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• Examples of Inflation:Starobinsky and T-models
• Instantaneous vs non-instantaneous reheating
•Particle Production
•Gravitational Portals
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Then what happens?

• Inflaton decays leading to reheating

4

falling as T / a
�3/8. The reheating temperature is de-

fined through [30, 31]
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when the energy density of the inflaton is equal to the
energy density of radiation, corresponding to
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In order to evaluate the constraint on Treh from over-
production of supersymmetric dark matter in scenarios
where the gravitino is lighter than Treh, we use the ex-
pression [29, 32]9

Y3/2(T ) = 0.00336
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where Y3/2 ⌘ n3/2/nrad is the gravitino yield, nrad =
⇣(3)T 3

/⇡
2, m3/2 the gravitino mass, and m1/2 the gluino

mass [33–35]. Disregarding the term m
2
1/2/m

2
3/2 in

(26) and using the observed dark matter density today,
⌦CDMh

2
' 0.12, we find the following upper limit on the

Yukawa-like inflaton coupling, assuming that the grav-
itino decays after the lightest supersymmetric particle
(LSP) decouples,

|y| < 9.2⇥ 10�8
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where mLSP is the mass of the LSP and the inflaton
masses for the di↵erent inflationary attractor potentials
are given by Eqs. (22) and (23).10 We note that, since
m' / 1/

p
↵, |y| / ↵

1/4.11

In high-scale supersymmetry models in which the grav-
itino mass may be significantly larger than the elec-
troweak scale and the other supersymmetric particles are
heavier than the inflaton, the gravitino, which is now the
LSP, is pair-produced via its longitudinal components
[37]. In such a scenario, we find [38]
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9 We use here an analytical approximation since there is only a
0.03 % di↵erence between the analytical and fully numerical cal-
culation.

10 If the gravitino is the LSP, the second term in the brackets in
(26) must be taken into account, and the constraint on y depends
on the ratio m1/2/m3/2.

11 For another recent analysis of gravitino constraints in light of the
BICEP/Keck results, see [36].

wherem3/2 is the gravitino mass and ↵3 is the strong cou-
pling. Using the observed dark matter abundance today
to constrain ⌦3/2h

2, we find that avoiding overproduc-
tion of dark matter imposes the following bound:
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We note that in a non-supersymmetric theory there
would, in general, be a lower limit on y due to the fact
that it generates radiative corrections / y

4 in the ef-
fective inflaton potential [39]. However, this is not the
case in supersymmetric models such as those discussed
above, where these radiative corrections cancel down to
the level of the relatively small supersymmetry-breaking
e↵ects [40].

IV. RESULTS

We solve the cosmic background equations (17)-(20)
numerically to determine the number of e-folds N⇤, NEW,
and NBBN. In the ↵ = 1 case, the procedure of calcu-
lating the analytical approximations for N⇤ is given in
Appendix A (see Eqs. (A.11) and (A.12)). The full nu-
merical computation of the CMB observables is discussed
in Appendix B.

Figure 1 summarizes our numerical results based on
the analysis of [3]: those for ↵-Starobinsky models are
shown in the upper pair of panels and those for T mod-
els in the lower pair. For each of the two models, we
derive limits on N⇤ from the requirements that Treh > 2
MeV (100 GeV) and the supersymmetric relic density
when mLSP = 100 GeV. The former gives a lower limit
to N⇤, while the latter gives an upper limit. We also de-
rive the corresponding limits on y. These are compared
to the 68% and 95% C.L. limits on N and y from the
BICEP/Keck constraints on ns. For ↵ = 1, we find the
following limits:

↵-Starobinsky :

41.8(45.6) < N⇤ < 51.8,

1.7⇥ 10�18(1.6⇥ 10�13) < |y| < 2.6⇥ 10�5
,

N68% = 50.9, N95% = 45.9,

Treh, 68% = 8.7⇥ 108 GeV, Treh, 95% = 2.4⇥ 102 GeV,

y68% = 1.7⇥ 10�6
, y95% = 3.8⇥ 10�13

, (30)

T Model :

42.0(45.8) < N⇤ < 52.1,

2.3⇥ 10�18(2.2⇥ 10�13) < |y| < 3.6⇥ 10�5
,

N68% = 52.6, N95% = 47.5,

Treh, 68% = 5.9⇥ 1010 GeV, Treh, 95% = 1.4⇥ 104 GeV,

y68% = 1.7⇥ 10�4
, y95% = 3.6⇥ 10�11

. (31)
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where mLSP is the mass of the LSP and the inflaton
masses for the di↵erent inflationary attractor potentials
are given by Eqs. (22) and (23).10 We note that, since
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In high-scale supersymmetry models in which the grav-
itino mass may be significantly larger than the elec-
troweak scale and the other supersymmetric particles are
heavier than the inflaton, the gravitino, which is now the
LSP, is pair-produced via its longitudinal components
[37]. In such a scenario, we find [38]
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above, where these radiative corrections cancel down to
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⇢R(aRH) = ⇢�(aRH)

• Inflaton oscillations ⇒ particle production
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R+R2 Inflation
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No-Scale realization of Starobinsky

Can we find a model consistent with Planck?

and a WZ model:

Assume now that T picks up a vev: 2<Re T> = c

Redefine inflaton to a canonical field χ

Ellis, Nanopoulos, Olive
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µ̂

2
�2 � �

3
�3

Leff =
c

(c� |�|2/3)2 |@µ�|
2 � V̂

(c� |�|2/3)2

� =
p
3c tanh

✓
�p
3

◆

K = �3 ln(T + T ⇤ � �i�i
⇤/3)

Cremmer, Ferrara, 
Kounnas, Nanopoulos; 

Ellis, Kounnas, 
Nanopoulos; Lahanas, 

Nanopoulos 

Start with NS:



No-Scale models revisited

Then c = 1, 
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No-Scale models revisited
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How well does this do vis a vis Planck?

Then c = 1, 
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Reheating
In the absence of a direct coupling of the inflaton to matter,
reheating does NOT occur.

��1 = 0 Endo,Kadota,Olive,Takahashi, 
Yanagida

coupling to gauge bosons and gauginos Kallosh, Linde, Olive, Rube

gauge kinetic function

5.1.4 Decays to gauge bosons and gauginos

The decay of the inflaton φ1 into gauge fields and gauginos is possible in the presence of

a non-trivial coupling between φ1 and the gauge degrees of freedom, as would be provided

by a φ1-dependent gauge kinetic function fαβ = f(φ1)δαβ [45,63]. If supersymmetry is not

broken by the inflaton, this term will not contribute to gaugino masses. These require a

non-trivial dependence in the gauge kinetic function of fields involved in supersymmetry

breaking. The relevant supergravity Lagrangian terms correspond to
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4
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1

4
eG/2(f̄αβ),J(G

−1)JKG
Kλ̄αLλβR + h.c.

)
,

(105)

where F̃ µν
α = 1

2ε
µνρσFαρσ. Neglecting contributions suppressed by the gaugino masses, the

decay widths to canonically-normalized gauge boson pairs and gauginos can be evaluated

in a straightforward way, resulting in [45]

Γ(φ1 → gg) = Γ(φ1 → g̃g̃) =
3d2g,1
32π

(
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12

)
m3

M2
P

, (106)

where NG is the number of final states: NG = 12 for the standard model, and dg,1 is given

by

dg,1 ≡ 〈Re f〉−1

∣∣∣∣

〈
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∂φ1

〉∣∣∣∣ . (107)

The equality of the rates to gauge bosons and gauginos requires that Wφ1φ1
is related to the

inflaton mass rather than the supersymmetry-breaking scale. In the presence of a coupling

such as (82), these rates are subdominant, being suppressed by (m/MP )2 relative to the

widths into Higgs, leptons and their supersymmetric partners, cf, (91) and (96). On the

other hand, if no such couplings are present, the decays to gauge bosons and gauginos are

the dominant channels, and would yield a reheating temperature

TR = (2× 1010 GeV) dg,1 g
−1/4

(
NG

12

)1/2( m

10−5MP

)3/2

. (108)

In this case, the constraint on the thermal production of gravitinos is easily satisfied if

dg, 1 <∼ 10−1.

The decay of φ1 to gauge bosons and gauginos can also be achieved through a coupling

between T and the gauge degrees of freedom. Indeed, a T -dependent gauge kinetic function

fαβ = f(T )δαβ is a generic feature of heterotic string effective field theories [11, 64]. A

superpotential such as (87) produces a mixing between φ1 and T , allowing in this case

decays of the φ1 mass eigenstate to gauge bosons, with a rate

Γ(φ1 → gg) = (p− 3)2
d2g,T |ζ |2

216π

(
NG
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a non-trivial coupling between φ1 and the gauge degrees of freedom, as would be provided

by a φ1-dependent gauge kinetic function fαβ = f(φ1)δαβ [45,63]. If supersymmetry is not

broken by the inflaton, this term will not contribute to gaugino masses. These require a

non-trivial dependence in the gauge kinetic function of fields involved in supersymmetry

breaking. The relevant supergravity Lagrangian terms correspond to

LG = −
1

4
(Re fαβ)FαµνF

µν
β +

i

4
(Im fαβ)FαµνF̃

µν
β

+

(
1

4
eG/2(f̄αβ),J(G

−1)JKG
Kλ̄αLλβR + h.c.

)
,

(105)

where F̃ µν
α = 1

2ε
µνρσFαρσ. Neglecting contributions suppressed by the gaugino masses, the

decay widths to canonically-normalized gauge boson pairs and gauginos can be evaluated

in a straightforward way, resulting in [45]

Γ(φ1 → gg) = Γ(φ1 → g̃g̃) =
3d2g,1
32π

(
NG

12

)
m3

M2
P

, (106)

where NG is the number of final states: NG = 12 for the standard model, and dg,1 is given

by

dg,1 ≡ 〈Re f〉−1

∣∣∣∣

〈
∂f

∂φ1

〉∣∣∣∣ . (107)

The equality of the rates to gauge bosons and gauginos requires that Wφ1φ1
is related to the

inflaton mass rather than the supersymmetry-breaking scale. In the presence of a coupling

such as (82), these rates are subdominant, being suppressed by (m/MP )2 relative to the

widths into Higgs, leptons and their supersymmetric partners, cf, (91) and (96). On the

other hand, if no such couplings are present, the decays to gauge bosons and gauginos are

the dominant channels, and would yield a reheating temperature

TR = (2× 1010 GeV) dg,1 g
−1/4

(
NG

12

)1/2( m

10−5MP

)3/2

. (108)
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Significant reheating if the inflation (Φ) is directly coupled to 
matter

where we denote Φ ≡ {δT,φi,ϕa} and introduce the multiindex I = {δT, i, a}. Here we

have segregated the inflaton explicitly from the rest of the matter and moduli fields, and

we have associated the inflaton mass m with the vev of W 11
inf , as is true for the Wess-

Zumino superpotential (11). It is immediately evident that, in the absence of a direct

coupling between the inflaton and other fields in the matter superpotential, the field φ1 is

the inflaton mass eigenstate §.

A direct coupling between φ1 and the rest of the matter sector may be allowed. For

example, this field can be associated with a heavy singlet sneutrino [16, 56]. In such case,

one can consider the addition of a Yukawa-like term

∆W = yνHuLφ1 (82)

to the Standard Model superpotential, where yν denotes the Yukawa coupling. Such a

coupling leads to a mass matrix characteristic of seesaw models,

(
φ̄1 ¯̃ν

)(m2 + m̃2 −mm̃

−mm̃ m̃2 + κµ2

)(
φ1

ν̃

)

, (83)

where m̃ ≡ yν〈Hu〉 = yνv sin β, and κ = (1 − nν) for a twisted neutrino, κ = 0 for an

untwisted neutrino. Therefore, even in the presence of direct couplings, we can consider φ1

to be the inflaton mass eigenstate, up to corrections of order µ/m, v/m % 1.

In order to determine the decay rate of the inflaton φ1, we must consider couplings

beyond quadratic interactions. Expansion of the scalar potential yields

LB,pot =
2√
3
mW̄1Jφ1δT Φ̄

J −
1√
3
B1

Jφ1δT Φ̄
J −

1

3
√
3
W 1TT

inf W̄TJφ1δT Φ̄
J

−
cIδT
3

W 1IW̄JTφ1ΦIΦ̄
J −W 1IKW̄KJφ1ΦIΦ̄

J −
1

6
mW 1TT

inf φ1δT̄ δT̄

+
2√
3
mW̄1Jφ1δT̄ Φ̄

J −
1√
3
B1

Jφ1δT̄ Φ̄
J −

1

2
mW̄1IJφ1Φ̄

IΦ̄J

−
1

2
W 1KW̄KIJφ1Φ̄

IΦ̄J −
cIJ
6
W 1T W̄IJφ1Φ̄

IΦ̄J + h.c. +O(µ) + · · ·

(84)

where we have introduced the notation

BI1I2...
J1J2...

=
[
(na − 3)W I1I2...aW̄aJ1J2... − 2W I1I2...kW̄kJ1J2...

]
. (85)

and

cIJ =




−1 −3 nJ − 2

−3 −5 nJ − 4

nI − 2 nI − 4 nI + nJ − 3



 , (86)

§We have ignored subdominant O(µ) contributions in the expression (81), which actually vanish for a

φ1-independent matter superpotential.
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and 𝜙1 can be associated with a heavy singlet sneutrino

where the rows and columns correspond to submatrices following the notation I = {δT, i, a}.
The expression (84) shows that all couplings to matter vanish in the absence of an explicit

φ1 dependence in the matter superpotential, W 1I1I2... = 0. It can be verified that the same

is true for all the O(µ) terms that we have neglected in (84), as well for any couplings

leading to three- and four-body decay of the inflaton. The only non-vanishing interaction

in this limit correspond to those proportional to W 1TT
inf . This coupling vanishes identically

for the Wess-Zumino superpotential (11). However, it is known that the superpotential

(11) is not the unique superpotential that leads to Starobinsky inflation [13]. Consider,

e.g., the addition of the term

∆Winf = ζ(T − 1/2)2φ1 , (87)

which does not alter the shape of the potential for the inflaton Re φ1 for any value of ζ . In

the presence of this term, the mass matrix has the structure

m2|φ1|2 +m2
T |δT |2 +

2ζ

3
√
3
(p− 3)m3/2MP (φ1δT + h.c.) , (88)

and the inflaton mass eigenstate corresponds to

φM
1 # φ1 + (p− 3)

2ζ∆MP

3
√
3m

δT̄ . (89)

In this case, the decay of the inflaton φ1 into the fluctuation of the modulus T is possible,

with rate

Γ(φ1 → δT δT ) = m
|ζ |2

72π
, (90)

assuming that the modulus mass satisfies the hierarchy m % mT % m3/2 as in (34). As we

see in the next subsubsection, this is the same rate as the decay into gravitinos. If these were

the dominant decay rates, the Universe would become dominated by moduli and gravitinos,

forcing their masses to exceed 10 TeV in order to obtain a reheating temperature above 1

MeV, and hence suitable for nucleosynthesis. However, in this case, decays into neutralinos

are liable to yield a relic neutralino density that is far too large. Thus we can not afford

decays to moduli (and gravitinos) to be the dominant decay product.

Decay of the inflaton into matter becomes possible only if we allow a non-trivial

dependence on φ1 for WM . In particular, the superpotential (82) leads to a non-vanishing

amplitude for which the dominant contribution corresponds to the seventh term in (84)

if W 1IJ &= 0, namely −1
2mW̄1IJφ1Φ̄IΦ̄J . In the particular case of sneutrino inflation, this

coupling would be −myνH̄u
¯̃Lφ1, and the decay width would be given by

Γ(φ1 → H0
uν̃, H

+
u f̃L) = m

|yν|2

16π
, (91)
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⇒ 

where we have neglected the masses of the final-state particles. This decay rate would

be fast if |yν | = O(1) and, in order to avoid problems associated with gravitino produc-

tion during reheating, we must set a bound on the Yukawa coupling associated with the

inflaton [16]

yν <∼ 10−5 (92)

with a corresponding constraint on the reheating temperature that we discuss below.

5.1.2 Decays to matter fermions

The decay of the inflaton φ1 to matter fermions is mediated by the interactions determined

by the fermion kinetic term, the fermion mass matrix and the fermion-scalar interactions

of the supergravity Lagrangian. The fermion kinetic term is given by

LF,kin =
i

2
GI

J χ̄ILγ
µDµχ

J
L + h.c. , (93)

and yields no couplings relevant to two-, three- and four-body decays. One must then look

for interactions stemming from the fermion mass matrix and the fermion-scalar interactions.

Working in the unitary gauge, one finds no dependence on the modulino χT , which becomes

the longitudinal component of the gravitino,

LF,int =
i

2
χ̄IL /DΦJχ

K
L (−GIJ

K +
1

2
GI

KG
J)

+
1

2
eG/2(−GIJ −GIGJ +GIJ

K (G−1)KAG
A)χ̄ILχJR + h.c. (94)

+ four-fermion terms

= −
1

2
W 1IJφ1χ̄ILχJR +

i

4µ
W 1JΦJ χ̄KL/∂φ1χ

K
L +

i

4µ
W 1Jφ1χ̄KL/∂ΦJχ

K
L

+
1

4µ
W 1JW IKφ1ΦJ χ̄ILχKR −

1

2
W 1IJKφ1ΦJ χ̄ILχKR (95)

+

√
3

2
W 1JKφ1(Re δT )χ̄JLχKR −

1

2
W 1Kφ1Φ̄

J(χ̄KLχJR + χ̄JLχKR) + · · ·

Similarly to the scalar case, all couplings to matter fermions vanish for a φ1-independent

matter superpotential. The decay into a fermion and a higgsino is possible if we identify

φ1 with a singlet neutrino, with superpotential (82). In this case, the rate is given by

Γ(φ1 → H̃0
uν, H̃

+
u fL) = m

|yν |2

16π
, (96)

i.e., equal to the rate of decay into scalars.
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Similarly to the scalar case, all couplings to matter fermions vanish for a φ1-independent

matter superpotential. The decay into a fermion and a higgsino is possible if we identify

φ1 with a singlet neutrino, with superpotential (82). In this case, the rate is given by

Γ(φ1 → H̃0
uν, H̃

+
u fL) = m

|yν |2

16π
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i.e., equal to the rate of decay into scalars.
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or

It can also be shown that all two-body decays involving one inflatino and one matter fermion

χJ are dependent on the coupling W 11J , which vanishes in the limit of no φ1 dependence

in WM , as well for a superpotential such as (82).

We are led to conclude that, in the absence of a direct coupling between the inflaton

and the rest of the matter (and gauge) sectors, there are no efficient decay channels for

the inflaton, if it is identified with an untwisted matter field, as found in other studies of

no-scale supergravity [43]. On the other hand, if the field φ1 is associated with a singlet

neutrino, the decay rates (91) and (96) imply a reheating temperature

TR = (5.6× 1014GeV)|yν|
(

g

915/4

)−1/4( m

10−5MP

)1/2

, (104)

assuming that the Yukawa coupling yν ! O(1) so that the decay of the inflaton occurs

after the end of inflation, during the oscillation of the inflaton around the minimum of the

potential. Here g denotes the effective number of degrees of freedom, and g = 915/4 for

the MSSM.

5.1.4 Decays to gauge bosons and gauginos

The decay of the inflaton φ1 into gauge fields and gauginos is possible in the presence of

a non-trivial coupling between φ1 and the gauge degrees of freedom, as would be provided

by a φ1-dependent gauge kinetic function fαβ = f(φ1)δαβ [43,59]. If supersymmetry is not

broken by the inflaton, this term will not contribute to gaugino masses. These require a

non-trivial dependence in the gauge kinetic function of fields involved in supersymmetry

breaking. The relevant supergravity Lagrangian terms correspond to

LG = −
1

4
(Re fαβ)FαµνF

µν
β +

i

4
(Im fαβ)FαµνF̃

µν
β

+

(
1

4
eG/2(f̄αβ),J(G

−1)JKG
Kλ̄αLλβR + h.c.

)
,

(105)

where F̃ µν
α = 1

2ε
µνρσFαρσ. Neglecting contributions suppressed by the gaugino masses, the

decay widths to canonically-normalized gauge boson pairs and gauginos can be evaluated

in a straightforward way, resulting in [43]

Γ(φ1 → gg) = Γ(φ1 → g̃g̃) =
3d2g,1
32π

(
NG

12

)
m3

M2
P

, (106)

where NG is the number of final states: NG = 12 for the standard model, and dg,1 is given

by

dg,1 ≡ 〈Re f〉−1

∣∣∣∣

〈
∂f

∂φ1

〉∣∣∣∣ . (107)
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Inflationary Context
No-scale supergravity:

ns ≃ 1 −
2

N!
; r ≃

12

N2
!
: ðA1Þ

Here r denotes the tensor-to-scalar ratio, and N! is the
number of e-folds between the horizon crossing of the pivot
scale k! and the end of inflation.
Many of these models can be constructed [88] from no-

scale supergravity [60–62] defined by a Kähler potential of
the form

K ¼ −3 ln
!
T þ T̄ − jϕj2

3

"
; ðA2Þ

where T is a volume modulus and ϕ is a matter like field.
Depending on the form of the superpotential, either T or ϕ
can play the role of the inflaton [82,89]. For example, the
Starobinsky model is derived from a simple Wess-Zumino-
like superpotential [88],

W ¼ M
!
ϕ2

2
−

ϕ3

3
ffiffiffi
3

p
"
; ðA3Þ

where Φ is related to the canonically normalized inflaton
through

ϕ ¼
ffiffiffi
3

p
tanh

!
Φffiffiffi
6

p
"
; ðA4Þ

yielding the scalar potential

V¼
! ffiffiffi

3
p

M
tanhðΦ=

ffiffiffi
6

p
Þ

1þ tanhðΦ=
ffiffiffi
6

p
Þ

"2

¼ 3

4
M2

$
1−e−

ffiffi
2
3

p
Φ
%
2
;

ðA5Þ

when hTi ¼ 1=2. Here the inflaton mass, M is fixed in a
similar manner as is λ from the CMB normalization as
discussed below.
Alternatively, if hϕi ¼ 0 is fixed, the superpotential [90]

W ¼
ffiffiffi
3

p
Mϕ

!
T −

1

2

"
ðA6Þ

yields the same Starobinsky potential (A5) when

T ¼ 1

2
e

ffiffi
2
3

p
Φ: ðA7Þ

A similar class of models sharing the attractor points
in (A1) can be derived from a superpotential of the form

W ¼ 2
k
4þ1

ffiffiffi
λ

p !
ϕ

k
2þ1

kþ 2
− ϕ

k
2þ3

3ðkþ 6Þ

"
: ðA8Þ

The resulting scalar potential is then

VðΦÞ ¼ λ

& ffiffiffi
6

p
tanh

!
Φffiffiffi
6

p
"'

k
: ðA9Þ

Alternatively, choosing

W ¼
ffiffiffi
λ

p
ϕð2TÞ

! ffiffiffi
6

p 2T − 1

2T þ 1

"k
2

ðA10Þ

yields the same potential given in Eq. (A9) and both
provide Planck-compatible completions for our potential
(4) at large field values [58]. In all of the above expressions,
we have worked in units of MP. In the remainder of this
Appendix, we will restore powers of MP.

