Direct measurement of electromagnetic dipole moments of strange baryons at LHCb

Giorgia Tonani on behalf of Milano, Valencia, UCAS and CERN groups

Strong2020 workshop

Introduction

Experimental method

Status of EDM/MDM measurement Polarization upstream the magnet P_0 Polarization downstream the magnet P_f

Conclusions

Electromagnetic dipole moments: definition

Static property of particles In a quantum system:

Electric dipole moment (EDM)

$$\delta = d\mu_B \frac{\mathbf{P}}{2}$$

$$\boldsymbol{\mu} = \boldsymbol{g} \boldsymbol{\mu}_{B} \frac{\mathbf{P}}{2}$$

with *d* gyroelectric factor, *g* gyromagnetic factor, $\mu_B = e\hbar/(2mc)$ particle magneton $\mathbf{P} = 2 < \mathbf{S} > /\hbar$ the spin polarization vector, with **S** spin operator

$$H = -\delta \cdot \mathbf{E} - \mu \cdot \mathbf{B}$$
$$\underbrace{P, T}_{H \to +} H = +\delta \cdot \mathbf{E} - \mu \cdot \mathbf{B}$$

¹Phys. Lett. B291 (1992) 293 Giorgia Tonani Strong2020 workshop

$$H = -\delta \cdot \mathbf{E} - \mu \cdot \mathbf{B}$$
$$\xrightarrow{P, T} H = +\delta \cdot \mathbf{E} - \mu \cdot \mathbf{B}$$

EDM violates T and $P \rightarrow CP$ violation via CPT theorem

¹Phys. Lett. B291 (1992) 293 Giorgia Tonani Strong2020 workshop

$$H = -\delta \cdot \mathbf{E} - \mu \cdot \mathbf{B}$$

$$\xrightarrow{P, T} H = +\delta \cdot \mathbf{E} - \mu \cdot \mathbf{B}$$

EDM violates T and P \rightarrow CP violation via CPT theorem

SM prediction (from neutron EDM): A EDM < 10⁻²⁶ e cm^{−1} → sensitive to physics Beyond the Standard Model at the current experimental sensitivity

¹Phys. Lett. B291 (1992) 293

Strong2020 workshop

$$H = -\delta \cdot \mathbf{E} \quad -\mu \cdot \mathbf{B}$$

$$\xrightarrow{P, T} \quad H = +\delta \cdot \mathbf{E} \quad -\mu \cdot \mathbf{B}$$

• EDM violates T and P \rightarrow CP violation via CPT theorem

- SM prediction (from neutron EDM): A EDM < 10⁻²⁶ e cm^{−1} → sensitive to physics Beyond the Standard Model at the current experimental sensitivity
- ► MDM measurement of particle and anti-particle → CPT theorem test

¹Phys. Lett. B291 (1992) 293

Giorgia Tonani

Strong2020 workshop

$$H = -\delta \cdot \mathbf{E} \quad -\mu \cdot \mathbf{B}$$

$$\xrightarrow{P, T} \quad H = +\delta \cdot \mathbf{E} \quad -\mu \cdot \mathbf{B}$$

• EDM violates T and P \rightarrow CP violation via CPT theorem

- SM prediction (from neutron EDM): A EDM < 10⁻²⁶ e cm^{−1} → sensitive to physics Beyond the Standard Model at the current experimental sensitivity
- ► MDM measurement → experimental test of low-energy QCD models, related to non-perturbative QCD dynamics + sensitive to internal baryon dynamics

¹Phys. Lett. B291 (1992) 293

Giorgia Tonani

Strong2020 workshop

Electromagnetic dipole moments: state of the art

Wordwide effort to search EDMs, we focus on Λ baryons

J. Phys. G: Nucl. Part. Phys. 47 (2020) 010501

Strong2020 workshop

∧ EDM/MDM: state of the art

Measurement performed at Fermilab with p-Be fixed-target experiment:

- 300 GeV protons
- strong Λ production
- low Λ polarization $\approx 9\%$
- ► A EDM current upper limit: < 1.5 × 10⁻¹⁶ e cm at 95% of confidence level (PRD 23, 814 (1981))
- ▶ A MDM current value: (0.6138 \pm 0.0047) μ_N (PRL 41, 1348 (1978))
- ▶ No $\bar{\Lambda}$ polarization → not possible to measure $\bar{\Lambda}$ MDM

