$	194k (434k)	23M (75M)
$\psi(2S) \rightarrow \mu^+ \mu^-$	3.5k~(7.7k)	414k (1.3M)
$D^0 \to K^- \pi^+$	976k~(2.2M)	117M (380M)
$J/\psi J/\psi ightarrow \mu^+\mu^-\mu^+\mu^-$	$77 \ (170)$	930~(3000)
Drell Yan (5 < $M_{\mu\mu} < 9 \text{ GeV}$)	$110 \ (250)$	13k (43k)
$\Upsilon o \mu^+ \mu^-$	$83\ (187)$	10k (32k)
$\Lambda_c^+ \to p K^- \pi^+$	19k (43k)	2.3M~(7.5M)

assumptions:

- 120 weeks/RUN
- 84h/week
- $Stat(Run5) \sim \sqrt{5} Stat(Run4)$

Reconstruction efficiencies

 $J/\Psi \rightarrow \mu^+\mu^- \in_{rec}(PV)$ vs cell position

Reconstruction efficiencies

 $J/\Psi \rightarrow \mu^+\mu^- \in_{rec}(PV)$ vs cell position

Reconstruction efficiencies

 $J/\Psi \rightarrow \mu^+\mu^- \in_{rec}(PV)$ vs cell position

 $J/\Psi \rightarrow \mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}\text{PV}$ X track reconstruction efficiency

Kinematic coverage

Kinematic coverage

Kinematic coverage

A pseudo-data set based on a transversely Pol. H target has been generated to study the interplay between statistical and systematic (due to the measurement of the polarization) uncertainties.

A pseudo-data set based on a transversely Pol. H target has been generated to study the interplay between statistical and systematic (due to the measurement of the polarization) uncertainties.

Similar approach used at HERMES (Appendix C of [JHEP, 12:010, 2020]):

- Use official LHCb MC data for inclusive production of $J/\psi \rightarrow \mu^+\mu^-$ in fixed-target configuration (PYTHIA8 + EPOS)
- Assign to each simulated event a target polarization state (↑ or ↓) using a random extraction modulated with a model for the cross section (in this way we introduce a spin-dependence in the simulation)
- The model assumes a dominant sin φ modulation (e.g. sensitive to the gluon Sivers) plus a suppressed sin 2φ modulation (to account e.g. for possible higher-twist contributions). Both terms depend mildly on the kinematics (x, p_T):

$$p = \frac{1}{2} \left[1 + \left(a_1 + a_2 \frac{x - \overline{x}}{x_{max}} + a_3 \frac{p_T - \overline{p_T}}{p_{T \ max}} \right) \sin \phi + \left(b_1 + b_2 \frac{x - \overline{x}}{x_{max}} + b_3 \frac{p_T - \overline{p_T}}{p_{T \ max}} \right) \sin 2\phi \right]$$

• Using these pseudo-data the TSSA is computed in the usual way:

$$A_N = \frac{1}{P} \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}}$$

and the uncertainties on $N^{\uparrow(\downarrow)}$ (Poisson) and P (systematic) propagated accordingly.

• The data points are binned of x_F and p_T (2D binning), represented vs. ϕ and fitted with $f = a_1 \sin \phi + a_2 \sin 2\phi$ where the free parameters a_1 and a_2 represent the amplitude of the corresponding azimuthal modulation

- The extracted parameters a_1 and a_2 are consistent with those used to generate the model (no bias is observed)
- With the available MC statistics (corresponding to 2 weeks of data-taking) there is no sensitivity for the $\sin 2\phi$ term

• The data points are binned of x_F and p_T (2D binning), represented vs. ϕ and fitted with $f = a_1 \sin \phi + a_2 \sin 2\phi$ where the free parameters a_1 and a_2 represent the amplitude of the corresponding azimuthal modulation

- The extracted parameters a_1 and a_2 are consistent with those used to generate the model (no bias is observed)
- With the available MC statistics (corresponding to 2 weeks of data-taking) there is no sensitivity for the $\sin 2\phi$ term
- The amplitudes a_1 are the reported vs. x_F in bins of p_T (and vice-versa)
- A mild kinematic dependence is observed consistent with the model

Statistical vs Systematics uncertainties

• The analysis tool described above allows to study the interplay between statistical uncertainties and systematic uncertainties (due to the measurement of the polarization) under different data-taking scenarios