11

2. Normalization of the potential

In order to determine ρend, one must find the inflaton
field value at the end of inflation, defined where ä ¼ 0 or
equivalently _Φ2

end ¼ VðΦÞ [63]. An approximate solution
for this condition yields using (A9)

Φend ≃
ffiffiffi
3

8

r
MP ln

&
1

2
þ k
3
ðkþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 3

p
Þ
'
: ðA11Þ

For k ¼ ð2; 3; 4Þ, this yields Φend ¼ ð0.78; 1.19; 1.50ÞMP,
respectively, which can be compared with the Starobinsky
result, Φend ¼ 0.62MP [63]. Recall in addition that ρend ¼
3
2VðΦendÞ so thatρend=λM4

P ¼ð0.86;2.0;4.8Þ for k¼ð2;3;4Þ.
On the inflationary plateau, a series expansion of the

inflationary potential allows us to relate the number of
e-folds with the potential and its derivative. Namely,
with [58]

VðΦÞ
λM4

P6
k=2 ¼ 1 − 2ke−

ffiffi
2
3

p
Φ
MP þOðk2e−2

ffiffi
2
3

p
Φ
MPÞ; ðA12Þ

the number of e-folds in the slow-roll approximation can be
computed as

N! ≃
1

M2
P

Z
Φ!

Φend

dΦ
VðΦÞ
V 0ðΦÞ

≃
ffiffiffi
3

2

r
V!

MPV 0
!
: ðA13Þ

Substitution into the slow-roll expression for the amplitude
of the curvature power spectrum

AS! ≃
V3
!

12π2M6
PðV0

!Þ2
ðA14Þ

finally gives

11We note that for k ¼ 3, this formulation does not lead to a
stable minimum at Φ ¼ 0.
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yields the same potential given in Eq. (A9) and both
provide Planck-compatible completions for our potential
(4) at large field values [58]. In all of the above expressions,
we have worked in units of MP. In the remainder of this
Appendix, we will restore powers of MP.
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In order to determine ρend, one must find the inflaton
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For k ¼ ð2; 3; 4Þ, this yields Φend ¼ ð0.78; 1.19; 1.50ÞMP,
respectively, which can be compared with the Starobinsky
result, Φend ¼ 0.62MP [63]. Recall in addition that ρend ¼
3
2VðΦendÞ so thatρend=λM4

P ¼ð0.86;2.0;4.8Þ for k¼ð2;3;4Þ.
On the inflationary plateau, a series expansion of the

inflationary potential allows us to relate the number of
e-folds with the potential and its derivative. Namely,
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Substitution into the slow-roll expression for the amplitude
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finally gives

11We note that for k ¼ 3, this formulation does not lead to a
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where T is a volume modulus and ϕ is a matter like field.
Depending on the form of the superpotential, either T or ϕ
can play the role of the inflaton [82,89]. For example, the
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yields the same potential given in Eq. (A9) and both
provide Planck-compatible completions for our potential
(4) at large field values [58]. In all of the above expressions,
we have worked in units of MP. In the remainder of this
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For k ¼ ð2; 3; 4Þ, this yields Φend ¼ ð0.78; 1.19; 1.50ÞMP,
respectively, which can be compared with the Starobinsky
result, Φend ¼ 0.62MP [63]. Recall in addition that ρend ¼
3
2VðΦendÞ so thatρend=λM4

P ¼ð0.86;2.0;4.8Þ for k¼ð2;3;4Þ.
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when hTi ¼ 1=2. Here the inflaton mass, M is fixed in a
similar manner as is λ from the CMB normalization as
discussed below.
Alternatively, if hϕi ¼ 0 is fixed, the superpotential [90]
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yields the same potential given in Eq. (A9) and both
provide Planck-compatible completions for our potential
(4) at large field values [58]. In all of the above expressions,
we have worked in units of MP. In the remainder of this
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In order to determine ρend, one must find the inflaton
field value at the end of inflation, defined where ä ¼ 0 or
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For k ¼ ð2; 3; 4Þ, this yields Φend ¼ ð0.78; 1.19; 1.50ÞMP,
respectively, which can be compared with the Starobinsky
result, Φend ¼ 0.62MP [63]. Recall in addition that ρend ¼
3
2VðΦendÞ so thatρend=λM4

P ¼ð0.86;2.0;4.8Þ for k¼ð2;3;4Þ.
On the inflationary plateau, a series expansion of the

inflationary potential allows us to relate the number of
e-folds with the potential and its derivative. Namely,
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when hTi ¼ 1=2. Here the inflaton mass, M is fixed in a
similar manner as is λ from the CMB normalization as
discussed below.
Alternatively, if hϕi ¼ 0 is fixed, the superpotential [90]
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provide Planck-compatible completions for our potential
(4) at large field values [58]. In all of the above expressions,
we have worked in units of MP. In the remainder of this
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11

2. Normalization of the potential

In order to determine ρend, one must find the inflaton
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For k ¼ ð2; 3; 4Þ, this yields Φend ¼ ð0.78; 1.19; 1.50ÞMP,
respectively, which can be compared with the Starobinsky
result, Φend ¼ 0.62MP [63]. Recall in addition that ρend ¼
3
2VðΦendÞ so thatρend=λM4

P ¼ð0.86;2.0;4.8Þ for k¼ð2;3;4Þ.
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of the curvature power spectrum

AS! ≃
V3
!

12π2M6
PðV0

!Þ2
ðA14Þ

finally gives
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Here r denotes the tensor-to-scalar ratio, and N! is the
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when hTi ¼ 1=2. Here the inflaton mass, M is fixed in a
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For k ¼ ð2; 3; 4Þ, this yields Φend ¼ ð0.78; 1.19; 1.50ÞMP,
respectively, which can be compared with the Starobinsky
result, Φend ¼ 0.62MP [63]. Recall in addition that ρend ¼
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Here r denotes the tensor-to-scalar ratio, and N! is the
number of e-folds between the horizon crossing of the pivot
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where T is a volume modulus and ϕ is a matter like field.
Depending on the form of the superpotential, either T or ϕ
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when hTi ¼ 1=2. Here the inflaton mass, M is fixed in a
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discussed below.
Alternatively, if hϕi ¼ 0 is fixed, the superpotential [90]
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yields the same Starobinsky potential (A5) when
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A similar class of models sharing the attractor points
in (A1) can be derived from a superpotential of the form
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yields the same potential given in Eq. (A9) and both
provide Planck-compatible completions for our potential
(4) at large field values [58]. In all of the above expressions,
we have worked in units of MP. In the remainder of this
Appendix, we will restore powers of MP.
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2. Normalization of the potential

In order to determine ρend, one must find the inflaton
field value at the end of inflation, defined where ä ¼ 0 or
equivalently _Φ2

end ¼ VðΦÞ [63]. An approximate solution
for this condition yields using (A9)
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For k ¼ ð2; 3; 4Þ, this yields Φend ¼ ð0.78; 1.19; 1.50ÞMP,
respectively, which can be compared with the Starobinsky
result, Φend ¼ 0.62MP [63]. Recall in addition that ρend ¼
3
2VðΦendÞ so thatρend=λM4

P ¼ð0.86;2.0;4.8Þ for k¼ð2;3;4Þ.
On the inflationary plateau, a series expansion of the

inflationary potential allows us to relate the number of
e-folds with the potential and its derivative. Namely,
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Substitution into the slow-roll expression for the amplitude
of the curvature power spectrum

AS! ≃
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ðA14Þ

finally gives

11We note that for k ¼ 3, this formulation does not lead to a
stable minimum at Φ ¼ 0.

GARCIA, KANETA, MAMBRINI, and OLIVE PHYS. REV. D 101, 123507 (2020)

123507-12

ns ≃ 1 −
2

N!
; r ≃

12

N2
!
: ðA1Þ

Here r denotes the tensor-to-scalar ratio, and N! is the
number of e-folds between the horizon crossing of the pivot
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Many of these models can be constructed [88] from no-

scale supergravity [60–62] defined by a Kähler potential of
the form

K ¼ −3 ln
!
T þ T̄ − jϕj2

3

"
; ðA2Þ

where T is a volume modulus and ϕ is a matter like field.
Depending on the form of the superpotential, either T or ϕ
can play the role of the inflaton [82,89]. For example, the
Starobinsky model is derived from a simple Wess-Zumino-
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when hTi ¼ 1=2. Here the inflaton mass, M is fixed in a
similar manner as is λ from the CMB normalization as
discussed below.
Alternatively, if hϕi ¼ 0 is fixed, the superpotential [90]
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yields the same potential given in Eq. (A9) and both
provide Planck-compatible completions for our potential
(4) at large field values [58]. In all of the above expressions,
we have worked in units of MP. In the remainder of this
Appendix, we will restore powers of MP.
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In order to determine ρend, one must find the inflaton
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For k ¼ ð2; 3; 4Þ, this yields Φend ¼ ð0.78; 1.19; 1.50ÞMP,
respectively, which can be compared with the Starobinsky
result, Φend ¼ 0.62MP [63]. Recall in addition that ρend ¼
3
2VðΦendÞ so thatρend=λM4

P ¼ð0.86;2.0;4.8Þ for k¼ð2;3;4Þ.
On the inflationary plateau, a series expansion of the

inflationary potential allows us to relate the number of
e-folds with the potential and its derivative. Namely,
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Substitution into the slow-roll expression for the amplitude
of the curvature power spectrum
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finally gives

11We note that for k ¼ 3, this formulation does not lead to a
stable minimum at Φ ¼ 0.
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Here r denotes the tensor-to-scalar ratio, and N! is the
number of e-folds between the horizon crossing of the pivot
scale k! and the end of inflation.
Many of these models can be constructed [88] from no-
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the form
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where T is a volume modulus and ϕ is a matter like field.
Depending on the form of the superpotential, either T or ϕ
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when hTi ¼ 1=2. Here the inflaton mass, M is fixed in a
similar manner as is λ from the CMB normalization as
discussed below.
Alternatively, if hϕi ¼ 0 is fixed, the superpotential [90]
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yields the same Starobinsky potential (A5) when

T ¼ 1

2
e

ffiffi
2
3

p
Φ: ðA7Þ

A similar class of models sharing the attractor points
in (A1) can be derived from a superpotential of the form
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The resulting scalar potential is then
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Alternatively, choosing
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yields the same potential given in Eq. (A9) and both
provide Planck-compatible completions for our potential
(4) at large field values [58]. In all of the above expressions,
we have worked in units of MP. In the remainder of this
Appendix, we will restore powers of MP.
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2. Normalization of the potential

In order to determine ρend, one must find the inflaton
field value at the end of inflation, defined where ä ¼ 0 or
equivalently _Φ2

end ¼ VðΦÞ [63]. An approximate solution
for this condition yields using (A9)
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For k ¼ ð2; 3; 4Þ, this yields Φend ¼ ð0.78; 1.19; 1.50ÞMP,
respectively, which can be compared with the Starobinsky
result, Φend ¼ 0.62MP [63]. Recall in addition that ρend ¼
3
2VðΦendÞ so thatρend=λM4

P ¼ð0.86;2.0;4.8Þ for k¼ð2;3;4Þ.
On the inflationary plateau, a series expansion of the

inflationary potential allows us to relate the number of
e-folds with the potential and its derivative. Namely,
with [58]
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the number of e-folds in the slow-roll approximation can be
computed as
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Substitution into the slow-roll expression for the amplitude
of the curvature power spectrum

AS! ≃
V3
!

12π2M6
PðV0

!Þ2
ðA14Þ

finally gives

11We note that for k ¼ 3, this formulation does not lead to a
stable minimum at Φ ¼ 0.
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Here r denotes the tensor-to-scalar ratio, and N! is the
number of e-folds between the horizon crossing of the pivot
scale k! and the end of inflation.
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where T is a volume modulus and ϕ is a matter like field.
Depending on the form of the superpotential, either T or ϕ
can play the role of the inflaton [82,89]. For example, the
Starobinsky model is derived from a simple Wess-Zumino-
like superpotential [88],
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when hTi ¼ 1=2. Here the inflaton mass, M is fixed in a
similar manner as is λ from the CMB normalization as
discussed below.
Alternatively, if hϕi ¼ 0 is fixed, the superpotential [90]
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yields the same potential given in Eq. (A9) and both
provide Planck-compatible completions for our potential
(4) at large field values [58]. In all of the above expressions,
we have worked in units of MP. In the remainder of this
Appendix, we will restore powers of MP.
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In order to determine ρend, one must find the inflaton
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equivalently _Φ2
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For k ¼ ð2; 3; 4Þ, this yields Φend ¼ ð0.78; 1.19; 1.50ÞMP,
respectively, which can be compared with the Starobinsky
result, Φend ¼ 0.62MP [63]. Recall in addition that ρend ¼
3
2VðΦendÞ so thatρend=λM4

P ¼ð0.86;2.0;4.8Þ for k¼ð2;3;4Þ.
On the inflationary plateau, a series expansion of the

inflationary potential allows us to relate the number of
e-folds with the potential and its derivative. Namely,
with [58]

VðΦÞ
λM4

P6
k=2 ¼ 1 − 2ke−

ffiffi
2
3

p
Φ
MP þOðk2e−2

ffiffi
2
3

p
Φ
MPÞ; ðA12Þ

the number of e-folds in the slow-roll approximation can be
computed as

N! ≃
1

M2
P

Z
Φ!

Φend

dΦ
VðΦÞ
V 0ðΦÞ

≃
ffiffiffi
3

2

r
V!

MPV 0
!
: ðA13Þ

Substitution into the slow-roll expression for the amplitude
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11We note that for k ¼ 3, this formulation does not lead to a
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scale k! and the end of inflation.
Many of these models can be constructed [88] from no-

scale supergravity [60–62] defined by a Kähler potential of
the form

K ¼ −3 ln
!
T þ T̄ − jϕj2

3

"
; ðA2Þ
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when hTi ¼ 1=2. Here the inflaton mass, M is fixed in a
similar manner as is λ from the CMB normalization as
discussed below.
Alternatively, if hϕi ¼ 0 is fixed, the superpotential [90]
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yields the same potential given in Eq. (A9) and both
provide Planck-compatible completions for our potential
(4) at large field values [58]. In all of the above expressions,
we have worked in units of MP. In the remainder of this
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For k ¼ ð2; 3; 4Þ, this yields Φend ¼ ð0.78; 1.19; 1.50ÞMP,
respectively, which can be compared with the Starobinsky
result, Φend ¼ 0.62MP [63]. Recall in addition that ρend ¼
3
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Here r denotes the tensor-to-scalar ratio, and N! is the
number of e-folds between the horizon crossing of the pivot
scale k! and the end of inflation.
Many of these models can be constructed [88] from no-

scale supergravity [60–62] defined by a Kähler potential of
the form

K ¼ −3 ln
!
T þ T̄ − jϕj2
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"
; ðA2Þ

where T is a volume modulus and ϕ is a matter like field.
Depending on the form of the superpotential, either T or ϕ
can play the role of the inflaton [82,89]. For example, the
Starobinsky model is derived from a simple Wess-Zumino-
like superpotential [88],
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when hTi ¼ 1=2. Here the inflaton mass, M is fixed in a
similar manner as is λ from the CMB normalization as
discussed below.
Alternatively, if hϕi ¼ 0 is fixed, the superpotential [90]
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yields the same Starobinsky potential (A5) when
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A similar class of models sharing the attractor points
in (A1) can be derived from a superpotential of the form
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The resulting scalar potential is then
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yields the same potential given in Eq. (A9) and both
provide Planck-compatible completions for our potential
(4) at large field values [58]. In all of the above expressions,
we have worked in units of MP. In the remainder of this
Appendix, we will restore powers of MP.

11

2. Normalization of the potential

In order to determine ρend, one must find the inflaton
field value at the end of inflation, defined where ä ¼ 0 or
equivalently _Φ2

end ¼ VðΦÞ [63]. An approximate solution
for this condition yields using (A9)
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For k ¼ ð2; 3; 4Þ, this yields Φend ¼ ð0.78; 1.19; 1.50ÞMP,
respectively, which can be compared with the Starobinsky
result, Φend ¼ 0.62MP [63]. Recall in addition that ρend ¼
3
2VðΦendÞ so thatρend=λM4

P ¼ð0.86;2.0;4.8Þ for k¼ð2;3;4Þ.
On the inflationary plateau, a series expansion of the

inflationary potential allows us to relate the number of
e-folds with the potential and its derivative. Namely,
with [58]
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the number of e-folds in the slow-roll approximation can be
computed as
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Substitution into the slow-roll expression for the amplitude
of the curvature power spectrum

AS! ≃
V3
!

12π2M6
PðV0

!Þ2
ðA14Þ

finally gives

11We note that for k ¼ 3, this formulation does not lead to a
stable minimum at Φ ¼ 0.
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FIG. 2. Illustrations of the impacts of the BICEP/Keck and other constraints on ↵-Starobinsky models (upper panels) and T

models (lower panels) based on the analysis of [4]. The left panels compare the observational 68% and 95% C.L. constraints in

the (ns, r) plane (using pivot scales 0.05 for both r and ns) with the model predictions for di↵erent numbers of e-folds N50,60,

showing also the predictions for an inflaton coupling y = 1, the constraints from Treh � TBBN and TEW, and the constraints if

the LSP mass is 100GeV. The right panels display (y,N) planes (using the pivot scale 0.05), showing the relations between y
and Treh and between Nand ns, and the values ↵ = 0.1, 1, 5 (dashed, solid and dotted black lines). We also include lower limits

on y from BBN (red line), Treh = TEW (grey line), and gravitino production (purple line) for ↵ = 1, which increase for smaller

↵, and 68% and 95% C.L. lower limits on N0.05 from BICEP/Keck and other data (blue lines).

reheating, for either fermionic or bosonic inflaton decay
products [44–48]. However, this e↵ect is not necessarily
reflected in the CMB observables. In the case of fermionic
preheating, the expansion history during reheating (and
hence wint and ⇢rad) is not a↵ected unless y ⇠ O(1). The
resulting Pauli suppression of particle production sim-
ply reduces the energy density of radiation relative to
the value predicted by (18) for a time much shorter than
the duration of reheating [48]. Hence our results for N⇤
shown in the left panels of Fig. 1 would be mostly un-
changed in this fermionic case. In the case of bosonic pre-
heating, the e�ciency of non-perturbative particle pro-
duction depends on the resonance band structure of the

coupling. If the backreaction regime is reached, transient
radiation-dominated stages can occur during reheating,
modifying wint and hence our predictions [48, 49]. How-
ever, we do not delve here into this model-dependent
issue. Finally, for attractors with quadratic minima,
the self-interaction of the inflaton does not disrupt the
matter-like oscillation of the inflaton condensate during
reheating [50].

Turning to the future, we note that the experiments
CMB-S4 [51] and LiteBIRD [52] will target primarily the
search for B-modes in the CMB and will impose strong
constraints on r, with the potential to reduce substan-

-3ln →-3α ln

k=2
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dependent on the energy of the primordial plasma. It is
crucial, therefore, to treat the interactions in the early
Universe with great care, especially if one wants to take into
account noninstantaneous reheating [42,48–51] or thermal-
ization [52–56] after inflation.
Typically, after the period of exponential expansion

has ended, the reheating process takes place in a matter-
dominated background of inflaton oscillations. As the
inflaton begins to decay, the decay products begin to
thermalize and the temperature of this dilute plasma climbs
quickly to a maximum temperature, Tmax [42,48–50].
Subsequently, the temperature falls as T ∝ a−

3
8, where a

is the cosmological scale factor, until the Universe becomes
dominated by the radiation products at Treh. If the dark
matter production cross section scales as Tn, the dark matter
density is determined by Treh for n < 6 and is sensitive to
Tmax for n ≥ 6.
In the reheating scenario described above, it commonly

assumed that the inflaton undergoes classic harmonic
oscillations about a minimum produced by a quadratic
potential. If, however, the oscillations are anharmonic, and
result from a potential other than a quadratic potential, the
equation of state during reheating will differ from that of a
matter-dominated background and will affect the evolution
of the thermalization process [57].
In this paper, we consider, the effect of oscillations

produced by a potential of the form VðΦÞ ¼ λ
Mk−4 jΦjk.

These oscillations alter the equation of state during reheating
and affect the evolution of temperature as the Universe
expands. It is important to note that for k ≠ 2, the mass of the
inflaton is not constant, and hence the change in the equation
of state also affects the inflaton decay width, and as a
consequence, the evolution of the temperature of the pri-
mordial plasma. We will show that the resulting dark matter
abundance has increased sensitivity to Tmax when k > 2.
It is also possible to produce dark matter with masses in

excess of the reheating temperature (so long as its mass is
less than Tmax). As the temperature decreases from
T ¼ Tmax, dark matter particles are produced until reheat-
ing is complete. However, if the dark matter mass is
mDM > Treh, production ends at T ≃mDM and the dark
matter abundance is suppressed.
The paper is organized as follows. In Sec. II, we

generalize the reheating process in the case of an inflaton
potential VðΦÞ ∝ Φk, analyzing in detail its consequences
in noninstantaneous reheating. In Sec. III, we apply our
results to the computation of dark matter production from
thermal bath scattering and inflaton decay. We consider
dark matter masses below and above the reheating temper-
ature. We present our conclusions in Sec. IV.

II. THE REHEATING PROCESS

A. The context

The process of reheating is necessarily model dependent.
It will depend not only on the inflaton potential, but also on

the coupling of the inflaton to other fields. Clearly, some
coupling to Standard Model fields is necessary to produce a
thermal bath. The inflaton may also couple directly to a
dark sector, or dark matter may be produced out of the
thermal bath. Depending on the coupling of the dark matter
with the Standard Model, the dark matter may or may not
ever come into thermal equilibrium. The reheating process
itself may be disassociated from the period of inflation.
That is, the part of the potential that drives inflation (the
exponential expansion) may be distinct from the part of the
potential which leads to a slow reheating process in which
energy stored in scalar field oscillations is converted to the
thermal bath.
In this paper, we will indeed separate the inflationary era

from reheating. As an example of this type of model, we
consider T-attractor models [58] (described in more detail
below). In these models, the inflationary part of the
potential is nearly flat as in the Starobinsky model [59].
However, there is considerable freedom for the shape of the
potential about the minimum. If inflaton decay is suffi-
ciently slow, the details of reheating and particle production
depend on the potential which controls the oscillatory
behavior of the inflaton and the equation of state during
reheating.
We start with the energy density and pressure of a scalar

field which can be extracted from the stress-energy tensor,
Tμν, yielding the standard expressions

ρΦ ¼ 1

2
_Φ2 þ VðΦÞ; PΦ ¼ 1

2
_Φ2 − VðΦÞ; ð1Þ

where we have neglected contributions from spatial gra-
dients. Conservation of Tμν leads to

_ρΦ þ 3HðρΦ þ PΦÞ ¼ 0; ð2Þ

whereH ¼ _a
a is the Hubble parameter. Inserting Eq. (1) into

Eq. (2), we obtain the equation of motion for the inflaton

Φ̈þ 3H _Φþ V 0ðΦÞ ¼ 0; ð3Þ

where V 0ðΦÞ ¼ ∂ΦVðΦÞ.
As noted above, we will assume a generic power-law

form for the potential about the minimum

VðΦÞ ¼ λ
jΦjk

Mk−4 : ð4Þ

Here, M is some high energy mass scale, which we can
take, without loss of generality, to be the Planck scale,1 MP.
This form of the potential can be thought of as the small
field limit of T-attractor models [58] and can be derived in

1We will use throughout our work MP ¼ 2.4 × 1018 GeV for
the reduced Planck mass.
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dependent on the energy of the primordial plasma. It is
crucial, therefore, to treat the interactions in the early
Universe with great care, especially if one wants to take into
account noninstantaneous reheating [42,48–51] or thermal-
ization [52–56] after inflation.
Typically, after the period of exponential expansion

has ended, the reheating process takes place in a matter-
dominated background of inflaton oscillations. As the
inflaton begins to decay, the decay products begin to
thermalize and the temperature of this dilute plasma climbs
quickly to a maximum temperature, Tmax [42,48–50].
Subsequently, the temperature falls as T ∝ a−

3
8, where a

is the cosmological scale factor, until the Universe becomes
dominated by the radiation products at Treh. If the dark
matter production cross section scales as Tn, the dark matter
density is determined by Treh for n < 6 and is sensitive to
Tmax for n ≥ 6.
In the reheating scenario described above, it commonly

assumed that the inflaton undergoes classic harmonic
oscillations about a minimum produced by a quadratic
potential. If, however, the oscillations are anharmonic, and
result from a potential other than a quadratic potential, the
equation of state during reheating will differ from that of a
matter-dominated background and will affect the evolution
of the thermalization process [57].
In this paper, we consider, the effect of oscillations

produced by a potential of the form VðΦÞ ¼ λ
Mk−4 jΦjk.