Giorgia Tonani

Strong2020 workshop

Introduction

Experimental method

Status of EDM/MDM measurement Polarization upstream the magnet P_0 Polarization downstream the magnet P_f

Conclusions

Spin polarization vector precession in the magnetic field (usually used for tracking purposes)

Spin polarization vector precession in the magnetic field (usually used for tracking purposes)

Simple example: assuming initial polarization $\vec{P}_0 = (0, 0, P_0)$ and magnetic field $\vec{B} = (0, B_y, 0) \rightarrow$ final polarization

$$\vec{P}_f = (-P_0 \sin \Phi, -P_0 \frac{d\beta}{g} \sin \Phi, P_0 \cos \Phi), \qquad (1)$$

with $\Phi \propto g \int_0^l \vec{B} dl'$ ($\approx \pi/4$ with LHCb dipole magnet)

Giorgia Tonani

Spin polarization vector precession in the magnetic field (usually used for tracking purposes)

Simple example: assuming initial polarization $\vec{P}_0 = (0, 0, P_0)$ and magnetic field $\vec{B} = (0, B_y, 0) \rightarrow$ final polarization

$$\vec{P}_f = (-P_0 \sin \Phi, -P_0 \frac{d\beta}{g} \sin \Phi, P_0 \cos \Phi), \qquad (1)$$

with $\Phi \propto g \int_0^l \vec{B} dl'$ ($\approx \pi/4$ with LHCb dipole magnet)

 $EDM/MDM \Leftrightarrow P_{fy}, \Phi \Leftrightarrow \vec{P}_f, \vec{P}_0$ measurement

Giorgia Tonani

Strong2020 workshop

Main ingredients:

- Source of polarized A baryons: weak decays (large longitudinal polarization, due to P violation)
- Magnetic field B
 ⁱ: LHCb dipole magnet

Detector: LHCb

^aInt. J. Mod. Phys. 634 A30 (2015)

Giorgia Tonani

Strong2020 workshop

Source of polarized Λ baryons

SL events	$N_A/{\rm fb}^{-1}~(\times 10^{10})$	LL events, $\varXi^-\to \Lambda\pi^-$	$N_A/{ m fb}^{-1}~(imes 10^{10})$
$\Xi_c^0 \to \Lambda K^- \pi^+$	7.7	$\Xi_c^0 \to \Xi^- \pi^+ \pi^+ \pi^-$	23.6
$\Lambda_c^+ \to \Lambda \pi^+ \pi^+ \pi^-$	3.3	$\Xi_c^0 \rightarrow \Xi^- \pi^+$	7.1
$\Xi_c^+ \to \Lambda K^- \pi^+ \pi^+$	2.0	$\Xi_c^+ \to \Xi^- \pi^+ \pi^+$	6.1
$\Lambda_c^+ \to \Lambda \pi^+$	1.3	$\Lambda_c^+ \to \Xi^- K^+ \pi^+$	0.6
$\Xi_c^0 \to \Lambda K^+ K^- \pmod{\phi}$	0.2	$\Xi_c^0 \rightarrow \Xi^- K^+$	0.2
$\varXi^0_c \to \varLambda \phi(K^+K^-)$	0.1	Prompt Ξ^-	$0.13 \times \sigma_{pp \to \Xi^-} \ [\mu b]$

► $\Xi_c^0 \to \Xi^- \pi^- \pi^+ \pi^+$: excluded, not dedicated trigger available, low efficiency

Another decay considered:

► $\Lambda_b^0 \rightarrow J/\psi \Lambda$: 100% Λ polarisation measured by LHCb collaboration ³, high trigger efficiency in $J/\psi \rightarrow \mu^+\mu^-$ decay

Prompt As not an option: not polarized at LHC (PRD 91 3, 2015)

Giorgia Tonani

Strong2020 workshop

²EPJC **77**, 181, 2017

³JHEP, **2020**, 110, 2020

We focus on Λ baryons: $\tau \approx 10^{-10} s$, p $\approx 50 \text{ GeV/c} \rightarrow \text{L} \approx 5 \text{ m}$ Λ baryons spin precession in the LHCb magnetic field