$p_T ~({ m MeV})$	x_F	$a_1 \ (\Delta P = 0\%)$	$a_1 \ (\Delta P = 5\%)$	$a_1 \ (\Delta P = 20\%)$	$a_1 \ (\Delta P = 50\%)$
[0, 1500]	[-0.70, -0.09]	0.090 ± 0.013	0.089 ± 0.013	0.087 ± 0.014	0.087 ± 0.022
[0, 1500]	[-0.09, -0.06]	0.104 ± 0.011	0.104 ± 0.012	0.103 ± 0.016	0.100 ± 0.027
[0, 1500]	[-0.06, -0.04]	0.098 ± 0.012	0.098 ± 0.013	0.097 ± 0.016	0.094 ± 0.027
[0, 1500]	[-0.04, 0.05]	0.118 ± 0.014	0.117 ± 0.014	0.114 ± 0.017	0.113 ± 0.030
$[1500,\!6000]$	[-0.70, -0.09]	0.093 ± 0.010	0.092 ± 0.010	0.090 ± 0.013	0.089 ± 0.023
[1500, 6000]	[-0.09, -0.06]	0.108 ± 0.011	0.108 ± 0.011	0.108 ± 0.015	0.107 ± 0.027
[1500, 6000]	[-0.06, -0.04]	0.105 ± 0.012	0.105 ± 0.012	0.104 ± 0.015	0.103 ± 0.026
$[1500,\!6000]$	[-0.04, 0.05]	0.105 ± 0.011	0.105 ± 0.012	0.102 ± 0.015	0.102 ± 0.026

Statistical vs Systematics uncertainties

• The analysis tool described above allows to study the interplay between statistical uncertainties and systematic uncertainties (due to the measurement of the polarization) under different data-taking scenarios

$p_T ~({ m MeV})$	x_F	$a_1 \ (\Delta P = 0\%)$	$a_1 \ (\Delta P = 5\%)$	$a_1 \ (\Delta P = 20\%)$	$a_1 \ (\Delta P = 50\%)$
[0, 1500]	[-0.70, -0.09]	0.090 ± 0.013	0.089 ± 0.013	0.087 ± 0.014	0.087 ± 0.022
[0, 1500]	[-0.09, -0.06]	0.104 ± 0.011	0.104 ± 0.012	0.103 ± 0.016	0.100 ± 0.027
[0, 1500]	[-0.06, -0.04]	0.098 ± 0.012	0.098 ± 0.013	0.097 ± 0.016	0.094 ± 0.027
[0, 1500]	[-0.04, 0.05]	0.118 ± 0.014	0.117 ± 0.014	0.114 ± 0.017	0.113 ± 0.030
$[1500,\!6000]$	[-0.70, -0.09]	0.093 ± 0.010	0.092 ± 0.010	0.090 ± 0.013	0.089 ± 0.023
$[1500,\!6000]$	[-0.09, -0.06]	0.108 ± 0.011	0.108 ± 0.011	0.108 ± 0.015	0.107 ± 0.027
[1500, 6000]	[-0.06, -0.04]	0.105 ± 0.012	0.105 ± 0.012	0.104 ± 0.015	0.103 ± 0.026
$[1500,\!6000]$	[-0.04, 0.05]	0.105 ± 0.011	0.105 ± 0.012	0.102 ± 0.015	0.102 ± 0.026

- A 5% systematic uncertainty on P has no impact on the total uncertainty on a_1
- For $\Delta P = 20\%$ the systematic uncertainty amounts to 30-40% of the statistical uncertainty
- For $\Delta P = 50\%$ the systematic uncertainty approximately equals the statistical uncertainty
- We expect $\Delta P \approx 10-15\%$ for the storage cell hypothesis (and close to 0 for the jet target hypothesis)

The time schedule of the project

Conclusions

- > The FT program at LHCb is active since Run 2, now greatly enriched with SMOG2
- LHCspin is the natural evolution: a polarized fixed target at LHCb will bring spin-physics for the first time at the LHC and will open the way to a broad and ambitious physics program
- > Novel approaches and reactions will be exploited for studies of the 3D nucleon structure
- First insights into the yet unknown gluon TMDs (such as the GSF) will be possible thanks to the excellent capabilities of LHCb in reconstructing quarkonia states and heavy mesons.
- Cutting-edge unpolarized physics will also be at reach (cold nuclear matter effects, intrinsic charm, QGP studies, etc.)
- > The R&D calls for a new generation of polarized gas targets. A very challenging but worth the effort!

If approved, LHCspin will make LHCb the first experiment simultaneously running in collider and fixed-target mode with polarized targets, opening a whole new range of explorations.

A synergic attack to gTMDs

[D. Boer: Few-body Systems 58, 32 (2017)]

	DIS	DY	SIDIS	$pA \to \gamma \operatorname{jet} X$	$e p \to e' Q \overline{Q} X$ $e p \to e' j_1 j_2 X$	$pp \to \eta_{c,b} X$ $pp \to H X$	$\begin{array}{c} pp \rightarrow J/\psi \gamma X \\ pp \rightarrow \Upsilon \gamma X \end{array}$
$f_1^{g[+,+]}$ (WW)	×	×	×	×	\checkmark	\checkmark	\checkmark
$f_1^{g[+,-]}$ (DP)	\checkmark	\checkmark	\checkmark	\checkmark	×	×	×

Can be measured at the EIC

Can be measured at RHIC & LHC (including LHCb+SMOG2/LHCspin)

	$pp \to \gamma \gamma X$	$pA \to \gamma^* \text{ jet } X$	$e p \to e' Q \overline{Q} X$ $e p \to e' j_1 j_2 X$	$pp \to \eta_{c,b} X$ $pp \to H X$	$\begin{array}{c} pp \to J/\psi \gamma X \\ pp \to \Upsilon \gamma X \end{array}$
$h_1^{\perp g [+,+]} (WW)$	\checkmark	×	\checkmark	\checkmark	\checkmark
$h_1^{\perp g [+,-]} (\mathrm{DP})$	×	\checkmark	×	×	×