These oscillations alter the equation of state during reheating
and affect the evolution of temperature as the Universe
expands. It is important to note that for k ≠ 2, the mass of the
inflaton is not constant, and hence the change in the equation
of state also affects the inflaton decay width, and as a
consequence, the evolution of the temperature of the pri-
mordial plasma. We will show that the resulting dark matter
abundance has increased sensitivity to Tmax when k > 2.
It is also possible to produce dark matter with masses in

excess of the reheating temperature (so long as its mass is
less than Tmax). As the temperature decreases from
T ¼ Tmax, dark matter particles are produced until reheat-
ing is complete. However, if the dark matter mass is
mDM > Treh, production ends at T ≃mDM and the dark
matter abundance is suppressed.
The paper is organized as follows. In Sec. II, we

generalize the reheating process in the case of an inflaton
potential VðΦÞ ∝ Φk, analyzing in detail its consequences
in noninstantaneous reheating. In Sec. III, we apply our
results to the computation of dark matter production from
thermal bath scattering and inflaton decay. We consider
dark matter masses below and above the reheating temper-
ature. We present our conclusions in Sec. IV.

II. THE REHEATING PROCESS

A. The context

The process of reheating is necessarily model dependent.
It will depend not only on the inflaton potential, but also on

the coupling of the inflaton to other fields. Clearly, some
coupling to Standard Model fields is necessary to produce a
thermal bath. The inflaton may also couple directly to a
dark sector, or dark matter may be produced out of the
thermal bath. Depending on the coupling of the dark matter
with the Standard Model, the dark matter may or may not
ever come into thermal equilibrium. The reheating process
itself may be disassociated from the period of inflation.
That is, the part of the potential that drives inflation (the
exponential expansion) may be distinct from the part of the
potential which leads to a slow reheating process in which
energy stored in scalar field oscillations is converted to the
thermal bath.
In this paper, we will indeed separate the inflationary era

from reheating. As an example of this type of model, we
consider T-attractor models [58] (described in more detail
below). In these models, the inflationary part of the
potential is nearly flat as in the Starobinsky model [59].
However, there is considerable freedom for the shape of the
potential about the minimum. If inflaton decay is suffi-
ciently slow, the details of reheating and particle production
depend on the potential which controls the oscillatory
behavior of the inflaton and the equation of state during
reheating.
We start with the energy density and pressure of a scalar

field which can be extracted from the stress-energy tensor,
Tμν, yielding the standard expressions

ρΦ ¼ 1

2
_Φ2 þ VðΦÞ; PΦ ¼ 1

2
_Φ2 − VðΦÞ; ð1Þ

where we have neglected contributions from spatial gra-
dients. Conservation of Tμν leads to

_ρΦ þ 3HðρΦ þ PΦÞ ¼ 0; ð2Þ

whereH ¼ _a
a is the Hubble parameter. Inserting Eq. (1) into

Eq. (2), we obtain the equation of motion for the inflaton

Φ̈þ 3H _Φþ V 0ðΦÞ ¼ 0; ð3Þ

where V 0ðΦÞ ¼ ∂ΦVðΦÞ.
As noted above, we will assume a generic power-law

form for the potential about the minimum

VðΦÞ ¼ λ
jΦjk

Mk−4 : ð4Þ

Here, M is some high energy mass scale, which we can
take, without loss of generality, to be the Planck scale,1 MP.
This form of the potential can be thought of as the small
field limit of T-attractor models [58] and can be derived in

1We will use throughout our work MP ¼ 2.4 × 1018 GeV for
the reduced Planck mass.
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dependent on the energy of the primordial plasma. It is
crucial, therefore, to treat the interactions in the early
Universe with great care, especially if one wants to take into
account noninstantaneous reheating [42,48–51] or thermal-
ization [52–56] after inflation.
Typically, after the period of exponential expansion

has ended, the reheating process takes place in a matter-
dominated background of inflaton oscillations. As the
inflaton begins to decay, the decay products begin to
thermalize and the temperature of this dilute plasma climbs
quickly to a maximum temperature, Tmax [42,48–50].
Subsequently, the temperature falls as T ∝ a−

3
8, where a

is the cosmological scale factor, until the Universe becomes
dominated by the radiation products at Treh. If the dark
matter production cross section scales as Tn, the dark matter
density is determined by Treh for n < 6 and is sensitive to
Tmax for n ≥ 6.
In the reheating scenario described above, it commonly

assumed that the inflaton undergoes classic harmonic
oscillations about a minimum produced by a quadratic
potential. If, however, the oscillations are anharmonic, and
result from a potential other than a quadratic potential, the
equation of state during reheating will differ from that of a
matter-dominated background and will affect the evolution
of the thermalization process [57].
In this paper, we consider, the effect of oscillations

produced by a potential of the form VðΦÞ ¼ λ
Mk−4 jΦjk.

These oscillations alter the equation of state during reheating
and affect the evolution of temperature as the Universe
expands. It is important to note that for k ≠ 2, the mass of the
inflaton is not constant, and hence the change in the equation
of state also affects the inflaton decay width, and as a
consequence, the evolution of the temperature of the pri-
mordial plasma. We will show that the resulting dark matter
abundance has increased sensitivity to Tmax when k > 2.
It is also possible to produce dark matter with masses in

excess of the reheating temperature (so long as its mass is
less than Tmax). As the temperature decreases from
T ¼ Tmax, dark matter particles are produced until reheat-
ing is complete. However, if the dark matter mass is
mDM > Treh, production ends at T ≃mDM and the dark
matter abundance is suppressed.
The paper is organized as follows. In Sec. II, we

generalize the reheating process in the case of an inflaton
potential VðΦÞ ∝ Φk, analyzing in detail its consequences
in noninstantaneous reheating. In Sec. III, we apply our
results to the computation of dark matter production from
thermal bath scattering and inflaton decay. We consider
dark matter masses below and above the reheating temper-
ature. We present our conclusions in Sec. IV.

II. THE REHEATING PROCESS

A. The context

The process of reheating is necessarily model dependent.
It will depend not only on the inflaton potential, but also on

the coupling of the inflaton to other fields. Clearly, some
coupling to Standard Model fields is necessary to produce a
thermal bath. The inflaton may also couple directly to a
dark sector, or dark matter may be produced out of the
thermal bath. Depending on the coupling of the dark matter
with the Standard Model, the dark matter may or may not
ever come into thermal equilibrium. The reheating process
itself may be disassociated from the period of inflation.
That is, the part of the potential that drives inflation (the
exponential expansion) may be distinct from the part of the
potential which leads to a slow reheating process in which
energy stored in scalar field oscillations is converted to the
thermal bath.
In this paper, we will indeed separate the inflationary era

from reheating. As an example of this type of model, we
consider T-attractor models [58] (described in more detail
below). In these models, the inflationary part of the
potential is nearly flat as in the Starobinsky model [59].
However, there is considerable freedom for the shape of the
potential about the minimum. If inflaton decay is suffi-
ciently slow, the details of reheating and particle production
depend on the potential which controls the oscillatory
behavior of the inflaton and the equation of state during
reheating.
We start with the energy density and pressure of a scalar

field which can be extracted from the stress-energy tensor,
Tμν, yielding the standard expressions

ρΦ ¼ 1

2
_Φ2 þ VðΦÞ; PΦ ¼ 1

2
_Φ2 − VðΦÞ; ð1Þ

where we have neglected contributions from spatial gra-
dients. Conservation of Tμν leads to

_ρΦ þ 3HðρΦ þ PΦÞ ¼ 0; ð2Þ

whereH ¼ _a
a is the Hubble parameter. Inserting Eq. (1) into

Eq. (2), we obtain the equation of motion for the inflaton

Φ̈þ 3H _Φþ V 0ðΦÞ ¼ 0; ð3Þ

where V 0ðΦÞ ¼ ∂ΦVðΦÞ.
As noted above, we will assume a generic power-law

form for the potential about the minimum

VðΦÞ ¼ λ
jΦjk

Mk−4 : ð4Þ

Here, M is some high energy mass scale, which we can
take, without loss of generality, to be the Planck scale,1 MP.
This form of the potential can be thought of as the small
field limit of T-attractor models [58] and can be derived in

1We will use throughout our work MP ¼ 2.4 × 1018 GeV for
the reduced Planck mass.
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dependent on the energy of the primordial plasma. It is
crucial, therefore, to treat the interactions in the early
Universe with great care, especially if one wants to take into
account noninstantaneous reheating [42,48–51] or thermal-
ization [52–56] after inflation.
Typically, after the period of exponential expansion

has ended, the reheating process takes place in a matter-
dominated background of inflaton oscillations. As the
inflaton begins to decay, the decay products begin to
thermalize and the temperature of this dilute plasma climbs
quickly to a maximum temperature, Tmax [42,48–50].
Subsequently, the temperature falls as T ∝ a−

3
8, where a

is the cosmological scale factor, until the Universe becomes
dominated by the radiation products at Treh. If the dark
matter production cross section scales as Tn, the dark matter
density is determined by Treh for n < 6 and is sensitive to
Tmax for n ≥ 6.
In the reheating scenario described above, it commonly

assumed that the inflaton undergoes classic harmonic
oscillations about a minimum produced by a quadratic
potential. If, however, the oscillations are anharmonic, and
result from a potential other than a quadratic potential, the
equation of state during reheating will differ from that of a
matter-dominated background and will affect the evolution
of the thermalization process [57].
In this paper, we consider, the effect of oscillations

produced by a potential of the form VðΦÞ ¼ λ
Mk−4 jΦjk.

These oscillations alter the equation of state during reheating
and affect the evolution of temperature as the Universe
expands. It is important to note that for k ≠ 2, the mass of the
inflaton is not constant, and hence the change in the equation
of state also affects the inflaton decay width, and as a
consequence, the evolution of the temperature of the pri-
mordial plasma. We will show that the resulting dark matter
abundance has increased sensitivity to Tmax when k > 2.
It is also possible to produce dark matter with masses in

excess of the reheating temperature (so long as its mass is
less than Tmax). As the temperature decreases from
T ¼ Tmax, dark matter particles are produced until reheat-
ing is complete. However, if the dark matter mass is
mDM > Treh, production ends at T ≃mDM and the dark
matter abundance is suppressed.
The paper is organized as follows. In Sec. II, we

generalize the reheating process in the case of an inflaton
potential VðΦÞ ∝ Φk, analyzing in detail its consequences
in noninstantaneous reheating. In Sec. III, we apply our
results to the computation of dark matter production from
thermal bath scattering and inflaton decay. We consider
dark matter masses below and above the reheating temper-
ature. We present our conclusions in Sec. IV.
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It will depend not only on the inflaton potential, but also on

the coupling of the inflaton to other fields. Clearly, some
coupling to Standard Model fields is necessary to produce a
thermal bath. The inflaton may also couple directly to a
dark sector, or dark matter may be produced out of the
thermal bath. Depending on the coupling of the dark matter
with the Standard Model, the dark matter may or may not
ever come into thermal equilibrium. The reheating process
itself may be disassociated from the period of inflation.
That is, the part of the potential that drives inflation (the
exponential expansion) may be distinct from the part of the
potential which leads to a slow reheating process in which
energy stored in scalar field oscillations is converted to the
thermal bath.
In this paper, we will indeed separate the inflationary era

from reheating. As an example of this type of model, we
consider T-attractor models [58] (described in more detail
below). In these models, the inflationary part of the
potential is nearly flat as in the Starobinsky model [59].
However, there is considerable freedom for the shape of the
potential about the minimum. If inflaton decay is suffi-
ciently slow, the details of reheating and particle production
depend on the potential which controls the oscillatory
behavior of the inflaton and the equation of state during
reheating.
We start with the energy density and pressure of a scalar

field which can be extracted from the stress-energy tensor,
Tμν, yielding the standard expressions

ρΦ ¼ 1

2
_Φ2 þ VðΦÞ; PΦ ¼ 1

2
_Φ2 − VðΦÞ; ð1Þ

where we have neglected contributions from spatial gra-
dients. Conservation of Tμν leads to

_ρΦ þ 3HðρΦ þ PΦÞ ¼ 0; ð2Þ

whereH ¼ _a
a is the Hubble parameter. Inserting Eq. (1) into

Eq. (2), we obtain the equation of motion for the inflaton

Φ̈þ 3H _Φþ V 0ðΦÞ ¼ 0; ð3Þ

where V 0ðΦÞ ¼ ∂ΦVðΦÞ.
As noted above, we will assume a generic power-law

form for the potential about the minimum

VðΦÞ ¼ λ
jΦjk

Mk−4 : ð4Þ

Here, M is some high energy mass scale, which we can
take, without loss of generality, to be the Planck scale,1 MP.
This form of the potential can be thought of as the small
field limit of T-attractor models [58] and can be derived in

1We will use throughout our work MP ¼ 2.4 × 1018 GeV for
the reduced Planck mass.
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dependent on the energy of the primordial plasma. It is
crucial, therefore, to treat the interactions in the early
Universe with great care, especially if one wants to take into
account noninstantaneous reheating [42,48–51] or thermal-
ization [52–56] after inflation.
Typically, after the period of exponential expansion

has ended, the reheating process takes place in a matter-
dominated background of inflaton oscillations. As the
inflaton begins to decay, the decay products begin to
thermalize and the temperature of this dilute plasma climbs
quickly to a maximum temperature, Tmax [42,48–50].
Subsequently, the temperature falls as T ∝ a−
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is the cosmological scale factor, until the Universe becomes
dominated by the radiation products at Treh. If the dark
matter production cross section scales as Tn, the dark matter
density is determined by Treh for n < 6 and is sensitive to
Tmax for n ≥ 6.
In the reheating scenario described above, it commonly

assumed that the inflaton undergoes classic harmonic
oscillations about a minimum produced by a quadratic
potential. If, however, the oscillations are anharmonic, and
result from a potential other than a quadratic potential, the
equation of state during reheating will differ from that of a
matter-dominated background and will affect the evolution
of the thermalization process [57].
In this paper, we consider, the effect of oscillations

produced by a potential of the form VðΦÞ ¼ λ
Mk−4 jΦjk.

These oscillations alter the equation of state during reheating
and affect the evolution of temperature as the Universe
expands. It is important to note that for k ≠ 2, the mass of the
inflaton is not constant, and hence the change in the equation
of state also affects the inflaton decay width, and as a
consequence, the evolution of the temperature of the pri-
mordial plasma. We will show that the resulting dark matter
abundance has increased sensitivity to Tmax when k > 2.
It is also possible to produce dark matter with masses in

excess of the reheating temperature (so long as its mass is
less than Tmax). As the temperature decreases from
T ¼ Tmax, dark matter particles are produced until reheat-
ing is complete. However, if the dark matter mass is
mDM > Treh, production ends at T ≃mDM and the dark
matter abundance is suppressed.
The paper is organized as follows. In Sec. II, we

generalize the reheating process in the case of an inflaton
potential VðΦÞ ∝ Φk, analyzing in detail its consequences
in noninstantaneous reheating. In Sec. III, we apply our
results to the computation of dark matter production from
thermal bath scattering and inflaton decay. We consider
dark matter masses below and above the reheating temper-
ature. We present our conclusions in Sec. IV.
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ever come into thermal equilibrium. The reheating process
itself may be disassociated from the period of inflation.
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exponential expansion) may be distinct from the part of the
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from reheating. As an example of this type of model, we
consider T-attractor models [58] (described in more detail
below). In these models, the inflationary part of the
potential is nearly flat as in the Starobinsky model [59].
However, there is considerable freedom for the shape of the
potential about the minimum. If inflaton decay is suffi-
ciently slow, the details of reheating and particle production
depend on the potential which controls the oscillatory
behavior of the inflaton and the equation of state during
reheating.
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where V 0ðΦÞ ¼ ∂ΦVðΦÞ.
As noted above, we will assume a generic power-law

form for the potential about the minimum

VðΦÞ ¼ λ
jΦjk
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Here, M is some high energy mass scale, which we can
take, without loss of generality, to be the Planck scale,1 MP.
This form of the potential can be thought of as the small
field limit of T-attractor models [58] and can be derived in
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dependent on the energy of the primordial plasma. It is
crucial, therefore, to treat the interactions in the early
Universe with great care, especially if one wants to take into
account noninstantaneous reheating [42,48–51] or thermal-
ization [52–56] after inflation.
Typically, after the period of exponential expansion

has ended, the reheating process takes place in a matter-
dominated background of inflaton oscillations. As the
inflaton begins to decay, the decay products begin to
thermalize and the temperature of this dilute plasma climbs
quickly to a maximum temperature, Tmax [42,48–50].
Subsequently, the temperature falls as T ∝ a−

3
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is the cosmological scale factor, until the Universe becomes
dominated by the radiation products at Treh. If the dark
matter production cross section scales as Tn, the dark matter
density is determined by Treh for n < 6 and is sensitive to
Tmax for n ≥ 6.
In the reheating scenario described above, it commonly

assumed that the inflaton undergoes classic harmonic
oscillations about a minimum produced by a quadratic
potential. If, however, the oscillations are anharmonic, and
result from a potential other than a quadratic potential, the
equation of state during reheating will differ from that of a
matter-dominated background and will affect the evolution
of the thermalization process [57].
In this paper, we consider, the effect of oscillations

produced by a potential of the form VðΦÞ ¼ λ
Mk−4 jΦjk.

These oscillations alter the equation of state during reheating
and affect the evolution of temperature as the Universe
expands. It is important to note that for k ≠ 2, the mass of the
inflaton is not constant, and hence the change in the equation
of state also affects the inflaton decay width, and as a
consequence, the evolution of the temperature of the pri-
mordial plasma. We will show that the resulting dark matter
abundance has increased sensitivity to Tmax when k > 2.
It is also possible to produce dark matter with masses in

excess of the reheating temperature (so long as its mass is
less than Tmax). As the temperature decreases from
T ¼ Tmax, dark matter particles are produced until reheat-
ing is complete. However, if the dark matter mass is
mDM > Treh, production ends at T ≃mDM and the dark
matter abundance is suppressed.
The paper is organized as follows. In Sec. II, we

generalize the reheating process in the case of an inflaton
potential VðΦÞ ∝ Φk, analyzing in detail its consequences
in noninstantaneous reheating. In Sec. III, we apply our
results to the computation of dark matter production from
thermal bath scattering and inflaton decay. We consider
dark matter masses below and above the reheating temper-
ature. We present our conclusions in Sec. IV.
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thermal bath. The inflaton may also couple directly to a
dark sector, or dark matter may be produced out of the
thermal bath. Depending on the coupling of the dark matter
with the Standard Model, the dark matter may or may not
ever come into thermal equilibrium. The reheating process
itself may be disassociated from the period of inflation.
That is, the part of the potential that drives inflation (the
exponential expansion) may be distinct from the part of the
potential which leads to a slow reheating process in which
energy stored in scalar field oscillations is converted to the
thermal bath.
In this paper, we will indeed separate the inflationary era

from reheating. As an example of this type of model, we
consider T-attractor models [58] (described in more detail
below). In these models, the inflationary part of the
potential is nearly flat as in the Starobinsky model [59].
However, there is considerable freedom for the shape of the
potential about the minimum. If inflaton decay is suffi-
ciently slow, the details of reheating and particle production
depend on the potential which controls the oscillatory
behavior of the inflaton and the equation of state during
reheating.
We start with the energy density and pressure of a scalar

field which can be extracted from the stress-energy tensor,
Tμν, yielding the standard expressions

ρΦ ¼ 1
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_Φ2 þ VðΦÞ; PΦ ¼ 1
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_Φ2 − VðΦÞ; ð1Þ

where we have neglected contributions from spatial gra-
dients. Conservation of Tμν leads to

_ρΦ þ 3HðρΦ þ PΦÞ ¼ 0; ð2Þ

whereH ¼ _a
a is the Hubble parameter. Inserting Eq. (1) into

Eq. (2), we obtain the equation of motion for the inflaton

Φ̈þ 3H _Φþ V 0ðΦÞ ¼ 0; ð3Þ

where V 0ðΦÞ ¼ ∂ΦVðΦÞ.
As noted above, we will assume a generic power-law

form for the potential about the minimum

VðΦÞ ¼ λ
jΦjk

Mk−4 : ð4Þ

Here, M is some high energy mass scale, which we can
take, without loss of generality, to be the Planck scale,1 MP.
This form of the potential can be thought of as the small
field limit of T-attractor models [58] and can be derived in

1We will use throughout our work MP ¼ 2.4 × 1018 GeV for
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dependent on the energy of the primordial plasma. It is
crucial, therefore, to treat the interactions in the early
Universe with great care, especially if one wants to take into
account noninstantaneous reheating [42,48–51] or thermal-
ization [52–56] after inflation.
Typically, after the period of exponential expansion

has ended, the reheating process takes place in a matter-
dominated background of inflaton oscillations. As the
inflaton begins to decay, the decay products begin to
thermalize and the temperature of this dilute plasma climbs
quickly to a maximum temperature, Tmax [42,48–50].
Subsequently, the temperature falls as T ∝ a−

3
8, where a

is the cosmological scale factor, until the Universe becomes
dominated by the radiation products at Treh. If the dark
matter production cross section scales as Tn, the dark matter
density is determined by Treh for n < 6 and is sensitive to
Tmax for n ≥ 6.
In the reheating scenario described above, it commonly

assumed that the inflaton undergoes classic harmonic
oscillations about a minimum produced by a quadratic
potential. If, however, the oscillations are anharmonic, and
result from a potential other than a quadratic potential, the
equation of state during reheating will differ from that of a
matter-dominated background and will affect the evolution
of the thermalization process [57].
In this paper, we consider, the effect of oscillations

produced by a potential of the form VðΦÞ ¼ λ
Mk−4 jΦjk.

These oscillations alter the equation of state during reheating
and affect the evolution of temperature as the Universe
expands. It is important to note that for k ≠ 2, the mass of the
inflaton is not constant, and hence the change in the equation
of state also affects the inflaton decay width, and as a
consequence, the evolution of the temperature of the pri-
mordial plasma. We will show that the resulting dark matter
abundance has increased sensitivity to Tmax when k > 2.
It is also possible to produce dark matter with masses in

excess of the reheating temperature (so long as its mass is
less than Tmax). As the temperature decreases from
T ¼ Tmax, dark matter particles are produced until reheat-
ing is complete. However, if the dark matter mass is
mDM > Treh, production ends at T ≃mDM and the dark
matter abundance is suppressed.
The paper is organized as follows. In Sec. II, we

generalize the reheating process in the case of an inflaton
potential VðΦÞ ∝ Φk, analyzing in detail its consequences
in noninstantaneous reheating. In Sec. III, we apply our
results to the computation of dark matter production from
thermal bath scattering and inflaton decay. We consider
dark matter masses below and above the reheating temper-
ature. We present our conclusions in Sec. IV.