Giorgia Tonani

Strong2020 workshop

∧ polarization measurement

 $\begin{array}{l} \Lambda \mbox{ decay theoretical angular} \\ \mbox{ distribution in } \Lambda \mbox{ helicity frame} \\ (\frac{1}{2} \rightarrow \frac{1}{2} \mbox{ 0}) \mbox{:} \end{array}$

$$\frac{d\Gamma}{d\Omega}(\cos\theta_p,\phi_p,\vec{P}) \propto 1 + \alpha P_x \sin\theta_p \cos\phi_p + \alpha P_y \sin\theta_p \sin\phi_p + \alpha P_z \cos\theta_p,$$
(2)

A decay ($\rightarrow p\pi^{-}$) asymmetry parameter $\alpha = 0.732 \pm 0.014$ ⁴.

Experimental distribution: theoretical one to be corrected with efficiency and background contribution

Giorgia Tonani

Strong2020 workshop

⁴PDG, Prog.Theor.Exp.Phys. **2020**

Introduction

Experimental method

Status of EDM/MDM measurement

Polarization upstream the magnet \mathbf{P}_0 Polarization downstream the magnet \mathbf{P}_f

Conclusions

Current status of $\boldsymbol{\Lambda}$ polarization measurement

Polarization upstream the magnet \mathbf{P}_0 :

- Ongoing analysis: $\Xi_c^0 \to \Lambda K^- \pi^+, \\ \Lambda_c^+ \to \Lambda \pi^- \pi^+ \pi^+ \text{ and} \\ \Xi_c^0 \to \Xi^- (\to \Lambda \pi^-) \pi^+$
- $\Lambda_b^0 \rightarrow J/\psi \Lambda$: 100% initial Λ polarization

Polarization downstream the magnet \mathbf{P}_f :

- Most challenging part, never performed a physics measurement with T tracks in LHCb
- ► Reconstruction feasibility demonstrated with $\Lambda_b^0 \rightarrow J/\psi \Lambda$ decay (LHCb-DP-2022-001 paper in review by LHCb)

Giorgia Tonani

Strong2020 workshop

Introduction

Experimental method

Status of EDM/MDM measurement Polarization upstream the magnet P_0 Polarization downstream the magnet P_f

Conclusions

Initial polarization and EDM/MDM sensitivity

We are interested in as large as possible initial polarization \mathbf{P}_{0} , sensitivity saturates close to 100%

⁵EPJC **77**, 181, 2017

Giorgia Tonani

Strong2020 workshop

Ongoing analysis: $\Xi_c^0 \to \Lambda K^- \pi^+$ and $\Lambda_c^+ \to \Lambda \pi^- \pi^+ \pi^+$ selection

Ongoing analysis: $\Xi_c^+ \to \Xi^- (\to \Lambda \pi^-) \pi^+$ selection

- Ongoing study, selection is completed (36 k, 80% purity)
- Higher purity, lower background than previous decays
- Preliminarily measured higher A polarization than previous decays due to two-body decay topology (see next slide)

Preliminary angular fit in $\Xi_c^0 \to \Lambda K^- \pi^+$ decays integrated over the phase space

Signal: red, Bkg: blue

 $|\vec{P}_{\Lambda}| \approx 0.15 \ (|\vec{P}_{\Lambda}| \approx 0.25 \text{ in } \Lambda_c^+ \to \Lambda \pi^- \pi^+ \pi^+) \to \text{Low polarization}$ with respect to other weak decays (e.g. $\Lambda_b^0 \to J/\psi \Lambda |\vec{P}_{\Lambda}| \approx 1$)

 \rightarrow Conclusion: in multi-body decays resonances interfere and a polarization dilution is introduced $^6 \rightarrow$ better to consider two-body weak decays for the first EDM/MDM measurement

⁶PRC 95 (2017)

Giorgia Tonani

Strong2020 workshop

Introduction

Experimental method

Status of EDM/MDM measurement Polarization upstream the magnet P_0 Polarization downstream the magnet P_f

Conclusions

Main challenges to measure the polarization downstream the magnet

Challenging reconstruction of Λ baryons decaying downstream the magnet, using T tracks:

- ▶ momentum resolution of 20-30% (0.5-1% Long tracks) \rightarrow crucial to apply kinematic constraints to improve it
- ▶ long propagation distances → need RungeKutta extrapolator (cubic interpolation for Long tracks)
- <u>vertex</u> reconstruction <u>resolution</u> of 10-50 cm (\approx 100 μ m for Long tracks)