	DY	SIDIS	$p^{\uparrow} A \to h X$	$p^{\uparrow}A \to \gamma^{(*)} \text{ jet } X$	$ \begin{array}{c} p^{\uparrow}p \rightarrow \gamma \gamma X \\ p^{\uparrow}p \rightarrow J/\psi \gamma X \\ p^{\uparrow}p \rightarrow J/\psi J/\psi X \end{array} $	$e p^{\uparrow} \rightarrow e' Q \overline{Q} X$ $e p^{\uparrow} \rightarrow e' j_1 j_2 X$
$f_{1T}^{\perp g [+,+]} (WW)$	×	×	×	×	\checkmark	\checkmark
$f_{1T}^{\perp g [+,-]}$ (DP)	\checkmark	\checkmark	\checkmark	\checkmark	×	×

Can be measured at RHIC and LHCb+LHCspin

UPC and gGPDs

3D maps of parton densities in coordinate space

Can be accessed at LHC in Ultra-Peripheral collisions (UPC)

- Impact parameter larger than sum of radii
 - Process dominated by EM interaction
 - Gluon distributions probed by pomeron exchange
 - Exclusive quarkonia prod. sensitive to gluon GPDs [PRD 85 (2012), 051502]

LHCspin could allow to access the GPD E^g (a key ingredient of the Ji sum rule)

$$J^{g} = \frac{1}{2} \int_{0}^{1} dx \Big(H^{g}(x,\xi,0) + E^{g}(x,\xi,0) \Big)$$

5.

р

GPDs

photon $flux \propto Z^2$

no fluct. +GLC

NPA

(2019)

24

Cell coating R&D

The inner coating of the storage cell is a crucial aspect of the R&D. It is needed to:

- \checkmark minimize e-cloud related beam instabilities \rightarrow ensure low Secondary Elecron Yield (SEY)
- \checkmark minimize H depolarization due to wall collisions \rightarrow can be monitored through measurement of H recombination

Teflon and Drifilm (HERMES) not compatible with LHC requirements. **Amorfous Carbon** (a-C) is allowed but may induce depolarization. Possible solution (a-la HERMES): generate a **thin layer of ice on top of a-C coating**

- reduces the depolarization
- ensures a renewable surface
- requires to cool down the cell to $\sim 100 K$
- could cause a larger SEY
- Need to be investigated → dedicated R&D

The ARYA project at INFN-LNF:

- existing surface-coating laboratory has been equipped with UHV ultrapure water dosing system
- SEY measurement through electron gun on target vs H_2O dose

Cell coating R&D

Next steps:

- Measurement on the actual a-C sample from CERN
- Measurement of H recombination

H recombination studies: with the same setup inject H by means of an atomic source and measure H/H_2 fraction vs H_2O dose with a mass spectrometer

- SEY measurements on grafite vs incident electron energy with 1, 4, 10, 20, 40, 80 monolayers of H₂O at 90K
- Max SEY = 2.6: impact on LHC is under evaluation

HABS 40 on DN40CF (0.D. 2.75") flange

Independent depolarization studies on a-C ongoing in Juelich (dedicated laboratory)

L. L. Pappalardo
Main reactions or interest (...an incomplete wishlist)

$$pp \rightarrow \mu^{+}\mu^{-} + X \quad (pp \rightarrow e^{+}e^{-} + X)$$

$$pd \rightarrow \mu^{+}\mu^{-} + X \quad (pd \rightarrow e^{+}e^{-} + X)$$

$$pp^{\uparrow} \rightarrow \mu^{+}\mu^{-} + X \quad (pp^{\uparrow} \rightarrow e^{+}e^{-} + X)$$

$$pd^{\uparrow} \rightarrow \mu^{+}\mu^{-} + X \quad (pd^{\uparrow} \rightarrow e^{+}e^{-} + X)$$

$$pp^{(\uparrow)} \rightarrow \eta_{c} + X \quad (pp^{(\uparrow)} \rightarrow \chi_{c,b} + X)$$

$$pp^{(\uparrow)} \rightarrow J/\psi + X$$

$$pp^{(\uparrow)} \rightarrow J/\psi + X$$

$$pp^{(\uparrow)} \rightarrow J/\psi + J/\psi + X$$

$$pp^{(\uparrow)} \rightarrow J/\psi + \gamma + X$$

$$pp^{(\uparrow)} \rightarrow Y + \gamma + X$$

- unpolarized TMDs of valence and sea quarks and momentum distrib. of sea quarks
- TMDs of valence and sea quarks

Pol and unpol gluon PDFs

Nuclear matter effects, QGP, etc

A preliminary analysis tool for pseudo-data

• A simpler approach is also developed which consists in evaluating the TSSA directly from the yields in each 2D bin

• A linear fit is also shown to quantify the mild kinematic dependence of the asymmetry