II. THE REHEATING PROCESS

A. The context

The process of reheating is necessarily model dependent.
It will depend not only on the inflaton potential, but also on

the coupling of the inflaton to other fields. Clearly, some
coupling to Standard Model fields is necessary to produce a
thermal bath. The inflaton may also couple directly to a
dark sector, or dark matter may be produced out of the
thermal bath. Depending on the coupling of the dark matter
with the Standard Model, the dark matter may or may not
ever come into thermal equilibrium. The reheating process
itself may be disassociated from the period of inflation.
That is, the part of the potential that drives inflation (the
exponential expansion) may be distinct from the part of the
potential which leads to a slow reheating process in which
energy stored in scalar field oscillations is converted to the
thermal bath.
In this paper, we will indeed separate the inflationary era

from reheating. As an example of this type of model, we
consider T-attractor models [58] (described in more detail
below). In these models, the inflationary part of the
potential is nearly flat as in the Starobinsky model [59].
However, there is considerable freedom for the shape of the
potential about the minimum. If inflaton decay is suffi-
ciently slow, the details of reheating and particle production
depend on the potential which controls the oscillatory
behavior of the inflaton and the equation of state during
reheating.
We start with the energy density and pressure of a scalar

field which can be extracted from the stress-energy tensor,
Tμν, yielding the standard expressions

ρΦ ¼ 1

2
_Φ2 þ VðΦÞ; PΦ ¼ 1

2
_Φ2 − VðΦÞ; ð1Þ

where we have neglected contributions from spatial gra-
dients. Conservation of Tμν leads to

_ρΦ þ 3HðρΦ þ PΦÞ ¼ 0; ð2Þ

whereH ¼ _a
a is the Hubble parameter. Inserting Eq. (1) into

Eq. (2), we obtain the equation of motion for the inflaton

Φ̈þ 3H _Φþ V 0ðΦÞ ¼ 0; ð3Þ

where V 0ðΦÞ ¼ ∂ΦVðΦÞ.
As noted above, we will assume a generic power-law

form for the potential about the minimum

VðΦÞ ¼ λ
jΦjk

Mk−4 : ð4Þ

Here, M is some high energy mass scale, which we can
take, without loss of generality, to be the Planck scale,1 MP.
This form of the potential can be thought of as the small
field limit of T-attractor models [58] and can be derived in

1We will use throughout our work MP ¼ 2.4 × 1018 GeV for
the reduced Planck mass.
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dependent on the energy of the primordial plasma. It is
crucial, therefore, to treat the interactions in the early
Universe with great care, especially if one wants to take into
account noninstantaneous reheating [42,48–51] or thermal-
ization [52–56] after inflation.
Typically, after the period of exponential expansion

has ended, the reheating process takes place in a matter-
dominated background of inflaton oscillations. As the
inflaton begins to decay, the decay products begin to
thermalize and the temperature of this dilute plasma climbs
quickly to a maximum temperature, Tmax [42,48–50].
Subsequently, the temperature falls as T ∝ a−

3
8, where a

is the cosmological scale factor, until the Universe becomes
dominated by the radiation products at Treh. If the dark
matter production cross section scales as Tn, the dark matter
density is determined by Treh for n < 6 and is sensitive to
Tmax for n ≥ 6.
In the reheating scenario described above, it commonly

assumed that the inflaton undergoes classic harmonic
oscillations about a minimum produced by a quadratic
potential. If, however, the oscillations are anharmonic, and
result from a potential other than a quadratic potential, the
equation of state during reheating will differ from that of a
matter-dominated background and will affect the evolution
of the thermalization process [57].
In this paper, we consider, the effect of oscillations

produced by a potential of the form VðΦÞ ¼ λ
Mk−4 jΦjk.

These oscillations alter the equation of state during reheating
and affect the evolution of temperature as the Universe
expands. It is important to note that for k ≠ 2, the mass of the
inflaton is not constant, and hence the change in the equation
of state also affects the inflaton decay width, and as a
consequence, the evolution of the temperature of the pri-
mordial plasma. We will show that the resulting dark matter
abundance has increased sensitivity to Tmax when k > 2.
It is also possible to produce dark matter with masses in

excess of the reheating temperature (so long as its mass is
less than Tmax). As the temperature decreases from
T ¼ Tmax, dark matter particles are produced until reheat-
ing is complete. However, if the dark matter mass is
mDM > Treh, production ends at T ≃mDM and the dark
matter abundance is suppressed.
The paper is organized as follows. In Sec. II, we

generalize the reheating process in the case of an inflaton
potential VðΦÞ ∝ Φk, analyzing in detail its consequences
in noninstantaneous reheating. In Sec. III, we apply our
results to the computation of dark matter production from
thermal bath scattering and inflaton decay. We consider
dark matter masses below and above the reheating temper-
ature. We present our conclusions in Sec. IV.
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thermal bath. The inflaton may also couple directly to a
dark sector, or dark matter may be produced out of the
thermal bath. Depending on the coupling of the dark matter
with the Standard Model, the dark matter may or may not
ever come into thermal equilibrium. The reheating process
itself may be disassociated from the period of inflation.
That is, the part of the potential that drives inflation (the
exponential expansion) may be distinct from the part of the
potential which leads to a slow reheating process in which
energy stored in scalar field oscillations is converted to the
thermal bath.
In this paper, we will indeed separate the inflationary era

from reheating. As an example of this type of model, we
consider T-attractor models [58] (described in more detail
below). In these models, the inflationary part of the
potential is nearly flat as in the Starobinsky model [59].
However, there is considerable freedom for the shape of the
potential about the minimum. If inflaton decay is suffi-
ciently slow, the details of reheating and particle production
depend on the potential which controls the oscillatory
behavior of the inflaton and the equation of state during
reheating.
We start with the energy density and pressure of a scalar

field which can be extracted from the stress-energy tensor,
Tμν, yielding the standard expressions

ρΦ ¼ 1
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_Φ2 þ VðΦÞ; PΦ ¼ 1
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_Φ2 − VðΦÞ; ð1Þ

where we have neglected contributions from spatial gra-
dients. Conservation of Tμν leads to

_ρΦ þ 3HðρΦ þ PΦÞ ¼ 0; ð2Þ

whereH ¼ _a
a is the Hubble parameter. Inserting Eq. (1) into

Eq. (2), we obtain the equation of motion for the inflaton

Φ̈þ 3H _Φþ V 0ðΦÞ ¼ 0; ð3Þ

where V 0ðΦÞ ¼ ∂ΦVðΦÞ.
As noted above, we will assume a generic power-law

form for the potential about the minimum

VðΦÞ ¼ λ
jΦjk

Mk−4 : ð4Þ

Here, M is some high energy mass scale, which we can
take, without loss of generality, to be the Planck scale,1 MP.
This form of the potential can be thought of as the small
field limit of T-attractor models [58] and can be derived in

1We will use throughout our work MP ¼ 2.4 × 1018 GeV for
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dependent on the energy of the primordial plasma. It is
crucial, therefore, to treat the interactions in the early
Universe with great care, especially if one wants to take into
account noninstantaneous reheating [42,48–51] or thermal-
ization [52–56] after inflation.
Typically, after the period of exponential expansion

has ended, the reheating process takes place in a matter-
dominated background of inflaton oscillations. As the
inflaton begins to decay, the decay products begin to
thermalize and the temperature of this dilute plasma climbs
quickly to a maximum temperature, Tmax [42,48–50].
Subsequently, the temperature falls as T ∝ a−

3
8, where a

is the cosmological scale factor, until the Universe becomes
dominated by the radiation products at Treh. If the dark
matter production cross section scales as Tn, the dark matter
density is determined by Treh for n < 6 and is sensitive to
Tmax for n ≥ 6.
In the reheating scenario described above, it commonly

assumed that the inflaton undergoes classic harmonic
oscillations about a minimum produced by a quadratic
potential. If, however, the oscillations are anharmonic, and
result from a potential other than a quadratic potential, the
equation of state during reheating will differ from that of a
matter-dominated background and will affect the evolution
of the thermalization process [57].
In this paper, we consider, the effect of oscillations

produced by a potential of the form VðΦÞ ¼ λ
Mk−4 jΦjk.

These oscillations alter the equation of state during reheating
and affect the evolution of temperature as the Universe
expands. It is important to note that for k ≠ 2, the mass of the
inflaton is not constant, and hence the change in the equation
of state also affects the inflaton decay width, and as a
consequence, the evolution of the temperature of the pri-
mordial plasma. We will show that the resulting dark matter
abundance has increased sensitivity to Tmax when k > 2.
It is also possible to produce dark matter with masses in

excess of the reheating temperature (so long as its mass is
less than Tmax). As the temperature decreases from
T ¼ Tmax, dark matter particles are produced until reheat-
ing is complete. However, if the dark matter mass is
mDM > Treh, production ends at T ≃mDM and the dark
matter abundance is suppressed.
The paper is organized as follows. In Sec. II, we

generalize the reheating process in the case of an inflaton
potential VðΦÞ ∝ Φk, analyzing in detail its consequences
in noninstantaneous reheating. In Sec. III, we apply our
results to the computation of dark matter production from
thermal bath scattering and inflaton decay. We consider
dark matter masses below and above the reheating temper-
ature. We present our conclusions in Sec. IV.
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thermal bath. The inflaton may also couple directly to a
dark sector, or dark matter may be produced out of the
thermal bath. Depending on the coupling of the dark matter
with the Standard Model, the dark matter may or may not
ever come into thermal equilibrium. The reheating process
itself may be disassociated from the period of inflation.
That is, the part of the potential that drives inflation (the
exponential expansion) may be distinct from the part of the
potential which leads to a slow reheating process in which
energy stored in scalar field oscillations is converted to the
thermal bath.
In this paper, we will indeed separate the inflationary era

from reheating. As an example of this type of model, we
consider T-attractor models [58] (described in more detail
below). In these models, the inflationary part of the
potential is nearly flat as in the Starobinsky model [59].
However, there is considerable freedom for the shape of the
potential about the minimum. If inflaton decay is suffi-
ciently slow, the details of reheating and particle production
depend on the potential which controls the oscillatory
behavior of the inflaton and the equation of state during
reheating.
We start with the energy density and pressure of a scalar

field which can be extracted from the stress-energy tensor,
Tμν, yielding the standard expressions

ρΦ ¼ 1

2
_Φ2 þ VðΦÞ; PΦ ¼ 1

2
_Φ2 − VðΦÞ; ð1Þ

where we have neglected contributions from spatial gra-
dients. Conservation of Tμν leads to

_ρΦ þ 3HðρΦ þ PΦÞ ¼ 0; ð2Þ

whereH ¼ _a
a is the Hubble parameter. Inserting Eq. (1) into

Eq. (2), we obtain the equation of motion for the inflaton

Φ̈þ 3H _Φþ V 0ðΦÞ ¼ 0; ð3Þ

where V 0ðΦÞ ¼ ∂ΦVðΦÞ.
As noted above, we will assume a generic power-law

form for the potential about the minimum

VðΦÞ ¼ λ
jΦjk

Mk−4 : ð4Þ

Here, M is some high energy mass scale, which we can
take, without loss of generality, to be the Planck scale,1 MP.
This form of the potential can be thought of as the small
field limit of T-attractor models [58] and can be derived in

1We will use throughout our work MP ¼ 2.4 × 1018 GeV for
the reduced Planck mass.
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dependent on the energy of the primordial plasma. It is
crucial, therefore, to treat the interactions in the early
Universe with great care, especially if one wants to take into
account noninstantaneous reheating [42,48–51] or thermal-
ization [52–56] after inflation.
Typically, after the period of exponential expansion

has ended, the reheating process takes place in a matter-
dominated background of inflaton oscillations. As the
inflaton begins to decay, the decay products begin to
thermalize and the temperature of this dilute plasma climbs
quickly to a maximum temperature, Tmax [42,48–50].
Subsequently, the temperature falls as T ∝ a−

3
8, where a

is the cosmological scale factor, until the Universe becomes
dominated by the radiation products at Treh. If the dark
matter production cross section scales as Tn, the dark matter
density is determined by Treh for n < 6 and is sensitive to
Tmax for n ≥ 6.
In the reheating scenario described above, it commonly

assumed that the inflaton undergoes classic harmonic
oscillations about a minimum produced by a quadratic
potential. If, however, the oscillations are anharmonic, and
result from a potential other than a quadratic potential, the
equation of state during reheating will differ from that of a
matter-dominated background and will affect the evolution
of the thermalization process [57].
In this paper, we consider, the effect of oscillations

produced by a potential of the form VðΦÞ ¼ λ
Mk−4 jΦjk.

These oscillations alter the equation of state during reheating
and affect the evolution of temperature as the Universe
expands. It is important to note that for k ≠ 2, the mass of the
inflaton is not constant, and hence the change in the equation
of state also affects the inflaton decay width, and as a
consequence, the evolution of the temperature of the pri-
mordial plasma. We will show that the resulting dark matter
abundance has increased sensitivity to Tmax when k > 2.
It is also possible to produce dark matter with masses in

excess of the reheating temperature (so long as its mass is
less than Tmax). As the temperature decreases from
T ¼ Tmax, dark matter particles are produced until reheat-
ing is complete. However, if the dark matter mass is
mDM > Treh, production ends at T ≃mDM and the dark
matter abundance is suppressed.
The paper is organized as follows. In Sec. II, we

generalize the reheating process in the case of an inflaton
potential VðΦÞ ∝ Φk, analyzing in detail its consequences
in noninstantaneous reheating. In Sec. III, we apply our
results to the computation of dark matter production from
thermal bath scattering and inflaton decay. We consider
dark matter masses below and above the reheating temper-
ature. We present our conclusions in Sec. IV.

II. THE REHEATING PROCESS

A. The context

The process of reheating is necessarily model dependent.
It will depend not only on the inflaton potential, but also on

the coupling of the inflaton to other fields. Clearly, some
coupling to Standard Model fields is necessary to produce a
thermal bath. The inflaton may also couple directly to a
dark sector, or dark matter may be produced out of the
thermal bath. Depending on the coupling of the dark matter
with the Standard Model, the dark matter may or may not
ever come into thermal equilibrium. The reheating process
itself may be disassociated from the period of inflation.
That is, the part of the potential that drives inflation (the
exponential expansion) may be distinct from the part of the
potential which leads to a slow reheating process in which
energy stored in scalar field oscillations is converted to the
thermal bath.
In this paper, we will indeed separate the inflationary era

from reheating. As an example of this type of model, we
consider T-attractor models [58] (described in more detail
below). In these models, the inflationary part of the
potential is nearly flat as in the Starobinsky model [59].
However, there is considerable freedom for the shape of the
potential about the minimum. If inflaton decay is suffi-
ciently slow, the details of reheating and particle production
depend on the potential which controls the oscillatory
behavior of the inflaton and the equation of state during
reheating.
We start with the energy density and pressure of a scalar

field which can be extracted from the stress-energy tensor,
Tμν, yielding the standard expressions

ρΦ ¼ 1

2
_Φ2 þ VðΦÞ; PΦ ¼ 1

2
_Φ2 − VðΦÞ; ð1Þ

where we have neglected contributions from spatial gra-
dients. Conservation of Tμν leads to

_ρΦ þ 3HðρΦ þ PΦÞ ¼ 0; ð2Þ

whereH ¼ _a
a is the Hubble parameter. Inserting Eq. (1) into

Eq. (2), we obtain the equation of motion for the inflaton

Φ̈þ 3H _Φþ V 0ðΦÞ ¼ 0; ð3Þ

where V 0ðΦÞ ¼ ∂ΦVðΦÞ.
As noted above, we will assume a generic power-law

form for the potential about the minimum

VðΦÞ ¼ λ
jΦjk

Mk−4 : ð4Þ

Here, M is some high energy mass scale, which we can
take, without loss of generality, to be the Planck scale,1 MP.
This form of the potential can be thought of as the small
field limit of T-attractor models [58] and can be derived in

1We will use throughout our work MP ¼ 2.4 × 1018 GeV for
the reduced Planck mass.
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dependent on the energy of the primordial plasma. It is
crucial, therefore, to treat the interactions in the early
Universe with great care, especially if one wants to take into
account noninstantaneous reheating [42,48–51] or thermal-
ization [52–56] after inflation.
Typically, after the period of exponential expansion

has ended, the reheating process takes place in a matter-
dominated background of inflaton oscillations. As the
inflaton begins to decay, the decay products begin to
thermalize and the temperature of this dilute plasma climbs
quickly to a maximum temperature, Tmax [42,48–50].
Subsequently, the temperature falls as T ∝ a−

3
8, where a

is the cosmological scale factor, until the Universe becomes
dominated by the radiation products at Treh. If the dark
matter production cross section scales as Tn, the dark matter
density is determined by Treh for n < 6 and is sensitive to
Tmax for n ≥ 6.
In the reheating scenario described above, it commonly

assumed that the inflaton undergoes classic harmonic
oscillations about a minimum produced by a quadratic
potential. If, however, the oscillations are anharmonic, and
result from a potential other than a quadratic potential, the
equation of state during reheating will differ from that of a
matter-dominated background and will affect the evolution
of the thermalization process [57].
In this paper, we consider, the effect of oscillations

produced by a potential of the form VðΦÞ ¼ λ
Mk−4 jΦjk.

These oscillations alter the equation of state during reheating
and affect the evolution of temperature as the Universe
expands. It is important to note that for k ≠ 2, the mass of the
inflaton is not constant, and hence the change in the equation
of state also affects the inflaton decay width, and as a
consequence, the evolution of the temperature of the pri-
mordial plasma. We will show that the resulting dark matter
abundance has increased sensitivity to Tmax when k > 2.
It is also possible to produce dark matter with masses in

excess of the reheating temperature (so long as its mass is
less than Tmax). As the temperature decreases from
T ¼ Tmax, dark matter particles are produced until reheat-
ing is complete. However, if the dark matter mass is
mDM > Treh, production ends at T ≃mDM and the dark
matter abundance is suppressed.
The paper is organized as follows. In Sec. II, we

generalize the reheating process in the case of an inflaton
potential VðΦÞ ∝ Φk, analyzing in detail its consequences
in noninstantaneous reheating. In Sec. III, we apply our
results to the computation of dark matter production from
thermal bath scattering and inflaton decay. We consider
dark matter masses below and above the reheating temper-
ature. We present our conclusions in Sec. IV.

II. THE REHEATING PROCESS

A. The context

The process of reheating is necessarily model dependent.
It will depend not only on the inflaton potential, but also on

the coupling of the inflaton to other fields. Clearly, some
coupling to Standard Model fields is necessary to produce a
thermal bath. The inflaton may also couple directly to a
dark sector, or dark matter may be produced out of the
thermal bath. Depending on the coupling of the dark matter
with the Standard Model, the dark matter may or may not
ever come into thermal equilibrium. The reheating process
itself may be disassociated from the period of inflation.
That is, the part of the potential that drives inflation (the
exponential expansion) may be distinct from the part of the
potential which leads to a slow reheating process in which
energy stored in scalar field oscillations is converted to the
thermal bath.
In this paper, we will indeed separate the inflationary era

from reheating. As an example of this type of model, we
consider T-attractor models [58] (described in more detail
below). In these models, the inflationary part of the
potential is nearly flat as in the Starobinsky model [59].
However, there is considerable freedom for the shape of the
potential about the minimum. If inflaton decay is suffi-
ciently slow, the details of reheating and particle production
depend on the potential which controls the oscillatory
behavior of the inflaton and the equation of state during
reheating.
We start with the energy density and pressure of a scalar

field which can be extracted from the stress-energy tensor,
Tμν, yielding the standard expressions

ρΦ ¼ 1

2
_Φ2 þ VðΦÞ; PΦ ¼ 1

2
_Φ2 − VðΦÞ; ð1Þ

where we have neglected contributions from spatial gra-
dients. Conservation of Tμν leads to

_ρΦ þ 3HðρΦ þ PΦÞ ¼ 0; ð2Þ

whereH ¼ _a
a is the Hubble parameter. Inserting Eq. (1) into

Eq. (2), we obtain the equation of motion for the inflaton

Φ̈þ 3H _Φþ V 0ðΦÞ ¼ 0; ð3Þ

where V 0ðΦÞ ¼ ∂ΦVðΦÞ.
As noted above, we will assume a generic power-law

form for the potential about the minimum

VðΦÞ ¼ λ
jΦjk

Mk−4 : ð4Þ

Here, M is some high energy mass scale, which we can
take, without loss of generality, to be the Planck scale,1 MP.
This form of the potential can be thought of as the small
field limit of T-attractor models [58] and can be derived in

1We will use throughout our work MP ¼ 2.4 × 1018 GeV for
the reduced Planck mass.

GARCIA, KANETA, MAMBRINI, and OLIVE PHYS. REV. D 101, 123507 (2020)

123507-2

dependent on the energy of the primordial plasma. It is
crucial, therefore, to treat the interactions in the early
Universe with great care, especially if one wants to take into
account noninstantaneous reheating [42,48–51] or thermal-
ization [52–56] after inflation.
Typically, after the period of exponential expansion

has ended, the reheating process takes place in a matter-
dominated background of inflaton oscillations. As the
inflaton begins to decay, the decay products begin to
thermalize and the temperature of this dilute plasma climbs
quickly to a maximum temperature, Tmax [42,48–50].
Subsequently, the temperature falls as T ∝ a−

3
8, where a

is the cosmological scale factor, until the Universe becomes
dominated by the radiation products at Treh. If the dark
matter production cross section scales as Tn, the dark matter
density is determined by Treh for n < 6 and is sensitive to
Tmax for n ≥ 6.
In the reheating scenario described above, it commonly

assumed that the inflaton undergoes classic harmonic
oscillations about a minimum produced by a quadratic
potential. If, however, the oscillations are anharmonic, and
result from a potential other than a quadratic potential, the
equation of state during reheating will differ from that of a
matter-dominated background and will affect the evolution
of the thermalization process [57].
In this paper, we consider, the effect of oscillations

produced by a potential of the form VðΦÞ ¼ λ
Mk−4 jΦjk.

These oscillations alter the equation of state during reheating
and affect the evolution of temperature as the Universe
expands. It is important to note that for k ≠ 2, the mass of the
inflaton is not constant, and hence the change in the equation
of state also affects the inflaton decay width, and as a
consequence, the evolution of the temperature of the pri-
mordial plasma. We will show that the resulting dark matter
abundance has increased sensitivity to Tmax when k > 2.
It is also possible to produce dark matter with masses in

excess of the reheating temperature (so long as its mass is
less than Tmax). As the temperature decreases from
T ¼ Tmax, dark matter particles are produced until reheat-
ing is complete. However, if the dark matter mass is
mDM > Treh, production ends at T ≃mDM and the dark
matter abundance is suppressed.
The paper is organized as follows. In Sec. II, we

generalize the reheating process in the case of an inflaton
potential VðΦÞ ∝ Φk, analyzing in detail its consequences
in noninstantaneous reheating. In Sec. III, we apply our
results to the computation of dark matter production from
thermal bath scattering and inflaton decay. We consider
dark matter masses below and above the reheating temper-
ature. We present our conclusions in Sec. IV.