$\Lambda_b^0 \rightarrow J/\Psi \Lambda$ reconstruction efficiency

Bottleneck is the vertex reconstruction efficiency for Λ and $\Lambda_b^0 \rightarrow$ dedicated studies to improve it are ongoing

Giorgia Tonani

Strong2020 workshop

 $\Lambda_b^0 \rightarrow J/\Psi \Lambda$ reconstruction resolutions

- Instead of bottom-up reconstruction of the decay, fit entire decay chain simultaneously with DecayTreeFitter tool
- Momentum resolution improvement using DecayTreeFitter with primary vertex, J/Ψ and Λ invariant mass constraints

Giorgia Tonani

Strong2020 workshop

$\Lambda_b^0 \to J/\Psi \Lambda$ reconstruction: performance on simulation

Invariant mass fit with double-tailed Crystal Ball

Core invariant mass resolution of 6.8 \pm 3 MeV/c² for Λ and 37 \pm 1 MeV/c² for Λ_b

$\Lambda_b^0 \rightarrow J/\Psi \Lambda$ reconstruction: performance on data

Invariant mass fit with double-tailed Crystal Ball.

Background in the m(p π^-) distribution parameterised using a template determined from simulation.

Background in $m(J/\Psi \Lambda)$ parametrised with exponential pdf.

Samples of about 6140 $\Lambda_b^0 \to J/\Psi\Lambda$ signal events are reconstructed. Core mass resolutions of 7.7 \pm 0.4 and 41 \pm 2 MeV/c² for Λ and Λ_b^0 respectively

Introduction

Experimental method

Status of EDM/MDM measurement Polarization upstream the magnet P_0 Polarization downstream the magnet P_f

Conclusions

Sensitivity studies

- Current limit Λ EDM: Fermilab, 1981, fixed target experiment Λ EDM < 1.5 ×10⁻¹⁶ ecm, with 95% C.L.
- Expected improvement Λ EDM: LHCb project, sensitivity reachable
 ≈ 1.3 × 10⁻¹⁸ ecm with Run
 1, 2 data

7

- Current measured value Λ MDM: 0.613 ± 0.004 μ_N
- Expected improvement Λ MDM: sensitivity reachable $\approx 10^{-4} \mu_N$ with Run 1, 2 data

⁷EPJC **77**, 181, 2017

Giorgia Tonani

Strong2020 workshop

Next steps

- ► proof-of-principle measurements of Λ dipole moments using $\Lambda_b^0 \rightarrow J/\Psi \Lambda$ decays (data already available Run 1+2)
- Addition of Cherenchov detector info (RICH2) to improve momenta resolution for T tracks (under investigation)
- Custom vertex fitting to increase the efficiency
- Optimization of trigger selection for Run3

Conclusions

- EDM and MDM measurement are sensitive to physics in and beyond the Standard Model
- A Polarization measurement ongoing in $\Xi_c^0 \to \Lambda K^- \pi^+$, $\Lambda_c^+ \to \Lambda \pi^- \pi^+ \pi^+$ and $\Xi_c^0 \to \Xi^- (\to \Lambda \pi^-) \pi^+$ decays

- ► Demonstrated feasibility of reconstruction of Λ baryons decaying downstream the magnet using $\Lambda_b^0 \rightarrow J/\Psi \Lambda$ decays between 6 and 7.6 m from the IP (in LHCb collaboration review)
- EDM and MDM measurement method is feasible in LHCb, no showstopper identified

EMDMs, we are looking for you!

Giorgia Tonani

Strong2020 workshop

Keep in touch!

- See you at the SELDOM Workshop in Gargnano del Garda 26-28 September 2022 (agenda will be published here soon:
- Online: SELDOM-web-page
- On Twitter: SELDOM-Twitter

Backup

Event selection overview

Run 2 data (6 fb⁻¹) + MC simulated signal

- ▶ Online di-muon trigger: detached $J/\Psi \rightarrow \mu^+\mu^-$
- Reconstruction: vertex with PV and mass constraints
- Selections applied:
 - loose selection based on kinematic variables
 - threshold cut on <u>HBDT classifier</u> output
 - <u>Veto</u> on physical background $(\Lambda_b^0 \text{ or } B^0)$
 - Armenteros-Podolanski (AP) plot