II. THE REHEATING PROCESS

A. The context

The process of reheating is necessarily model dependent.
It will depend not only on the inflaton potential, but also on

the coupling of the inflaton to other fields. Clearly, some
coupling to Standard Model fields is necessary to produce a
thermal bath. The inflaton may also couple directly to a
dark sector, or dark matter may be produced out of the
thermal bath. Depending on the coupling of the dark matter
with the Standard Model, the dark matter may or may not
ever come into thermal equilibrium. The reheating process
itself may be disassociated from the period of inflation.
That is, the part of the potential that drives inflation (the
exponential expansion) may be distinct from the part of the
potential which leads to a slow reheating process in which
energy stored in scalar field oscillations is converted to the
thermal bath.
In this paper, we will indeed separate the inflationary era

from reheating. As an example of this type of model, we
consider T-attractor models [58] (described in more detail
below). In these models, the inflationary part of the
potential is nearly flat as in the Starobinsky model [59].
However, there is considerable freedom for the shape of the
potential about the minimum. If inflaton decay is suffi-
ciently slow, the details of reheating and particle production
depend on the potential which controls the oscillatory
behavior of the inflaton and the equation of state during
reheating.
We start with the energy density and pressure of a scalar

field which can be extracted from the stress-energy tensor,
Tμν, yielding the standard expressions

ρΦ ¼ 1

2
_Φ2 þ VðΦÞ; PΦ ¼ 1

2
_Φ2 − VðΦÞ; ð1Þ

where we have neglected contributions from spatial gra-
dients. Conservation of Tμν leads to

_ρΦ þ 3HðρΦ þ PΦÞ ¼ 0; ð2Þ

whereH ¼ _a
a is the Hubble parameter. Inserting Eq. (1) into

Eq. (2), we obtain the equation of motion for the inflaton

Φ̈þ 3H _Φþ V 0ðΦÞ ¼ 0; ð3Þ

where V 0ðΦÞ ¼ ∂ΦVðΦÞ.
As noted above, we will assume a generic power-law

form for the potential about the minimum

VðΦÞ ¼ λ
jΦjk

Mk−4 : ð4Þ

Here, M is some high energy mass scale, which we can
take, without loss of generality, to be the Planck scale,1 MP.
This form of the potential can be thought of as the small
field limit of T-attractor models [58] and can be derived in

1We will use throughout our work MP ¼ 2.4 × 1018 GeV for
the reduced Planck mass.
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dependent on the energy of the primordial plasma. It is
crucial, therefore, to treat the interactions in the early
Universe with great care, especially if one wants to take into
account noninstantaneous reheating [42,48–51] or thermal-
ization [52–56] after inflation.
Typically, after the period of exponential expansion

has ended, the reheating process takes place in a matter-
dominated background of inflaton oscillations. As the
inflaton begins to decay, the decay products begin to
thermalize and the temperature of this dilute plasma climbs
quickly to a maximum temperature, Tmax [42,48–50].
Subsequently, the temperature falls as T ∝ a−

3
8, where a

is the cosmological scale factor, until the Universe becomes
dominated by the radiation products at Treh. If the dark
matter production cross section scales as Tn, the dark matter
density is determined by Treh for n < 6 and is sensitive to
Tmax for n ≥ 6.
In the reheating scenario described above, it commonly

assumed that the inflaton undergoes classic harmonic
oscillations about a minimum produced by a quadratic
potential. If, however, the oscillations are anharmonic, and
result from a potential other than a quadratic potential, the
equation of state during reheating will differ from that of a
matter-dominated background and will affect the evolution
of the thermalization process [57].
In this paper, we consider, the effect of oscillations

produced by a potential of the form VðΦÞ ¼ λ
Mk−4 jΦjk.

These oscillations alter the equation of state during reheating
and affect the evolution of temperature as the Universe
expands. It is important to note that for k ≠ 2, the mass of the
inflaton is not constant, and hence the change in the equation
of state also affects the inflaton decay width, and as a
consequence, the evolution of the temperature of the pri-
mordial plasma. We will show that the resulting dark matter
abundance has increased sensitivity to Tmax when k > 2.
It is also possible to produce dark matter with masses in

excess of the reheating temperature (so long as its mass is
less than Tmax). As the temperature decreases from
T ¼ Tmax, dark matter particles are produced until reheat-
ing is complete. However, if the dark matter mass is
mDM > Treh, production ends at T ≃mDM and the dark
matter abundance is suppressed.
The paper is organized as follows. In Sec. II, we

generalize the reheating process in the case of an inflaton
potential VðΦÞ ∝ Φk, analyzing in detail its consequences
in noninstantaneous reheating. In Sec. III, we apply our
results to the computation of dark matter production from
thermal bath scattering and inflaton decay. We consider
dark matter masses below and above the reheating temper-
ature. We present our conclusions in Sec. IV.

II. THE REHEATING PROCESS

A. The context

The process of reheating is necessarily model dependent.
It will depend not only on the inflaton potential, but also on

the coupling of the inflaton to other fields. Clearly, some
coupling to Standard Model fields is necessary to produce a
thermal bath. The inflaton may also couple directly to a
dark sector, or dark matter may be produced out of the
thermal bath. Depending on the coupling of the dark matter
with the Standard Model, the dark matter may or may not
ever come into thermal equilibrium. The reheating process
itself may be disassociated from the period of inflation.
That is, the part of the potential that drives inflation (the
exponential expansion) may be distinct from the part of the
potential which leads to a slow reheating process in which
energy stored in scalar field oscillations is converted to the
thermal bath.
In this paper, we will indeed separate the inflationary era

from reheating. As an example of this type of model, we
consider T-attractor models [58] (described in more detail
below). In these models, the inflationary part of the
potential is nearly flat as in the Starobinsky model [59].
However, there is considerable freedom for the shape of the
potential about the minimum. If inflaton decay is suffi-
ciently slow, the details of reheating and particle production
depend on the potential which controls the oscillatory
behavior of the inflaton and the equation of state during
reheating.
We start with the energy density and pressure of a scalar

field which can be extracted from the stress-energy tensor,
Tμν, yielding the standard expressions

ρΦ ¼ 1

2
_Φ2 þ VðΦÞ; PΦ ¼ 1

2
_Φ2 − VðΦÞ; ð1Þ

where we have neglected contributions from spatial gra-
dients. Conservation of Tμν leads to

_ρΦ þ 3HðρΦ þ PΦÞ ¼ 0; ð2Þ

whereH ¼ _a
a is the Hubble parameter. Inserting Eq. (1) into

Eq. (2), we obtain the equation of motion for the inflaton

Φ̈þ 3H _Φþ V 0ðΦÞ ¼ 0; ð3Þ

where V 0ðΦÞ ¼ ∂ΦVðΦÞ.
As noted above, we will assume a generic power-law

form for the potential about the minimum

VðΦÞ ¼ λ
jΦjk

Mk−4 : ð4Þ

Here, M is some high energy mass scale, which we can
take, without loss of generality, to be the Planck scale,1 MP.
This form of the potential can be thought of as the small
field limit of T-attractor models [58] and can be derived in

1We will use throughout our work MP ¼ 2.4 × 1018 GeV for
the reduced Planck mass.
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dependent on the energy of the primordial plasma. It is
crucial, therefore, to treat the interactions in the early
Universe with great care, especially if one wants to take into
account noninstantaneous reheating [42,48–51] or thermal-
ization [52–56] after inflation.
Typically, after the period of exponential expansion

has ended, the reheating process takes place in a matter-
dominated background of inflaton oscillations. As the
inflaton begins to decay, the decay products begin to
thermalize and the temperature of this dilute plasma climbs
quickly to a maximum temperature, Tmax [42,48–50].
Subsequently, the temperature falls as T ∝ a−

3
8, where a

is the cosmological scale factor, until the Universe becomes
dominated by the radiation products at Treh. If the dark
matter production cross section scales as Tn, the dark matter
density is determined by Treh for n < 6 and is sensitive to
Tmax for n ≥ 6.
In the reheating scenario described above, it commonly

assumed that the inflaton undergoes classic harmonic
oscillations about a minimum produced by a quadratic
potential. If, however, the oscillations are anharmonic, and
result from a potential other than a quadratic potential, the
equation of state during reheating will differ from that of a
matter-dominated background and will affect the evolution
of the thermalization process [57].
In this paper, we consider, the effect of oscillations

produced by a potential of the form VðΦÞ ¼ λ
Mk−4 jΦjk.

These oscillations alter the equation of state during reheating
and affect the evolution of temperature as the Universe
expands. It is important to note that for k ≠ 2, the mass of the
inflaton is not constant, and hence the change in the equation
of state also affects the inflaton decay width, and as a
consequence, the evolution of the temperature of the pri-
mordial plasma. We will show that the resulting dark matter
abundance has increased sensitivity to Tmax when k > 2.
It is also possible to produce dark matter with masses in

excess of the reheating temperature (so long as its mass is
less than Tmax). As the temperature decreases from
T ¼ Tmax, dark matter particles are produced until reheat-
ing is complete. However, if the dark matter mass is
mDM > Treh, production ends at T ≃mDM and the dark
matter abundance is suppressed.
The paper is organized as follows. In Sec. II, we

generalize the reheating process in the case of an inflaton
potential VðΦÞ ∝ Φk, analyzing in detail its consequences
in noninstantaneous reheating. In Sec. III, we apply our
results to the computation of dark matter production from
thermal bath scattering and inflaton decay. We consider
dark matter masses below and above the reheating temper-
ature. We present our conclusions in Sec. IV.

II. THE REHEATING PROCESS

A. The context

The process of reheating is necessarily model dependent.
It will depend not only on the inflaton potential, but also on

the coupling of the inflaton to other fields. Clearly, some
coupling to Standard Model fields is necessary to produce a
thermal bath. The inflaton may also couple directly to a
dark sector, or dark matter may be produced out of the
thermal bath. Depending on the coupling of the dark matter
with the Standard Model, the dark matter may or may not
ever come into thermal equilibrium. The reheating process
itself may be disassociated from the period of inflation.
That is, the part of the potential that drives inflation (the
exponential expansion) may be distinct from the part of the
potential which leads to a slow reheating process in which
energy stored in scalar field oscillations is converted to the
thermal bath.
In this paper, we will indeed separate the inflationary era

from reheating. As an example of this type of model, we
consider T-attractor models [58] (described in more detail
below). In these models, the inflationary part of the
potential is nearly flat as in the Starobinsky model [59].
However, there is considerable freedom for the shape of the
potential about the minimum. If inflaton decay is suffi-
ciently slow, the details of reheating and particle production
depend on the potential which controls the oscillatory
behavior of the inflaton and the equation of state during
reheating.
We start with the energy density and pressure of a scalar

field which can be extracted from the stress-energy tensor,
Tμν, yielding the standard expressions

ρΦ ¼ 1

2
_Φ2 þ VðΦÞ; PΦ ¼ 1

2
_Φ2 − VðΦÞ; ð1Þ

where we have neglected contributions from spatial gra-
dients. Conservation of Tμν leads to

_ρΦ þ 3HðρΦ þ PΦÞ ¼ 0; ð2Þ

whereH ¼ _a
a is the Hubble parameter. Inserting Eq. (1) into

Eq. (2), we obtain the equation of motion for the inflaton

Φ̈þ 3H _Φþ V 0ðΦÞ ¼ 0; ð3Þ

where V 0ðΦÞ ¼ ∂ΦVðΦÞ.
As noted above, we will assume a generic power-law

form for the potential about the minimum

VðΦÞ ¼ λ
jΦjk

Mk−4 : ð4Þ

Here, M is some high energy mass scale, which we can
take, without loss of generality, to be the Planck scale,1 MP.
This form of the potential can be thought of as the small
field limit of T-attractor models [58] and can be derived in

1We will use throughout our work MP ¼ 2.4 × 1018 GeV for
the reduced Planck mass.
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dependent on the energy of the primordial plasma. It is
crucial, therefore, to treat the interactions in the early
Universe with great care, especially if one wants to take into
account noninstantaneous reheating [42,48–51] or thermal-
ization [52–56] after inflation.
Typically, after the period of exponential expansion

has ended, the reheating process takes place in a matter-
dominated background of inflaton oscillations. As the
inflaton begins to decay, the decay products begin to
thermalize and the temperature of this dilute plasma climbs
quickly to a maximum temperature, Tmax [42,48–50].
Subsequently, the temperature falls as T ∝ a−

3
8, where a

is the cosmological scale factor, until the Universe becomes
dominated by the radiation products at Treh. If the dark
matter production cross section scales as Tn, the dark matter
density is determined by Treh for n < 6 and is sensitive to
Tmax for n ≥ 6.
In the reheating scenario described above, it commonly

assumed that the inflaton undergoes classic harmonic
oscillations about a minimum produced by a quadratic
potential. If, however, the oscillations are anharmonic, and
result from a potential other than a quadratic potential, the
equation of state during reheating will differ from that of a
matter-dominated background and will affect the evolution
of the thermalization process [57].
In this paper, we consider, the effect of oscillations

produced by a potential of the form VðΦÞ ¼ λ
Mk−4 jΦjk.

These oscillations alter the equation of state during reheating
and affect the evolution of temperature as the Universe
expands. It is important to note that for k ≠ 2, the mass of the
inflaton is not constant, and hence the change in the equation
of state also affects the inflaton decay width, and as a
consequence, the evolution of the temperature of the pri-
mordial plasma. We will show that the resulting dark matter
abundance has increased sensitivity to Tmax when k > 2.
It is also possible to produce dark matter with masses in

excess of the reheating temperature (so long as its mass is
less than Tmax). As the temperature decreases from
T ¼ Tmax, dark matter particles are produced until reheat-
ing is complete. However, if the dark matter mass is
mDM > Treh, production ends at T ≃mDM and the dark
matter abundance is suppressed.
The paper is organized as follows. In Sec. II, we

generalize the reheating process in the case of an inflaton
potential VðΦÞ ∝ Φk, analyzing in detail its consequences
in noninstantaneous reheating. In Sec. III, we apply our
results to the computation of dark matter production from
thermal bath scattering and inflaton decay. We consider
dark matter masses below and above the reheating temper-
ature. We present our conclusions in Sec. IV.

II. THE REHEATING PROCESS

A. The context

The process of reheating is necessarily model dependent.
It will depend not only on the inflaton potential, but also on

the coupling of the inflaton to other fields. Clearly, some
coupling to Standard Model fields is necessary to produce a
thermal bath. The inflaton may also couple directly to a
dark sector, or dark matter may be produced out of the
thermal bath. Depending on the coupling of the dark matter
with the Standard Model, the dark matter may or may not
ever come into thermal equilibrium. The reheating process
itself may be disassociated from the period of inflation.
That is, the part of the potential that drives inflation (the
exponential expansion) may be distinct from the part of the
potential which leads to a slow reheating process in which
energy stored in scalar field oscillations is converted to the
thermal bath.
In this paper, we will indeed separate the inflationary era

from reheating. As an example of this type of model, we
consider T-attractor models [58] (described in more detail
below). In these models, the inflationary part of the
potential is nearly flat as in the Starobinsky model [59].
However, there is considerable freedom for the shape of the
potential about the minimum. If inflaton decay is suffi-
ciently slow, the details of reheating and particle production
depend on the potential which controls the oscillatory
behavior of the inflaton and the equation of state during
reheating.
We start with the energy density and pressure of a scalar

field which can be extracted from the stress-energy tensor,
Tμν, yielding the standard expressions

ρΦ ¼ 1

2
_Φ2 þ VðΦÞ; PΦ ¼ 1

2
_Φ2 − VðΦÞ; ð1Þ

where we have neglected contributions from spatial gra-
dients. Conservation of Tμν leads to

_ρΦ þ 3HðρΦ þ PΦÞ ¼ 0; ð2Þ

whereH ¼ _a
a is the Hubble parameter. Inserting Eq. (1) into

Eq. (2), we obtain the equation of motion for the inflaton

Φ̈þ 3H _Φþ V 0ðΦÞ ¼ 0; ð3Þ

where V 0ðΦÞ ¼ ∂ΦVðΦÞ.
As noted above, we will assume a generic power-law

form for the potential about the minimum

VðΦÞ ¼ λ
jΦjk

Mk−4 : ð4Þ

Here, M is some high energy mass scale, which we can
take, without loss of generality, to be the Planck scale,1 MP.
This form of the potential can be thought of as the small
field limit of T-attractor models [58] and can be derived in

1We will use throughout our work MP ¼ 2.4 × 1018 GeV for
the reduced Planck mass.
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Inflaton Oscillations
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which can be expanded about the origin4

V (�) = �
�
k

M
k�4

P

, � ⌧ MP . (16)

The time-dependent oscillating inflaton field can be
parametrized as

�(t) = �0(t) · P(t) , (17)

where �0(t) is the time-dependent amplitude that in-
cludes the effects of redshift and P(t) describes the peri-
odicity of the oscillation.

To calculate the dark matter production rate, we com-
bine the potential (16) with Eq. (17), which leads to
V (�) = V (�0) · P(t)k. We next expand the potential
energy in terms of the Fourier modes [37, 46, 47]
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where ! is the frequency of oscillation of �, given by [37]
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For scalar dark matter, we find that the particle pro-
duction rate per unit volume and unit time for an arbi-
trary value of k is given by

R
�
k

0
=

2 ⇥ ⇢
2

�

16⇡M
4

P

⌃k

0
, (20)

where the factor of two accounts for the fact we produce
two dark matter particles per scattering, with
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where En = n! is the energy of the n-th inflaton oscil-
lation mode and mX is the mass of the produced dark
matter. A detailed calculation of this rate is presented
in Appendix B.

For the case k = 2, we find that the particle production
rate is given by
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where m
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00(�0), and since
P
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n
e
�in!t = cos2(m�t),

we find that only the second Fourier mode in the sum
contributes, with

P
|P2

n
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16
and E2 = 2m�.5
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It should be noted that our discussion is general and not limited

to T-models of inflation.
5

We note that the rate calculated here differs from [31] by a factor

of 8, because in the latter the inflaton was treated as a particle

and not a condensate resulting in a difference by a factor of 2 in

the applied symmetry factors. In addition, the interaction con-

sidered there did not use a properly normalized graviton resulting

in a factor of 2 in the vertex and 16 in the rate.

For a fermionic dark matter candidate, we find the
following rate
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where the factor of two accounts for the sum over the
particle and antiparticle final states, with
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For the case k = 2, we obtain
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A detailed discussion related to the dark matter produc-
tion rates through the inflaton condensate scattering is
given in Appendix B.

For the production of SM fields from inflaton oscil-
lations, we follow the same procedure, but replace the
partial amplitude, M

j

µ⌫
, for dark matter with the appro-

priate amplitude involving SM fields. Below, we consider
only the example of producing Higgs bosons, namely
� + � ! H + H.

III. GRAVITATIONAL PRODUCTION OF
QUANTA

As we discussed in the previous section, the graviton
can act as a portal between the inflaton, SM fields and a
potential dark matter candidate. As outlined above we
here consider three cases in detail:

A. The graviton portal between a thermal bath and dark
matter. This is essentially a gravitational freeze-in
mechanism for the production of dark matter.

B. The graviton portal between the inflaton and dark
matter. In this case, the inflaton directly populates
the dark matter without the need of either the ther-
mal bath or a mediator between the SM and the dark
matter candidate.

C. The graviton portal between the inflaton and the
Standard Model sector to produce a radiative bath
at the start of reheating.

A. SM SM ! hµ⌫ ! DM DM

The spin-2 portal for the production of dark matter
was considered recently in [19] for both massive and
massless spin-2 fields. Here we restrict our attention to
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where En = n! is the energy of the n-th inflaton oscil-
lation mode and mX is the mass of the produced dark
matter. A detailed calculation of this rate is presented
in Appendix B.
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A detailed discussion related to the dark matter produc-
tion rates through the inflaton condensate scattering is
given in Appendix B.

For the production of SM fields from inflaton oscil-
lations, we follow the same procedure, but replace the
partial amplitude, M

j

µ⌫
, for dark matter with the appro-

priate amplitude involving SM fields. Below, we consider
only the example of producing Higgs bosons, namely
� + � ! H + H.

III. GRAVITATIONAL PRODUCTION OF
QUANTA

As we discussed in the previous section, the graviton
can act as a portal between the inflaton, SM fields and a
potential dark matter candidate. As outlined above we
here consider three cases in detail:

A. The graviton portal between a thermal bath and dark
matter. This is essentially a gravitational freeze-in
mechanism for the production of dark matter.

B. The graviton portal between the inflaton and dark
matter. In this case, the inflaton directly populates
the dark matter without the need of either the ther-
mal bath or a mediator between the SM and the dark
matter candidate.

C. The graviton portal between the inflaton and the
Standard Model sector to produce a radiative bath
at the start of reheating.

A. SM SM ! hµ⌫ ! DM DM

The spin-2 portal for the production of dark matter
was considered recently in [19] for both massive and
massless spin-2 fields. Here we restrict our attention to
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where En = n! is the energy of the n-th inflaton oscil-
lation mode and mX is the mass of the produced dark
matter. A detailed calculation of this rate is presented
in Appendix B.
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A detailed discussion related to the dark matter produc-
tion rates through the inflaton condensate scattering is
given in Appendix B.

For the production of SM fields from inflaton oscil-
lations, we follow the same procedure, but replace the
partial amplitude, M

j

µ⌫
, for dark matter with the appro-

priate amplitude involving SM fields. Below, we consider
only the example of producing Higgs bosons, namely
� + � ! H + H.

III. GRAVITATIONAL PRODUCTION OF
QUANTA

As we discussed in the previous section, the graviton
can act as a portal between the inflaton, SM fields and a
potential dark matter candidate. As outlined above we
here consider three cases in detail:

A. The graviton portal between a thermal bath and dark
matter. This is essentially a gravitational freeze-in
mechanism for the production of dark matter.

B. The graviton portal between the inflaton and dark
matter. In this case, the inflaton directly populates
the dark matter without the need of either the ther-
mal bath or a mediator between the SM and the dark
matter candidate.

C. The graviton portal between the inflaton and the
Standard Model sector to produce a radiative bath
at the start of reheating.

A. SM SM ! hµ⌫ ! DM DM

The spin-2 portal for the production of dark matter
was considered recently in [19] for both massive and
massless spin-2 fields. Here we restrict our attention to
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(ä = 0)In terms of conventional slow-roll parameters

which implies that inflation ends when εH = 1.

Alternatively, one can consider the conventional potential slow-roll parameters

εV (φ) ≡
M2

P

2

(

V ′(φ)
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)2

, (19)

ηV (φ) ≡ M2
P

(

V ′′(φ)

V

)

, (20)

which are fully determined by the shape of the inflationary potential. They can be expressed

in terms of the slow-roll parameters via the relations

εV = εH

(

3− ηH
3− εH

)2

, (21)

ηV = (2M2
P εH)

1/2 η′H
3− εH

+

(

3− ηH
3− εH

)

(εH + ηH) , (22)

which show that εV = 1 is only a first-order approximation at the end of inflation. It can

be shown that the first term in (22) is of higher order in slow roll [55]. Neglecting this

term, we can eliminate ηH from equations (21, 22) at the end of inflation, to obtain

End of inflation: εV # (1 +
√

1− ηV /2)
2 , (23)

which can be used to calculate φend.

This equation involves the scalar potential and its first two derivatives, and can be

solved in closed form in the case of a power-law potential V = a(φ/MP )n, yielding

Power-law: φend #
(

2n− 1

2
√
2

)

MP . (24)

This deviates from the exact result found by numerical integration of the equations of

motion (11,12) by less than 5% for n ≥ 1. In the case of the Starobinsky potential, in a

leading-order analytic approximation the end of inflation is reached when

Starobinsky: φend #
√

3

2
ln

(

2

11
(4 + 3

√
3)

)

MP # 0.630MP , (25)

which is to be compared to the more exact value φend = 0.615MP obtained by the numerical

integration of the Friedmann and Klein-Gordon equations.

The energy density at the end of inflation may then be obtained in a straightforward

way by noting that the slow-roll parameter εH can be rewritten as εH = 3
2(1 + w), where

w ≡ p/ρ is the equation-of-state parameter. When inflation ends, w = −1/3, which implies

φ̇2
end = V (φend) . (26)
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where TRH is defined by [37]
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Thus for all models with a reheat temperature due to
decays, which is less than that given in Eq. (69), the
maximum temperature during the reheat process is de-
termined by scattering (mediated by gravity) and thus
can not be ignored. Note also that for such small values
of y, the kinetic effects due to the effective mass induced
by the coupling y�f̄f are non-existent, as shown in [37].

We show in Fig. 2 the evolution of the energy densities
of the inflaton (blue), the radiation produced by inflaton
decays (orange dashed), the radiation produced by infla-
ton scattering mediated by gravity (green dashed), and
the total radiation density (red) as function of the scaling
parameter a/aend for a Yukawa-like coupling y = 10�8

with k = 2 and ⇢end = 1064 GeV4. We clearly see that
the beginning of the evolution of the radiation density
is dominated by the scattering of the inflaton via gravi-
ton exchange (orange line), which determines the maxi-
mum temperature. For k = 2, the radiation density from
scattering falls as a

�4 [37], whereas the density from de-
cays falls more slowly as a

�3/2 so that eventually the
latter begins to dominate the population of the thermal
bath when a = aint, until the reheating is complete when
⇢� = ⇢R at a = aRH. For aint � aend, we can approxi-
mate the cross-over point from Eqs. (56) and (63) using
the equality ⇢

y

R
= ⇢

h

R
. For sufficiently small y and for

k = 2, we find
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which gives aint ' 430 aend in good agreement with
the numerical solution for the parameter choices used
in Fig. 2. We stress that the maximum temperature at-
tained Tmax ' 1012 GeV is independent of any beyond
the Standard Model physics, and is purely gravitational
and can not be ignored when production rates are highly
dependent on the ratio Tmax/TRH.

We can finally apply our result to the dark matter pro-
duction through a graviton exchange while the bath is
also dominated by scattering of � through graviton ex-
change. For TRH . 109 GeV, the Boltzmann equation
one needs to consider is

dY
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p
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FIG. 2: Evolution of the radiation density (red) and inflaton

density (blue) as a function of a/aend for a Yukawa-like

coupling y = 10�8
with ⇢end = 1064 GeV

4
and k = 2. This

plot is obtained by solving numerically equations (29), (30)

and (55). The evolution of the radiation density produced

from inflaton decays (orange-dashed) and scattering

mediated by gravity (green-dashed) are also shown.
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where aint corresponds to the value of the scale factor
when the radiation density produced by inflaton decays
begins dominate over that produced by gravitational in-
flaton scattering (this only occurs if y satisfies the bound
in Eq. (67)). For a > aint, the slope of the radiation en-
ergy density curve as a function of a changes as seen in
Fig. 2 and any thermal contribution to the production of
dark matter originates from inflaton decay.

For sufficiently small y, aint � aend, and Eq. (74) can
be simplified and we see that the dark matter yield does
not depend on this intermediate scale factor, but only on
aend and ⇢end. Thus for small y, we can also use Eq. (74)
to evaluate the dark matter density at a = aRH,
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Thus for all models with a reheat temperature due to
decays, which is less than that given in Eq. (69), the
maximum temperature during the reheat process is de-
termined by scattering (mediated by gravity) and thus
can not be ignored. Note also that for such small values
of y, the kinetic effects due to the effective mass induced
by the coupling y�f̄f are non-existent, as shown in [37].

We show in Fig. 2 the evolution of the energy densities
of the inflaton (blue), the radiation produced by inflaton
decays (orange dashed), the radiation produced by infla-
ton scattering mediated by gravity (green dashed), and
the total radiation density (red) as function of the scaling
parameter a/aend for a Yukawa-like coupling y = 10�8

with k = 2 and ⇢end = 1064 GeV4. We clearly see that
the beginning of the evolution of the radiation density
is dominated by the scattering of the inflaton via gravi-
ton exchange (orange line), which determines the maxi-
mum temperature. For k = 2, the radiation density from
scattering falls as a

�4 [37], whereas the density from de-
cays falls more slowly as a

�3/2 so that eventually the
latter begins to dominate the population of the thermal
bath when a = aint, until the reheating is complete when
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mate the cross-over point from Eqs. (56) and (63) using
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which gives aint ' 430 aend in good agreement with
the numerical solution for the parameter choices used
in Fig. 2. We stress that the maximum temperature at-
tained Tmax ' 1012 GeV is independent of any beyond
the Standard Model physics, and is purely gravitational
and can not be ignored when production rates are highly
dependent on the ratio Tmax/TRH.

We can finally apply our result to the dark matter pro-
duction through a graviton exchange while the bath is
also dominated by scattering of � through graviton ex-
change. For TRH . 109 GeV, the Boltzmann equation
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FIG. 2: Evolution of the radiation density (red) and inflaton

density (blue) as a function of a/aend for a Yukawa-like

coupling y = 10�8
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plot is obtained by solving numerically equations (29), (30)
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where aint corresponds to the value of the scale factor
when the radiation density produced by inflaton decays
begins dominate over that produced by gravitational in-
flaton scattering (this only occurs if y satisfies the bound
in Eq. (67)). For a > aint, the slope of the radiation en-
ergy density curve as a function of a changes as seen in
Fig. 2 and any thermal contribution to the production of
dark matter originates from inflaton decay.

For sufficiently small y, aint � aend, and Eq. (74) can
be simplified and we see that the dark matter yield does
not depend on this intermediate scale factor, but only on
aend and ⇢end. Thus for small y, we can also use Eq. (74)
to evaluate the dark matter density at a = aRH,
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falling as T / a
�3/8. The reheating temperature is de-

fined through [30, 31]
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when the energy density of the inflaton is equal to the
energy density of radiation, corresponding to

Treh ' 1.9⇥ 1015 GeV · y · g
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In order to evaluate the constraint on Treh from over-
production of supersymmetric dark matter in scenarios
where the gravitino is lighter than Treh, we use the ex-
pression [29, 32]9

Y3/2(T ) = 0.00336
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where Y3/2 ⌘ n3/2/nrad is the gravitino yield, nrad =
⇣(3)T 3

/⇡
2, m3/2 the gravitino mass, and m1/2 the gluino

mass [33–35]. Disregarding the term m
2
1/2/m

2
3/2 in

(26) and using the observed dark matter density today,
⌦CDMh

2
' 0.12, we find the following upper limit on the

Yukawa-like inflaton coupling, assuming that the grav-
itino decays after the lightest supersymmetric particle
(LSP) decouples,

|y| < 9.2⇥ 10�8

s
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where mLSP is the mass of the LSP and the inflaton
masses for the di↵erent inflationary attractor potentials
are given by Eqs. (22) and (23).10 We note that, since
m' / 1/

p
↵, |y| / ↵

1/4.11

In high-scale supersymmetry models in which the grav-
itino mass may be significantly larger than the elec-
troweak scale and the other supersymmetric particles are
heavier than the inflaton, the gravitino, which is now the
LSP, is pair-produced via its longitudinal components
[37]. In such a scenario, we find [38]
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9 We use here an analytical approximation since there is only a
0.03 % di↵erence between the analytical and fully numerical cal-
culation.

10 If the gravitino is the LSP, the second term in the brackets in
(26) must be taken into account, and the constraint on y depends
on the ratio m1/2/m3/2.

11 For another recent analysis of gravitino constraints in light of the
BICEP/Keck results, see [36].

wherem3/2 is the gravitino mass and ↵3 is the strong cou-
pling. Using the observed dark matter abundance today
to constrain ⌦3/2h

2, we find that avoiding overproduc-
tion of dark matter imposes the following bound:

|y| < 6.6⇥ 10�16
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We note that in a non-supersymmetric theory there
would, in general, be a lower limit on y due to the fact
that it generates radiative corrections / y

4 in the ef-
fective inflaton potential [39]. However, this is not the
case in supersymmetric models such as those discussed
above, where these radiative corrections cancel down to
the level of the relatively small supersymmetry-breaking
e↵ects [40].

IV. RESULTS

We solve the cosmic background equations (17)-(20)
numerically to determine the number of e-folds N⇤, NEW,
and NBBN. In the ↵ = 1 case, the procedure of calcu-
lating the analytical approximations for N⇤ is given in
Appendix A (see Eqs. (A.11) and (A.12)). The full nu-
merical computation of the CMB observables is discussed
in Appendix B.

Figure 1 summarizes our numerical results based on
the analysis of [3]: those for ↵-Starobinsky models are
shown in the upper pair of panels and those for T mod-
els in the lower pair. For each of the two models, we
derive limits on N⇤ from the requirements that Treh > 2
MeV (100 GeV) and the supersymmetric relic density
when mLSP = 100 GeV. The former gives a lower limit
to N⇤, while the latter gives an upper limit. We also de-
rive the corresponding limits on y. These are compared
to the 68% and 95% C.L. limits on N and y from the
BICEP/Keck constraints on ns. For ↵ = 1, we find the
following limits:

↵-Starobinsky :

41.8(45.6) < N⇤ < 51.8,

1.7⇥ 10�18(1.6⇥ 10�13) < |y| < 2.6⇥ 10�5
,

N68% = 50.9, N95% = 45.9,

Treh, 68% = 8.7⇥ 108 GeV, Treh, 95% = 2.4⇥ 102 GeV,

y68% = 1.7⇥ 10�6
, y95% = 3.8⇥ 10�13

, (30)

T Model :

42.0(45.8) < N⇤ < 52.1,

2.3⇥ 10�18(2.2⇥ 10�13) < |y| < 3.6⇥ 10�5
,

N68% = 52.6, N95% = 47.5,

Treh, 68% = 5.9⇥ 1010 GeV, Treh, 95% = 1.4⇥ 104 GeV,

y68% = 1.7⇥ 10�4
, y95% = 3.6⇥ 10�11
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above, where these radiative corrections cancel down to
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merical computation of the CMB observables is discussed
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derive limits on N⇤ from the requirements that Treh > 2
MeV (100 GeV) and the supersymmetric relic density
when mLSP = 100 GeV. The former gives a lower limit
to N⇤, while the latter gives an upper limit. We also de-
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to the 68% and 95% C.L. limits on N and y from the
BICEP/Keck constraints on ns. For ↵ = 1, we find the
following limits:

↵-Starobinsky :

41.8(45.6) < N⇤ < 51.8,

1.7⇥ 10�18(1.6⇥ 10�13) < |y| < 2.6⇥ 10�5
,

N68% = 50.9, N95% = 45.9,

Treh, 68% = 8.7⇥ 108 GeV, Treh, 95% = 2.4⇥ 102 GeV,

y68% = 1.7⇥ 10�6
, y95% = 3.8⇥ 10�13

, (30)

T Model :

42.0(45.8) < N⇤ < 52.1,

2.3⇥ 10�18(2.2⇥ 10�13) < |y| < 3.6⇥ 10�5
,

N68% = 52.6, N95% = 47.5,

Treh, 68% = 5.9⇥ 1010 GeV, Treh, 95% = 1.4⇥ 104 GeV,

y68% = 1.7⇥ 10�4
, y95% = 3.6⇥ 10�11

. (31)

for k=2:
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channel generic k = 2 k = 4 k = 6 m
2
e� ∫ m

2
„

„ æ f̄f T Ã a
≠ 3k≠3

2k+4 T Ã a
≠3/8

T Ã a
≠3/4

T Ã a
≠15/16

T Ã a
≠ 9(k≠2)

4(k+2)

„ æ bb T Ã a
≠ 3

2k+4 T Ã a
≠3/8

T Ã a
≠1/4

T Ã a
≠3/16

T Ã a
≠ 3(5≠k)

4(k+2)

„„ æ bb T Ã a
≠ 9

2k+4 T Ã a
≠1

T Ã a
≠3/4

T Ã a
≠9/16

T Ã a
≠3/4

Table 1. Dependence of the temperature T as function of the scale factor a for the di�erent cases
we analyze in this work. The ‘generic’ result assumes the validity of eq. (4.8). In the last column
non-perturbative particle production has not been taken into account, even if R ∫ 1.

our work. In the last column of the table, we show the form of the temperature evolution
when R ∫ 1.

At the end of inflation, before inflatons decay, flR = 0 and hence T = 0. The Universe
begins to reheat and a maximum temperature is attained before the temperature begins to
fall o� as given in table 1. The maximum temperature can be computed from eq. (4.7). From
dflR

da = 0, we obtain

amax = aend

3 4k + 8
3k + 6kl

4 k+2

k+8≠6kl

, (4.11)

which gives

fl
max
R = 2

3 + 6l

“„

Hend

fl
l+1
end

M
4l
P

3 4k + 8
3k + 6kl

4≠ 4k+8

k+8≠6kl

, (4.12)

and

Tmax =
A

30
gflfi2 fl

max
R

B 1

4

. (4.13)

We show in figures 3 and 4 the evolution of the temperature obtained by numerically
solving eqs. (2.12)–(2.15), as function of the scale factor a/aend for two choices of k = 2 and
4. To see the e�ect of the kinematic suppression, we compare the results where me� is given
by eq. (3.6) to one where we set me� = 0. We begin by considering the case with k = 2. The
value „end is determined by the condition that exponential expansion ceases, or ä = 0. The
scale of the potential, ⁄ can be obtained by the normalization of the CMB and the number
of e-folds since horizon crossing. This procedure is worked out for the T-attractor models
in appendix B. For k = 2 we find ⁄ = 2.5 ◊ 10≠11 and fl

1/4
end = 5.2 ◊ 1015 GeV. Since we

expect the evolution of the temperature to be similar for the cases of decays to bosons and
fermions (see table 1), we include only decays to fermions and annihilations to boson pairs.
In figure 3, we take y = ‡ = 10≠7 (left) and y = 10≠7 and ‡ = 10≠9 (right). For inflaton
decays to fermions, we can estimate the maximum temperature attained from eqs. (4.12)
and (4.13),

fl
max
R =

Ô
6

32fi

33
8

43/5
y

2
M

2
P (⁄flend)

1

2 ∆ Tmax ≥ 2 ◊ 1011
3

y

10≠7

41/2
GeV, (4.14)

in good agreement with the numerical result shown in the figure. Similarly, for annihilations
to boson pairs, we expect

fl
max
R =


3/2

72fiM
2
P

38
9

48
‡

2
⁄

≠ 3

2 (flend)
3

2 ∆ Tmax ≥ 6 ◊ 1012
3

‡

10≠9

41/2
GeV, (4.15)
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More generally,
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When we include the e�ects of inflaton decay, the equation of motion for „ can be
written as

„̈ + (3H + �„)„̇ + V
Õ(„) = 0 . (2.8)

Provided that we assume that the decay of the inflaton is relatively slow, i.e. the oscillation
time-scale is much shorter than the decay and redshift time-scales, multiplication of (2.5) by
„ and averaging over one oscillation leads to

È„̇
2
Í ƒ È„V

Õ(„)Í . (2.9)

For a potential of the form (2.4), this implies that

fl„ ƒ
1
2È„̇

2
Í + ÈV („)Í ƒ

k + 2
2 ÈV („)Í = V („0) , (2.10)

P„ ƒ
1
2È„̇

2
Í ≠ ÈV („)Í ƒ

k ≠ 2
2 ÈV („)Í = k ≠ 2

k + 2V („0) , (2.11)

where we used ÈP
k
Í = 2

k+2 so that ÈV („)Í = 2
k+2V („0). The equation of motion (2.5) can

then be recast as
fl̇„ + 3H(1 + w„)fl„ ƒ ≠�„(1 + w„)fl„ , (2.12)

where the equation-of-state parameter w„ = P„

fl„

is given by

w„ = k ≠ 2
k + 2 . (2.13)

The analogous equation for the evolution of the radiation density produced by inflaton decay
or scattering (which we assume is in thermal equilibrium) is

fl̇R + 4HflR ƒ (1 + w„)�„(t)fl„ , (2.14)

which together with the Friedmann equation

fl„ + flR = 3H
2
M

2
P , (2.15)

allows one to solve for fl„(t), flR(t), and a(t) simultaneously and e�ectively for fl„(a) and
flR(a). Comparing (2.8) and (2.12) we note that the dissipation rate from particle production
for the inflaton field and energy densities di�er by the constant factor 1 + w„ = 2k

k+2 [79, 80].
The rate of decay for „ (and thus the number density n„) is di�erent from the rate of decay for
fl„, which depends on the nature of the inflaton field (dust, radiation, cosmological constant,
quintessence. . . ). For a microscopic account of this di�erence we refer the interested reader
to appendix A. To solve the equation for fl„, we must first determine the expression of the
width �„ as a function of „.

3 Inflaton decay and annihilation

Once the inflaton couples to Standard Model fields or dark matter, its oscillations are severely
damped by decays. To stay as general as possible, we consider the following possible contri-
butions to the Lagrangian leading to decay or annihilation:

L ∏

Y
__]

__[

y„f̄f „ æ f̄f

µ„bb „ æ bb

‡„
2
b

2
„„ æ bb,

(3.1)
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When evaluated with the parameters used in figure 4, for k = 4, we have TRH = 2◊1010 GeV.
Eqs. (4.29) and (4.30) are two solutions for TRH corresponding to cases considered in the
examples in figures 3 and 4. There are of course several other possible expressions for TRH
depending on the kinematic factor R. When R > 1, we must modify the integrand used
to determine eq. (4.7) as well as the limits of integration if R evolves in such a way that it
crosses R = 1 between aend and aRH.

5 Dark matter production

As noted earlier, it is possible to produce certain very weakly interacting dark matter can-
didates during the reheating process. The relic abundance of these dark matter candidates
may depend primarily on Tmax, TRH, or both depending on the production cross section. We
parametrize the thermally-averaged e�ective cross section for dark matter (DM) production
in the following way,

È‡vÍ = T
n

�̃n+2 , (5.1)

where the mass scale �̃ is assumed to be parametrically related to the mass of a heavy
mediator in the UV theory. For n > ≠1, DM production after reheating is subdominant [15,
25, 53, 88]. For example, in the case of a weak scale gravitino, n = 0, and �̃ Ã MP . In
contrast, in high scale supersymmetry, n = 6, and �̃2

Ã m3/2MP . It is worth emphasizing
that this e�ective description is valid as long as �̃ is above Tmax. The amount of DM produced
during reheating is obtained from the solution of the following Boltzmann equation,

ṅ‰ + 3Hn‰ = g
2
‰È‡vÍn

2
r © R(T ) , (5.2)

where g‰ denotes the number of internal degrees of freedom of the DM particle ‰, and nR

corresponds to the number density of the radiation, which in equilibrium can be written as

nR = ’(3)
fi2 T

3
. (5.3)

The production rate per unit volume can be written as

R(T ) = T
n+6

�n+2 , (5.4)

where we have absorbed the numerical factors in �n+2 = �̃n+2
fi

4
/g

2
‰’(3)2.

Assuming instantaneous thermalization, it is convenient to define the DM yield as
Y‰ © n‰/T

(4k+8)

(k+2kl) , where the power of T is inferred from eq. (4.9) with Y‰ ≥ n‰a
3. The

Boltzmann equation (5.2) can be rewritten as

dY‰

dT
= ≠

R(T )
H(T )

3 4k + 8
3k + 6kl

4
T

≠ 5k+8+2kl

k+2kl , (5.5)

(if 8 + k ≠ 6kl > 0). Furthermore, we can write H(T ) (which we assume is dominated by
fl„) in terms of TRH by noting that at TRH, fl„ = flR and that flR(TRH) = –T

4
RH, where

– = gflfi
2
/30. Using the scaling of fl„ with a from eq. (4.5), and the scaling of a with T from

eq. (4.9), we can write

H =
Ú

–

3
T

2
RH

MP

3
T

TRH

4 4

1+2l

(5.6)
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Suppose some coupling to the Standard Model with cross section

Boltzmann Eq.
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ṅ� + 3Hn� = g
2
�h�vin2

R ⌘ R(T )
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When evaluated with the parameters used in figure 4, for k = 4, we have TRH = 2◊1010 GeV.
Eqs. (4.29) and (4.30) are two solutions for TRH corresponding to cases considered in the
examples in figures 3 and 4. There are of course several other possible expressions for TRH
depending on the kinematic factor R. When R > 1, we must modify the integrand used
to determine eq. (4.7) as well as the limits of integration if R evolves in such a way that it
crosses R = 1 between aend and aRH.

5 Dark matter production

As noted earlier, it is possible to produce certain very weakly interacting dark matter can-
didates during the reheating process. The relic abundance of these dark matter candidates
may depend primarily on Tmax, TRH, or both depending on the production cross section. We
parametrize the thermally-averaged e�ective cross section for dark matter (DM) production
in the following way,

È‡vÍ = T
n

�̃n+2 , (5.1)

where the mass scale �̃ is assumed to be parametrically related to the mass of a heavy
mediator in the UV theory. For n > ≠1, DM production after reheating is subdominant [15,
25, 53, 88]. For example, in the case of a weak scale gravitino, n = 0, and �̃ Ã MP . In
contrast, in high scale supersymmetry, n = 6, and �̃2

Ã m3/2MP . It is worth emphasizing
that this e�ective description is valid as long as �̃ is above Tmax. The amount of DM produced
during reheating is obtained from the solution of the following Boltzmann equation,

ṅ‰ + 3Hn‰ = g
2
‰È‡vÍn

2
r © R(T ) , (5.2)

where g‰ denotes the number of internal degrees of freedom of the DM particle ‰, and nR

corresponds to the number density of the radiation, which in equilibrium can be written as

nR = ’(3)
fi2 T

3
. (5.3)

The production rate per unit volume can be written as

R(T ) = T
n+6

�n+2 , (5.4)

where we have absorbed the numerical factors in �n+2 = �̃n+2
fi

4
/g
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‰’(3)2.

Assuming instantaneous thermalization, it is convenient to define the DM yield as
Y‰ © n‰/T

(4k+8)

(k+2kl) , where the power of T is inferred from eq. (4.9) with Y‰ ≥ n‰a
3. The

Boltzmann equation (5.2) can be rewritten as

dY‰

dT
= ≠

R(T )
H(T )

3 4k + 8
3k + 6kl

4
T

≠ 5k+8+2kl

k+2kl , (5.5)

(if 8 + k ≠ 6kl > 0). Furthermore, we can write H(T ) (which we assume is dominated by
fl„) in terms of TRH by noting that at TRH, fl„ = flR and that flR(TRH) = –T

4
RH, where

– = gflfi
2
/30. Using the scaling of fl„ with a from eq. (4.5), and the scaling of a with T from

eq. (4.9), we can write

H =
Ú

–

3
T
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RH
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T

TRH

4 4
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dY�

da
=

a
2
R

i
�(a)

H

dY
dT

¼ −
ffiffiffiffiffi
10

p

π
ffiffiffiffiffi
g"

p
"
2kþ 4

k − 1

#
MPT

2
k−1
rehT

5kþ3
1−k RðTÞ: ð29Þ

We parametrize the production rate from out-of-
equilibrium scatterings in the following way8:

RsðTÞ ¼ Tnþ6

Λnþ2
: ð30Þ

Here the superscript s denotes production via scatterings in
the plasma, and the mass scale Λ is identified with the
beyond the Standard Model scale of the microscopic model
under consideration. Note that this effective description is
valid for the duration of reheating provided that Λ≳ Tmax.
The suppression by the UV scale ensures that DM
annihilation can be neglected. Integration of (29) after
substitution of (30) leads to the following results:

(i) For n < 10−2k
k−1 ,

nsðTrehÞ ¼

ffiffiffiffiffi
10

g"

s
MP

π
2kþ 4

n − nkþ 10 − 2k
Tnþ4
reh

Λnþ2
: ð31Þ

(ii) For n ¼ 10−2k
k−1 ,

nsðTrehÞ¼

ffiffiffiffiffi
10

g"

s
MP

π

"
2kþ4

k−1

#
Tnþ4
reh

Λnþ2
ln
"
Tmax

Treh

#
: ð32Þ

(iii) For n > 10−2k
k−1 ,

nsðTrehÞ ¼

ffiffiffiffiffi
10

g"

s
MP

π
2kþ 4

kn − n − 10þ 2k

×
"
Treh

Tmax

#2kþ6
k−1 Tnþ4

max

Λnþ2
: ð33Þ

Note that these results are a generalization of [45,50]
applicable to the monomial potential given in Eq. (4) after
inflation. For the typical potential with k ¼ 2, i.e., oscil-
lations of a massive inflaton, the density of dark matter is
mainly sensitive to the reheating temperature if n < 6,
whereas it is mainly sensitive to the maximum temperature
prior to the end of reheating if n > 6. We see that for k ¼ 4,
dark matter production is sensitive to Tmax for n ≥ 1. This
means that we expect significant production of dark matter
in many models. For example, in models where the dark
and visible sectors are connected by massive mediators as
in SO(10) [38,39,66–69] or moduli-portal models [47], the
production and final density of dark matter will be sensitive
to the postinflationary scalar potential.
The DM number density produced by scatterings in the

plasma given in Eqs. (31)–(33) can be converted to the DM
contribution to the critical density using

Ωs
DMh

2 ¼ mDMnsðT0Þ
ρch−2

¼
π2g"sðT0ÞmDMnγðT0ÞnsðTrehÞ

2ζð3Þg"sðTrehÞT3
rehρch

−2

¼ 5.9 × 106 GeV−1 mDMnsðTrehÞ
T3
reh

; ð34Þ

where g"sðT0Þ ¼ 43=11 is the present number of effective
relativistic degrees of freedom for the entropy density,
nγðT0Þ ≃ 410.66 cm−3 is the number density of CMB
photons, and ρch−2 ≃ 1.0534 × 10−5 GeVcm−3 is the criti-
cal density of the Universe [70]. We take g"sðTrehÞ ¼
g"ðTrehÞ ¼ greh, and consider for definiteness the high-
temperature Standard Model value greh ¼ 427=4.

B. Production from scattering when mDM > Treh

In the above derivation of Ωs
DM, we have implicitly

assumed that mDM < Treh, so that the limits of integration
of the Boltzmann equation (29) ranged from Tmax to Treh.
For mDM > Treh, we must cut off the integral at mDM.
However, at T ¼ mDM, ρR < ρΦ, and the density of DM
matter will be further diluted by the subsequent decays of
the inflaton. Therefore, we compute nsðmDM) and scale it to
Treh using Eq. (17). For n ≤ ð10 − 2kÞ=ðk − 1Þ, we find the
following:

(i) For n < 10−2k
k−1 ,

nsðTrehÞ ¼

ffiffiffiffiffi
10

g"

s
MP

π
2kþ 4

n − nkþ 10 − 2k

×
"
Treh

mDM

#2kþ6
k−1 mnþ4

DM

Λnþ2
: ð35Þ

(ii) For n ¼ 10−2k
k−1 ,

nsðTrehÞ ¼

ffiffiffiffiffi
10

g"

s
MP

π

"
2kþ 4

k − 1

#

×
"
Treh

mDM

#
nþ4 mnþ4

DM

Λnþ2
ln
"
Tmax

mDM

#
: ð36Þ

Note that for n > ð10 − 2kÞ=ðk − 1Þ, the result in Eq. (33)
is unchanged.9

C. Production from inflaton decay

DM can also be produced during reheating by the direct
decay of the inflaton. When the decay rate for both the
dominant decay products of Φ and the DM particle is

8Note that this parametrization corresponds to a thermally
averaged effective cross section hσvi ∝ Tn=Λnþ2.

9When Treh < mDM, the condition Treh < Tf may also be
satisfied, where Tf denotes the freeze-out temperature for a
thermal (WIMP-like) dark matter candidate. In this case, the
abundance of dark matter from freeze-out is reduced [71].
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Here the superscript s denotes production via scatterings in
the plasma, and the mass scale Λ is identified with the
beyond the Standard Model scale of the microscopic model
under consideration. Note that this effective description is
valid for the duration of reheating provided that Λ≳ Tmax.
The suppression by the UV scale ensures that DM
annihilation can be neglected. Integration of (29) after
substitution of (30) leads to the following results:

(i) For n < 10−2k
k−1 ,

nsðTrehÞ ¼

ffiffiffiffiffi
10

g"

s
MP

π
2kþ 4

n − nkþ 10 − 2k
Tnþ4
reh

Λnþ2
: ð31Þ

(ii) For n ¼ 10−2k
k−1 ,

nsðTrehÞ¼

ffiffiffiffiffi
10

g"

s
MP

π

"
2kþ4

k−1

#
Tnþ4
reh

Λnþ2
ln
"
Tmax

Treh

#
: ð32Þ

(iii) For n > 10−2k
k−1 ,

nsðTrehÞ ¼

ffiffiffiffiffi
10

g"

s
MP

π
2kþ 4

kn − n − 10þ 2k

×
"
Treh

Tmax

#2kþ6
k−1 Tnþ4

max

Λnþ2
: ð33Þ

Note that these results are a generalization of [45,50]
applicable to the monomial potential given in Eq. (4) after
inflation. For the typical potential with k ¼ 2, i.e., oscil-
lations of a massive inflaton, the density of dark matter is
mainly sensitive to the reheating temperature if n < 6,
whereas it is mainly sensitive to the maximum temperature
prior to the end of reheating if n > 6. We see that for k ¼ 4,
dark matter production is sensitive to Tmax for n ≥ 1. This
means that we expect significant production of dark matter
in many models. For example, in models where the dark
and visible sectors are connected by massive mediators as
in SO(10) [38,39,66–69] or moduli-portal models [47], the
production and final density of dark matter will be sensitive
to the postinflationary scalar potential.
The DM number density produced by scatterings in the

plasma given in Eqs. (31)–(33) can be converted to the DM
contribution to the critical density using

Ωs
DMh

2 ¼ mDMnsðT0Þ
ρch−2

¼
π2g"sðT0ÞmDMnγðT0ÞnsðTrehÞ

2ζð3Þg"sðTrehÞT3
rehρch

−2

¼ 5.9 × 106 GeV−1 mDMnsðTrehÞ
T3
reh

; ð34Þ

where g"sðT0Þ ¼ 43=11 is the present number of effective
relativistic degrees of freedom for the entropy density,
nγðT0Þ ≃ 410.66 cm−3 is the number density of CMB
photons, and ρch−2 ≃ 1.0534 × 10−5 GeVcm−3 is the criti-
cal density of the Universe [70]. We take g"sðTrehÞ ¼
g"ðTrehÞ ¼ greh, and consider for definiteness the high-
temperature Standard Model value greh ¼ 427=4.

B. Production from scattering when mDM > Treh

In the above derivation of Ωs
DM, we have implicitly

assumed that mDM < Treh, so that the limits of integration
of the Boltzmann equation (29) ranged from Tmax to Treh.
For mDM > Treh, we must cut off the integral at mDM.
However, at T ¼ mDM, ρR < ρΦ, and the density of DM
matter will be further diluted by the subsequent decays of
the inflaton. Therefore, we compute nsðmDM) and scale it to
Treh using Eq. (17). For n ≤ ð10 − 2kÞ=ðk − 1Þ, we find the
following:

(i) For n < 10−2k
k−1 ,

nsðTrehÞ ¼

ffiffiffiffiffi
10

g"

s
MP

π
2kþ 4

n − nkþ 10 − 2k

×
"
Treh

mDM

#2kþ6
k−1 mnþ4

DM

Λnþ2
: ð35Þ

(ii) For n ¼ 10−2k
k−1 ,

nsðTrehÞ ¼

ffiffiffiffiffi
10

g"

s
MP

π

"
2kþ 4

k − 1

#

×
"
Treh

mDM

#
nþ4 mnþ4

DM

Λnþ2
ln
"
Tmax

mDM

#
: ð36Þ

Note that for n > ð10 − 2kÞ=ðk − 1Þ, the result in Eq. (33)
is unchanged.9

C. Production from inflaton decay

DM can also be produced during reheating by the direct
decay of the inflaton. When the decay rate for both the
dominant decay products of Φ and the DM particle is

8Note that this parametrization corresponds to a thermally
averaged effective cross section hσvi ∝ Tn=Λnþ2.

9When Treh < mDM, the condition Treh < Tf may also be
satisfied, where Tf denotes the freeze-out temperature for a
thermal (WIMP-like) dark matter candidate. In this case, the
abundance of dark matter from freeze-out is reduced [71].
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FIG. 3: Contours ΩDMh2 = 0.1 showing the required value of Λ as a function of the DM mass. We assume an
inflaton decay coupling y = 10−5 and a production rate with n = 0 (a), n = 2 (b) and n = 6 (c). For (d) we assume

y = 10−7 and n = 2. In all cases we have set BR = 0.

where the first term corresponds to the production from
decays, while the second, Λ-dependent term corresponds
to freeze-in production through scattering. For the for-
mer term, it is worth noting that for k = 4, Eq. (21)
implies that Treh ∝ y2, and therefore the decay con-
tribution does not depend on the reheating tempera-
ture. It depends only on the square of the ratio of
the inflaton-DM and inflaton-SM couplings, encoded in
BR, and the DM mass. In the case of scatterings,
we see clearly here the enhancement in (Tmax/Treh) for
n > (10− 2k)/(k − 1).

In Fig. 3, we display the value of Λ (in Eq. (30))
as a function of the DM mass, mDM, needed to ob-
tain Ωs

DMh2 = 0.1 in Eq. (34) for k = 2, 3, 4. In
Fig. 3(a), we have chosen n = 0 which is characteris-
tic of a production rate for gravitinos in supersymmetric
models when Λ ∼ MP . In this figure, we have chosen
y = 10−5. According to Fig. 1, this corresponds to a
value of Tmax ∼ 1012 GeV and Treh ∼ 1010 GeV. For

k = 2, one gets the expected result that the density of
gravitinos accounts for the DM when m3/2 ∼ 100 GeV,
for Λ ∼ MP .

As discussed in the earlier sections, fixing the infla-
ton decay coupling, y, fixes the maximum and final re-
heating temperature depending on the value of k. The
relic density depends on Treh through ns(Treh) as given
in Eqs. (31-33). But ns also depends on Λ−(n+2). In
Fig. 3(a), for n = 0, the density is given by Eq. (31)
and we see from Eq. (42) that Ωs

DM scales as mDM/Λ2

which accounts for the slope in the figure. We also see
that the required value of Λ decreases with increasing
k to compensate for the lower reheat temperature when
k > 2. Suitable DM masses range from 0.1 to Tmax for
Λ = 1014GeV to MP .

In Fig. 3(a) we also see changes in the slopes of the
lines for all three values of k. These occur when mDM =
Treh as discussed earlier. For k = 2 and 3, the change in
slope occurs at high Λ(> MP ) and is off the scale of the
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FIG. 3: Contours ΩDMh2 = 0.1 showing the required value of Λ as a function of the DM mass. We assume an
inflaton decay coupling y = 10−5 and a production rate with n = 0 (a), n = 2 (b) and n = 6 (c). For (d) we assume

y = 10−7 and n = 2. In all cases we have set BR = 0.

where the first term corresponds to the production from
decays, while the second, Λ-dependent term corresponds
to freeze-in production through scattering. For the for-
mer term, it is worth noting that for k = 4, Eq. (21)
implies that Treh ∝ y2, and therefore the decay con-
tribution does not depend on the reheating tempera-
ture. It depends only on the square of the ratio of
the inflaton-DM and inflaton-SM couplings, encoded in
BR, and the DM mass. In the case of scatterings,
we see clearly here the enhancement in (Tmax/Treh) for
n > (10− 2k)/(k − 1).

In Fig. 3, we display the value of Λ (in Eq. (30))
as a function of the DM mass, mDM, needed to ob-
tain Ωs

DMh2 = 0.1 in Eq. (34) for k = 2, 3, 4. In
Fig. 3(a), we have chosen n = 0 which is characteris-
tic of a production rate for gravitinos in supersymmetric
models when Λ ∼ MP . In this figure, we have chosen
y = 10−5. According to Fig. 1, this corresponds to a
value of Tmax ∼ 1012 GeV and Treh ∼ 1010 GeV. For

k = 2, one gets the expected result that the density of
gravitinos accounts for the DM when m3/2 ∼ 100 GeV,
for Λ ∼ MP .

As discussed in the earlier sections, fixing the infla-
ton decay coupling, y, fixes the maximum and final re-
heating temperature depending on the value of k. The
relic density depends on Treh through ns(Treh) as given
in Eqs. (31-33). But ns also depends on Λ−(n+2). In
Fig. 3(a), for n = 0, the density is given by Eq. (31)
and we see from Eq. (42) that Ωs

DM scales as mDM/Λ2

which accounts for the slope in the figure. We also see
that the required value of Λ decreases with increasing
k to compensate for the lower reheat temperature when
k > 2. Suitable DM masses range from 0.1 to Tmax for
Λ = 1014GeV to MP .

In Fig. 3(a) we also see changes in the slopes of the
lines for all three values of k. These occur when mDM =
Treh as discussed earlier. For k = 2 and 3, the change in
slope occurs at high Λ(> MP ) and is off the scale of the

ex: gravitino - n=0, Λ=MP, and for k=2, Ωh2 ~ .1 when m3/2 ~ 100 GeV

slope changes when mχ ~ Treh

k=2
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FIG. 3: Contours ΩDMh2 = 0.1 showing the required value of Λ as a function of the DM mass. We assume an
inflaton decay coupling y = 10−5 and a production rate with n = 0 (a), n = 2 (b) and n = 6 (c). For (d) we assume

y = 10−7 and n = 2. In all cases we have set BR = 0.

where the first term corresponds to the production from
decays, while the second, Λ-dependent term corresponds
to freeze-in production through scattering. For the for-
mer term, it is worth noting that for k = 4, Eq. (21)
implies that Treh ∝ y2, and therefore the decay con-
tribution does not depend on the reheating tempera-
ture. It depends only on the square of the ratio of
the inflaton-DM and inflaton-SM couplings, encoded in
BR, and the DM mass. In the case of scatterings,
we see clearly here the enhancement in (Tmax/Treh) for
n > (10− 2k)/(k − 1).

In Fig. 3, we display the value of Λ (in Eq. (30))
as a function of the DM mass, mDM, needed to ob-
tain Ωs

DMh2 = 0.1 in Eq. (34) for k = 2, 3, 4. In
Fig. 3(a), we have chosen n = 0 which is characteris-
tic of a production rate for gravitinos in supersymmetric
models when Λ ∼ MP . In this figure, we have chosen
y = 10−5. According to Fig. 1, this corresponds to a
value of Tmax ∼ 1012 GeV and Treh ∼ 1010 GeV. For

k = 2, one gets the expected result that the density of
gravitinos accounts for the DM when m3/2 ∼ 100 GeV,
for Λ ∼ MP .

As discussed in the earlier sections, fixing the infla-
ton decay coupling, y, fixes the maximum and final re-
heating temperature depending on the value of k. The
relic density depends on Treh through ns(Treh) as given
in Eqs. (31-33). But ns also depends on Λ−(n+2). In
Fig. 3(a), for n = 0, the density is given by Eq. (31)
and we see from Eq. (42) that Ωs

DM scales as mDM/Λ2

which accounts for the slope in the figure. We also see
that the required value of Λ decreases with increasing
k to compensate for the lower reheat temperature when
k > 2. Suitable DM masses range from 0.1 to Tmax for
Λ = 1014GeV to MP .

In Fig. 3(a) we also see changes in the slopes of the
lines for all three values of k. These occur when mDM =
Treh as discussed earlier. For k = 2 and 3, the change in
slope occurs at high Λ(> MP ) and is off the scale of the
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FIG. 3: Contours ΩDMh2 = 0.1 showing the required value of Λ as a function of the DM mass. We assume an
inflaton decay coupling y = 10−5 and a production rate with n = 0 (a), n = 2 (b) and n = 6 (c). For (d) we assume

y = 10−7 and n = 2. In all cases we have set BR = 0.

where the first term corresponds to the production from
decays, while the second, Λ-dependent term corresponds
to freeze-in production through scattering. For the for-
mer term, it is worth noting that for k = 4, Eq. (21)
implies that Treh ∝ y2, and therefore the decay con-
tribution does not depend on the reheating tempera-
ture. It depends only on the square of the ratio of
the inflaton-DM and inflaton-SM couplings, encoded in
BR, and the DM mass. In the case of scatterings,
we see clearly here the enhancement in (Tmax/Treh) for
n > (10− 2k)/(k − 1).

In Fig. 3, we display the value of Λ (in Eq. (30))
as a function of the DM mass, mDM, needed to ob-
tain Ωs

DMh2 = 0.1 in Eq. (34) for k = 2, 3, 4. In
Fig. 3(a), we have chosen n = 0 which is characteris-
tic of a production rate for gravitinos in supersymmetric
models when Λ ∼ MP . In this figure, we have chosen
y = 10−5. According to Fig. 1, this corresponds to a
value of Tmax ∼ 1012 GeV and Treh ∼ 1010 GeV. For

k = 2, one gets the expected result that the density of
gravitinos accounts for the DM when m3/2 ∼ 100 GeV,
for Λ ∼ MP .

As discussed in the earlier sections, fixing the infla-
ton decay coupling, y, fixes the maximum and final re-
heating temperature depending on the value of k. The
relic density depends on Treh through ns(Treh) as given
in Eqs. (31-33). But ns also depends on Λ−(n+2). In
Fig. 3(a), for n = 0, the density is given by Eq. (31)
and we see from Eq. (42) that Ωs

DM scales as mDM/Λ2

which accounts for the slope in the figure. We also see
that the required value of Λ decreases with increasing
k to compensate for the lower reheat temperature when
k > 2. Suitable DM masses range from 0.1 to Tmax for
Λ = 1014GeV to MP .

In Fig. 3(a) we also see changes in the slopes of the
lines for all three values of k. These occur when mDM =
Treh as discussed earlier. For k = 2 and 3, the change in
slope occurs at high Λ(> MP ) and is off the scale of thek=2
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FIG. 3: Contours ΩDMh2 = 0.1 showing the required value of Λ as a function of the DM mass. We assume an
inflaton decay coupling y = 10−5 and a production rate with n = 0 (a), n = 2 (b) and n = 6 (c). For (d) we assume

y = 10−7 and n = 2. In all cases we have set BR = 0.

where the first term corresponds to the production from
decays, while the second, Λ-dependent term corresponds
to freeze-in production through scattering. For the for-
mer term, it is worth noting that for k = 4, Eq. (21)
implies that Treh ∝ y2, and therefore the decay con-
tribution does not depend on the reheating tempera-
ture. It depends only on the square of the ratio of
the inflaton-DM and inflaton-SM couplings, encoded in
BR, and the DM mass. In the case of scatterings,
we see clearly here the enhancement in (Tmax/Treh) for
n > (10− 2k)/(k − 1).

In Fig. 3, we display the value of Λ (in Eq. (30))
as a function of the DM mass, mDM, needed to ob-
tain Ωs

DMh2 = 0.1 in Eq. (34) for k = 2, 3, 4. In
Fig. 3(a), we have chosen n = 0 which is characteris-
tic of a production rate for gravitinos in supersymmetric
models when Λ ∼ MP . In this figure, we have chosen
y = 10−5. According to Fig. 1, this corresponds to a
value of Tmax ∼ 1012 GeV and Treh ∼ 1010 GeV. For

k = 2, one gets the expected result that the density of
gravitinos accounts for the DM when m3/2 ∼ 100 GeV,
for Λ ∼ MP .

As discussed in the earlier sections, fixing the infla-
ton decay coupling, y, fixes the maximum and final re-
heating temperature depending on the value of k. The
relic density depends on Treh through ns(Treh) as given
in Eqs. (31-33). But ns also depends on Λ−(n+2). In
Fig. 3(a), for n = 0, the density is given by Eq. (31)
and we see from Eq. (42) that Ωs

DM scales as mDM/Λ2

which accounts for the slope in the figure. We also see
that the required value of Λ decreases with increasing
k to compensate for the lower reheat temperature when
k > 2. Suitable DM masses range from 0.1 to Tmax for
Λ = 1014GeV to MP .

In Fig. 3(a) we also see changes in the slopes of the
lines for all three values of k. These occur when mDM =
Treh as discussed earlier. For k = 2 and 3, the change in
slope occurs at high Λ(> MP ) and is off the scale of the

correct relic density for m3/2 ~ 1 EeV 
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FIG. 3: Contours ΩDMh2 = 0.1 showing the required value of Λ as a function of the DM mass. We assume an
inflaton decay coupling y = 10−5 and a production rate with n = 0 (a), n = 2 (b) and n = 6 (c). For (d) we assume

y = 10−7 and n = 2. In all cases we have set BR = 0.

where the first term corresponds to the production from
decays, while the second, Λ-dependent term corresponds
to freeze-in production through scattering. For the for-
mer term, it is worth noting that for k = 4, Eq. (21)
implies that Treh ∝ y2, and therefore the decay con-
tribution does not depend on the reheating tempera-
ture. It depends only on the square of the ratio of
the inflaton-DM and inflaton-SM couplings, encoded in
BR, and the DM mass. In the case of scatterings,
we see clearly here the enhancement in (Tmax/Treh) for
n > (10− 2k)/(k − 1).

In Fig. 3, we display the value of Λ (in Eq. (30))
as a function of the DM mass, mDM, needed to ob-
tain Ωs

DMh2 = 0.1 in Eq. (34) for k = 2, 3, 4. In
Fig. 3(a), we have chosen n = 0 which is characteris-
tic of a production rate for gravitinos in supersymmetric
models when Λ ∼ MP . In this figure, we have chosen
y = 10−5. According to Fig. 1, this corresponds to a
value of Tmax ∼ 1012 GeV and Treh ∼ 1010 GeV. For

k = 2, one gets the expected result that the density of
gravitinos accounts for the DM when m3/2 ∼ 100 GeV,
for Λ ∼ MP .

As discussed in the earlier sections, fixing the infla-
ton decay coupling, y, fixes the maximum and final re-
heating temperature depending on the value of k. The
relic density depends on Treh through ns(Treh) as given
in Eqs. (31-33). But ns also depends on Λ−(n+2). In
Fig. 3(a), for n = 0, the density is given by Eq. (31)
and we see from Eq. (42) that Ωs

DM scales as mDM/Λ2

which accounts for the slope in the figure. We also see
that the required value of Λ decreases with increasing
k to compensate for the lower reheat temperature when
k > 2. Suitable DM masses range from 0.1 to Tmax for
Λ = 1014GeV to MP .

In Fig. 3(a) we also see changes in the slopes of the
lines for all three values of k. These occur when mDM =
Treh as discussed earlier. For k = 2 and 3, the change in
slope occurs at high Λ(> MP ) and is off the scale of thek=2
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scale factor of the Universe. As we show below, the evolu-
tion of the radiation density can be modified by the grav-
itational production of Standard Model quanta which in-
duces a lower bound on the maximum temperature of the
Universe. We show that it is of the order of 1012 GeV,
and is one of the main results of our work.

If the production of dark matter occurs during reheat-
ing, it is intimately linked to the behaviour of the infla-
ton and the evolution of the thermal bath. Often it is as-
sumed that the either the dark matter is directly coupled
to the inflaton, in which case, it can be produced directly
from inflaton decays [35, 36, 41, 42] or it is coupled to
the Standard Model, and thus produced thermal as the
gravitino or other super-weakly interacting particles. In
the latter case, it has also been shown that radiative de-
cay of the inflaton [43] could be the dominant process to
populate the dark Universe.

While reheating requires some coupling of the infla-
ton to the Standard Model (as will see gravitation in-
teractions alone will not lead to radiation domination),
the mechanism for producing dark matter may in fact be
dominated solely by gravity. In this paper, we analyze all
processes involving a gravitational interactions, compar-
ing the modes of production via the thermal bath, the
scattering of the inflaton, and gravitational production
of particles from the thermal bath which subsequently
produce dark matter through gravity as well. In this
sense, each of the physical quantities we consider, such
as the relic density or maximum temperature, must be
considered as lower bounds as the gravitational process
we compute are inevitable in any theory based on Ein-
stein gravity. As a result, these lower bounds must be
taken into account in any kind of extension of the Stan-
dard Model, and can be thought of as a gravitational
“background noise". We do not consider preheating via
parametric or stochastic resonances as we did in [44],
because we want to compute the minimal unavoidable
amount of dark matter, and thus derive the strongest
model-independent constraints on the dark matter mass,
supposing that it only couples gravitationally.

The only non-gravitational coupling we consider, is a
coupling of the inflaton to SM fields to achieve reheat-
ing. Thus, we consider a generic Yukawa-like coupling
of the form, y�f̄f , where f is some Standard Model
fermion. We assume rapid thermalization, and these de-
cays are (partially) responsible for the growing thermal
bath. However the production of dark matter from the
thermal bath is entirely gravitational.

The paper is organized as follows. The framework for
our computation is outlined in Section II. We consider
both scalar and fermionic dark matter coupled to the
Standard Model and the inflaton only through gravity.
We compute the rates for the production of dark mat-
ter either through thermal scattering (mediated by grav-
ity alone) or from the inflaton condensate. We choose
an attractor form for the inflaton potential which when
expanded about its minimum, take the form �

k. Our

results are sensitive to k. Reheating takes place as the
inflaton oscillates about this minimum. In Section III we
consider three distinct gravitational process. The gravi-
tation production of dark matter from the thermal bath;
the gravitational production of dark matter from the con-
densate; and the gravitational production of the thermal
bath from the condensate. We then compare each modes
in Section IV, before concluding in Section V.
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where V (S) is the scalar potential for either the scalar
dark matter candidate, the SM Higgs boson, or the infla-
ton, with S = X, H, �, and Fµ⌫ = @µA⌫ � @⌫Aµ is the
field strength for a vector field, Aµ. In Fig. 1, we show
the s-channel exchange of a graviton obtained from the
Lagrangian (2) for the production of dark matter from
either the inflaton condensate or Standard Model fields.
In addition, a similar diagram exists for the production of
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fermion. We assume rapid thermalization, and these de-
cays are (partially) responsible for the growing thermal
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our computation is outlined in Section II. We consider
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Standard Model and the inflaton only through gravity.
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ter either through thermal scattering (mediated by grav-
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an attractor form for the inflaton potential which when
expanded about its minimum, take the form �

k. Our

results are sensitive to k. Reheating takes place as the
inflaton oscillates about this minimum. In Section III we
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because we want to compute the minimal unavoidable
amount of dark matter, and thus derive the strongest
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supposing that it only couples gravitationally.
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ing. Thus, we consider a generic Yukawa-like coupling
of the form, y�f̄f , where f is some Standard Model
fermion. We assume rapid thermalization, and these de-
cays are (partially) responsible for the growing thermal
bath. However the production of dark matter from the
thermal bath is entirely gravitational.

The paper is organized as follows. The framework for
our computation is outlined in Section II. We consider
both scalar and fermionic dark matter coupled to the
Standard Model and the inflaton only through gravity.
We compute the rates for the production of dark mat-
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ity alone) or from the inflaton condensate. We choose
an attractor form for the inflaton potential which when
expanded about its minimum, take the form �
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inflaton oscillates about this minimum. In Section III we
consider three distinct gravitational process. The gravi-
tation production of dark matter from the thermal bath;
the gravitational production of dark matter from the con-
densate; and the gravitational production of the thermal
bath from the condensate. We then compare each modes
in Section IV, before concluding in Section V.
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where V (S) is the scalar potential for either the scalar
dark matter candidate, the SM Higgs boson, or the infla-
ton, with S = X, H, �, and Fµ⌫ = @µA⌫ � @⌫Aµ is the
field strength for a vector field, Aµ. In Fig. 1, we show
the s-channel exchange of a graviton obtained from the
Lagrangian (2) for the production of dark matter from
either the inflaton condensate or Standard Model fields.
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FIG. 1: Feynman diagram for the production of dark matter

through the gravitational scattering of the Standard Model

particle bath or inflaton condensate.

Standard Model fields (during the reheat process) from
the inflaton condensate in the initial state.

Although the direct coupling to the massless graviton
appears to be feeble due to Planck suppression, the en-
ergy available in the thermal bath during the initial stage
of reheating is large enough to make the gravitational
production rates significant.

The scattering amplitudes related to the produc-
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where (i, j) denotes the spin of the (initial,final) state
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with analogous expressions for dark matter in terms of
the dark matter momenta, p3, p4, and potential V (X), if
X is a scalar. For an initial state inflaton with S = �, we
replace M

0

µ⌫
with T

0

µ⌫
from Eq. (3). As we only consider

vectors in the Standard Model, their masses have been
neglected in Eq. (10).

In what follows, we consider three distinct processes
based on the diagram in Fig. 1: for the production of dark

matter, A) SM + SM ! X+X; B) �+� ! X+X, where
the latter involves the inflaton condensate (zero mode)
in the initial state rather than an initial state particle
with momentum p1,2 (see below for more detail), and
C) � + � ! SM + SM, as a minimal and unavoidable
contribution to the reheating process.

The dark matter production rate from SM fields can
be readily calculated by assuming that the initial particle
states are massless. This assumption can be justified by
the fact that the energy associated with the momenta,
p1 , p2 is extremely large at the end of inflation and dom-
inates over electroweak scale quantities.

The dark matter production rate R(T ) for the SM+SM
! X + X process with amplitude M3 is
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where the factor of two accounts for two dark matter
particles per scattering, Ei denotes the energy of parti-
cle i = 1, 2, 3, 4, ✓13 and ✓12 are the angles formed by
momenta p

1,3
and p1,2, respectively, and
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represent the assumed thermal distributions of the in-
coming SM particles.

The total amplitude squared for the gravitational scat-
tering process SM+SM ! Xj + Xj is given by a sum
of the three amplitudes associated with different initial
state spins,

|M|2 = 4|M0|2 + 45|M1/2|2 + 12|M1|2 . (13)

These were calculated in [19] and it was found that the
dark matter production rate is given by
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where j refers to the spin of X (either 0 or 1/2), the
constants �j and details related to the computation of
dark matter production rate and the amplitude squared
are given in Appendix A.

For the production of dark matter through the scat-
tering of the inflaton condensate we consider the time-
dependent oscillation of a classical inflaton field �(t).
Since our computation depends explicitly on inflaton po-
tential, we consider the ↵-attractor T-model [39] as a
specific example,
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ated with identical initial and final states in the squared ampli-
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FIG. 1: Feynman diagram for the production of dark matter

through the gravitational scattering of the Standard Model

particle bath or inflaton condensate.

Standard Model fields (during the reheat process) from
the inflaton condensate in the initial state.

Although the direct coupling to the massless graviton
appears to be feeble due to Planck suppression, the en-
ergy available in the thermal bath during the initial stage
of reheating is large enough to make the gravitational
production rates significant.
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replace M

0

µ⌫
with T

0

µ⌫
from Eq. (3). As we only consider

vectors in the Standard Model, their masses have been
neglected in Eq. (10).

In what follows, we consider three distinct processes
based on the diagram in Fig. 1: for the production of dark

matter, A) SM + SM ! X+X; B) �+� ! X+X, where
the latter involves the inflaton condensate (zero mode)
in the initial state rather than an initial state particle
with momentum p1,2 (see below for more detail), and
C) � + � ! SM + SM, as a minimal and unavoidable
contribution to the reheating process.

The dark matter production rate from SM fields can
be readily calculated by assuming that the initial particle
states are massless. This assumption can be justified by
the fact that the energy associated with the momenta,
p1 , p2 is extremely large at the end of inflation and dom-
inates over electroweak scale quantities.

The dark matter production rate R(T ) for the SM+SM
! X + X process with amplitude M3 is

R(T ) =
2

1024⇡6
⇥
Z

f1f2E1 dE1E2 dE2 d cos ✓12

Z
|M|2 d⌦13 ,

(11)
where the factor of two accounts for two dark matter
particles per scattering, Ei denotes the energy of parti-
cle i = 1, 2, 3, 4, ✓13 and ✓12 are the angles formed by
momenta p

1,3
and p1,2, respectively, and

fi =
1

eEi/T ± 1
, (12)

represent the assumed thermal distributions of the in-
coming SM particles.

The total amplitude squared for the gravitational scat-
tering process SM+SM ! Xj + Xj is given by a sum
of the three amplitudes associated with different initial
state spins,

|M|2 = 4|M0|2 + 45|M1/2|2 + 12|M1|2 . (13)

These were calculated in [19] and it was found that the
dark matter production rate is given by

R
T

j
= Rj(T ) = �j

T
8

M
4

P

, (14)

where j refers to the spin of X (either 0 or 1/2), the
constants �j and details related to the computation of
dark matter production rate and the amplitude squared
are given in Appendix A.

For the production of dark matter through the scat-
tering of the inflaton condensate we consider the time-
dependent oscillation of a classical inflaton field �(t).
Since our computation depends explicitly on inflaton po-
tential, we consider the ↵-attractor T-model [39] as a
specific example,

V (�) = �M
4

P

����
p

6 tanh

✓
�p

6MP

◆����
k

, (15)

3
It should be noted that we include the symmetry factors associ-

ated with identical initial and final states in the squared ampli-

tude, |M|2.

A. Gravitational Production of DM from the thermal bath

B. Gravitational Production of DM from Inflaton Scattering

C. Gravitational Production of the thermal bath from  Inflaton Scattering
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trum of the Standard Model is straightforward, and we
leave it for future work.

For models with minimally coupled gravity, the pro-
cesses �/h(p1) + �/h(p2) ! h/X(p3) + h/X(p4) can be
parametrized by

M
00

/ M
0

µ⌫⇧
µ⌫⇢�

M
0

⇢� , (18)

where the graviton propagator for the canonically-
normalized field hµ⌫ with exchange momentum k =
p1 + p2 is given by

⇧µ⌫⇢�(k) =
⌘
µ⇢
⌘
⌫� + ⌘

µ�
⌘
⌫⇢

� ⌘
µ⌫
⌘
⇢�

2k2
, (19)

and the partial amplitude, M0

µ⌫ , is given by

M
0

µ⌫ =
1

2
[p1µp2⌫ + p1⌫p2µ � ⌘µ⌫p1 · p2 � ⌘µ⌫V

00
S ] , (20)

with analogous expression for the final state in terms of
outgoing momenta p3,4 and the final state potential. In
Fig. 2 we show the s-channel graviton exchange scatter-
ing obtained from the Lagrangian (16) for the production
of dark matter from either the Higgs field or the inflaton
condensate as well as the reheating process (the produc-
tion of Higgs bosons from the inflaton condensate).

C. Production rates

In this work, we consider three processes:

A. The production of dark matter from the scattering
of thermal Higgs bosons (assuming reheating is pro-
duced by inflaton decay). In this case, the dark mat-
ter is populated via a freeze-in mechanism throughout
the reheating period.

B. The production of dark matter from direct excitations
of the inflaton condensate. This process, which can
be viewed as gravitational inflaton scattering, is inde-
pendent of the presence of a thermal bath.

C. The creation of a radiative bath at the start of reheat-
ing arising from the Higgs boson production through
gravitational inflaton scattering. Since such a pro-
cess is unavoidable in minimally coupled gravity, it
is interesting to know when such a process becomes
dominant in models with non-minimal couplings ⇠i.

The thermal dark matter production rate R(T ) for the
process hh ! XX can be calculated from6 [30]

R(T ) =
2⇥Nh

1024⇡6

Z
f1f2E1 dE1E2 dE2 d cos ✓12

Z
|M|

2 d⌦13 ,

(21)

6 We include the symmetry factors associated with identical initial
and final states in the definition of |M|2, and a factor of 2 is
explicitly included in the definition of the rate to account for the
production of 2 identical particles.

where Ei is the energy of particle i = 1, 2, ✓13 and ✓12

are the angles formed by momenta p1,3 and p1,2, respec-
tively. Nh = 4 is the number of internal degrees of free-
dom for 1 complex Higgs doublet, |M|

2 is the matrix
amplitude squared with all symmetry factors included.
This accounts for the explicit factor of 2 in the numera-
tor of Eq. (21). The thermal distribution function of the
incoming Higgs particles is given by the Bose-Einstein
distribution

fi =
1

eEi/T � 1
. (22)

The rate for minimal gravitational interactions from
Eq. (16) was derived in [6, 31]. The rate we use here
differs in two respects. As noted earlier, we only include
Higgs scalars in the initial state whereas in [6, 31], all
Standard Model particle initial states were included. Sec-
ondly, we keep terms depending on the dark matter mass
which had not previously been taken into account. This
allows us to consider dark matter masses approaching the
inflaton mass and/or the reheating temperature.

For minimal (non-minimal) gravitational interactions,
we find that the thermal dark matter production rate can
be expressed as

R
T, (⇠)
X (T ) = �

(⇠)
1

T
8

M
4

P

+ �
(⇠)
2

m
2

XT
6

M
4

P

+ �
(⇠)
3

m
4

XT
4

M
4

P

, (23)

where the coefficients �(⇠)
1, 2, 3 are given in Appendix B by

Eqs. (84-86) (Eqs. (80-82)). The ratio of the non-minimal
to minimal rate is shown in Fig. 3. However, we note
that when ⇠i ⇠ O(1) both rates are comparable and in-
terference effects become significant. The full coefficients
�1, 2, 3 including interference are given by Eqs. (87-89)
from Appendix B. We leave the comparison of the ef-
fects on dark matter production from the two rates for
the next section.

The rate for dark matter produced from inflaton os-
cillations of the inflaton condensate for a potential of
the form V = ��

k were considered in detail in [6, 32].
The time-dependent inflaton can be written as �(t) =
�0(t)P(t), where �0(t) is the time-dependent amplitude
that includes the effects of redshift and P(t) describes the
periodicity of the oscillation. The dark matter produc-
tion rate is calculated by writing the potential in terms
of the Fourier modes of the oscillations [6, 32–34]

V (�) = V (�0)
1X

n=�1
P

k
ne

�in!t = ⇢�

1X

n=�1
P

k
ne

�in!t
.

(24)
For k = 2 (the only case considered here), the frequency
of oscillation is simply, ! = m�.

The rate generated by non-minimal couplings can be
readily calculated using the Lagrangian (13), which leads
to

R
�, ⇠
X =

2⇥ �
⇠ 2

�X

⇡

⇢
2

�

m
4

�

⌃k
0
, (25)
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Since we can express T as function of the scale fac-
tor, a, with Eq. (35), we can implement that relation in
Eq. (14) to obtain R

T

X
as function of a,
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where we integrated Eq. (39) between the values of the
scale factor corresponding to the end of inflation, aend,
and the reheating temperature (reached at aRH).

Writing the relic abundance [2]
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and inserting Eq. (40), we obtain
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with
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where g0 = 43/11 and we take gRH = 427/4 as the Stan-
dard Model value.

We observe that, for a given reheating temperature,
the relic abundance decreases with k. Furthermore,
whereas ⌦T

X
h
2 / T

3

RH
for a quadratic potential, it be-

comes / T
2

RH
for a quartic potential, and even / TRH

for k = 6. This comes from the fact that the Hubble pa-
rameter, dominated by the evolution of the inflaton, has
a greater dependence on T for larger values of k, slowing
down the production mechanism for large temperatures.

B. � � ! hµ⌫ ! DM DM

As noted earlier, it is also possible that the inflaton
condensate can lead to the direct production of dark mat-
ter through single graviton exchange [31]. Here, we gen-
eralize that result for k � 2. Having computed the pro-
duction rate in Eqs. (20) and (23) for scalar and fermionic
dark matter respectively, we can replace R

T

X
with the

rates in Eq. (39). Then integrating
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where we integrated Eq. (39) between the values of the
scale factor corresponding to the end of inflation, aend,
and the reheating temperature (reached at aRH).
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where g0 = 43/11 and we take gRH = 427/4 as the Stan-
dard Model value.

We observe that, for a given reheating temperature,
the relic abundance decreases with k. Furthermore,
whereas ⌦T
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comes / T
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for a quartic potential, and even / TRH

for k = 6. This comes from the fact that the Hubble pa-
rameter, dominated by the evolution of the inflaton, has
a greater dependence on T for larger values of k, slowing
down the production mechanism for large temperatures.

B. � � ! hµ⌫ ! DM DM

As noted earlier, it is also possible that the inflaton
condensate can lead to the direct production of dark mat-
ter through single graviton exchange [31]. Here, we gen-
eralize that result for k � 2. Having computed the pro-
duction rate in Eqs. (20) and (23) for scalar and fermionic
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which can be expressed as function of ⇢end using Eq. (34):
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where we assumed aRH � aend. Note that the depen-
dence on ⇢� used in Eq. (44) hides the fact that we con-
sidered a decaying inflaton during the reheating.

For fermionic dark matter we obtained
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where we used
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We can simplify the expression to write
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Up until now, we have assumed that the thermal bath
was produced via inflaton decays. However, for low re-
heat temperatures, and hence small values of the Yukawa-
like inflaton coupling, y, it is possible that radiation, in
the form of Higgs bosons, is produced directly from the
condensate via gravitational interactions. This is consid-
ered in the next subsection.

C. � � ! hµ⌫ ! SM SM

The calculation for the production of SM fields pro-
duced by the scattering of the inflaton via gravity is sim-
ilar to the preceding calculation for dark matter. As was
shown in [31] and [37], there exists the possibility that

the thermal bath is produced not by inflaton decay but
rather by inflaton scattering after inflation. This occurs
for instance for low values of y. In this case, the max-
imum temperature is not given by the inflaton width,
but by the scattering process, whereas the final reheat-
ing (and thus TRH) is still dominated by the decay. This
is illustrated in Fig. 2 below. In fact, the gravitational
scattering �� ! hµ⌫ ! HH is always present and can
never be eliminated. Such a process generates an effec-
tive coupling

Lh = �h�
2
H

2
. (51)

From Eq. (A.23) of [37], we can write the left-hand side
of Eq. (30) as
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where N = 4 is the number of real scalars in the Standard
Model, when we neglect the Higgs mass. Identifying this
rate with that in Eq. (20), and (1 + w)��⇢� = !R
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for each real scalar. Thus for the Standard Model Higgs,
and in the case k = 2 we have
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�h can be considered as the lowest possible and inevitable
value for a quartic coupling between the inflaton and
scalars. This may be important and even dominate the
reheating process at its earliest stages. We note that in a
theory with additional weak scale scalars such as the min-
imal supersymmetric Standard Model (MSSM), the grav-
itational production is increased due to the large number
of scalars, N = 98 in the MSSM. Note also that there is a
minimal gravitational production rate for the production
of SM fermions and gauge bosons though this is com-
pletely negligible due to the mass suppression (see e.g.
Eq. (23) for fermions). Thus if we restrict our attention
to the Standard Model, we take N = 4 corresponding to
the four real scalar degrees of freedom.

We now recompute the evolution of the radiation den-
sity using Eq. (30) and (52),
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The solution of (55) is
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which can be expanded about the origin4

V (�) = �
�
k

M
k�4

P

, � ⌧ MP . (16)

The time-dependent oscillating inflaton field can be
parametrized as

�(t) = �0(t) · P(t) , (17)

where �0(t) is the time-dependent amplitude that in-
cludes the effects of redshift and P(t) describes the peri-
odicity of the oscillation.

To calculate the dark matter production rate, we com-
bine the potential (16) with Eq. (17), which leads to
V (�) = V (�0) · P(t)k. We next expand the potential
energy in terms of the Fourier modes [37, 46, 47]
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where ! is the frequency of oscillation of �, given by [37]
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For scalar dark matter, we find that the particle pro-
duction rate per unit volume and unit time for an arbi-
trary value of k is given by
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where the factor of two accounts for the fact we produce
two dark matter particles per scattering, with
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where En = n! is the energy of the n-th inflaton oscil-
lation mode and mX is the mass of the produced dark
matter. A detailed calculation of this rate is presented
in Appendix B.

For the case k = 2, we find that the particle production
rate is given by
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where m
2

�
= V

00(�0), and since
P

P2

n
e
�in!t = cos2(m�t),

we find that only the second Fourier mode in the sum
contributes, with

P
|P2

n
|2 = 1

16
and E2 = 2m�.5

4
It should be noted that our discussion is general and not limited

to T-models of inflation.
5

We note that the rate calculated here differs from [31] by a factor

of 8, because in the latter the inflaton was treated as a particle

and not a condensate resulting in a difference by a factor of 2 in

the applied symmetry factors. In addition, the interaction con-

sidered there did not use a properly normalized graviton resulting

in a factor of 2 in the vertex and 16 in the rate.

For a fermionic dark matter candidate, we find the
following rate
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where the factor of two accounts for the sum over the
particle and antiparticle final states, with
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For the case k = 2, we obtain
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A detailed discussion related to the dark matter produc-
tion rates through the inflaton condensate scattering is
given in Appendix B.

For the production of SM fields from inflaton oscil-
lations, we follow the same procedure, but replace the
partial amplitude, M

j

µ⌫
, for dark matter with the appro-

priate amplitude involving SM fields. Below, we consider
only the example of producing Higgs bosons, namely
� + � ! H + H.

III. GRAVITATIONAL PRODUCTION OF
QUANTA

As we discussed in the previous section, the graviton
can act as a portal between the inflaton, SM fields and a
potential dark matter candidate. As outlined above we
here consider three cases in detail:

A. The graviton portal between a thermal bath and dark
matter. This is essentially a gravitational freeze-in
mechanism for the production of dark matter.

B. The graviton portal between the inflaton and dark
matter. In this case, the inflaton directly populates
the dark matter without the need of either the ther-
mal bath or a mediator between the SM and the dark
matter candidate.

C. The graviton portal between the inflaton and the
Standard Model sector to produce a radiative bath
at the start of reheating.

A. SM SM ! hµ⌫ ! DM DM

The spin-2 portal for the production of dark matter
was considered recently in [19] for both massive and
massless spin-2 fields. Here we restrict our attention to
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3

where a is the cosmological scale factor. The a depen-
dence in the rate comes from the evolution of ⇢�, which
is given by [21, 23]

⇢�(a) = ⇢end

⇣
aend

a

⌘ 6k
k+2

, (12)

where aend is the scale factor when inflation ends (de-
fined when the slow-roll parameter equals unity). The
equation of state for � is w = (k � 2)/(k + 2).

Eq. (11) for the density of right-handed neutrinos can
be solved analytically [17],
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evaluated at the time of reheating, which for now we
assume is a result of the decay of the inflaton to Standard
Model particles. We define ⇢RH as the energy density in
radiation when it becomes equal to the inflaton energy
density and ⇢RH = (⇡2

g⇤(TRH)/30)T 4

RH
, with g⇤(TRH)

the number of relativistic degrees of freedom2 at TRH.

Leptogenesis.—Once produced, the right-handed
neutrinos decay rapidly,

N ! L↵ + H

N ! L̄↵ + H,
(14)

where L and H are the left-handed lepton and Higgs
electroweak doublets respectively. If CP is violated in
the decay of N , then a lepton asymmetry

YL ⌘ nL

s
= ✏

nN

s
(15)

is produced. Here s = (2⇡2
g⇤(TRH)/45)T 3

RH
is the

entropy density. The CP violation is encapsulated in
[26, 27]

✏ ⌘
�N!L↵H � �

N!L̄↵H

�N!L↵H + �
N!L̄↵H

. (16)

A non-zero value for ✏ requires at least two right-handed
neutrinos. We assume the existence of three right-handed
neutrinos and denote the lightest of these as N with mass
mN . The remaining two will be denoted as N2,3 with
masses m2,3 and we assume mN . m� ⌧ m2, 3. Further-
more, we assume that the light and mostly left-handed
neutrino masses are determined by the seesaw mechanism
[6] so that

m⌫i '
|yi|2v2

mi

, (17)

2 g⇤ = 427/4 for the full Standard Model particle content.

FIG. 2. The colored dashed curves show values of the reheat-
ing temperature TRH required to explain the observed baryon
asymmetry as a function of k, the exponent of the potential
defined in Eq. (4), for di↵erent choices of the right-handed
neutrino mass mN . The black dotted lines show the reheat-
ing temperature obtained from purely gravitational reheat-
ing for di↵erent choices of ⇠, the non-minimal gravitational
coupling constant defined in Eq. (20). A minimal gravita-
tional coupling (⇠ = 0) gives a minimum TRH, excluding the
gray region. The upper x-axis labels the equation of state
w = (k � 2)/(k + 2) of the inflaton, during reheating.

where yi is a Yukawa coupling, and v ⇡ 174 GeV is the
Standard Model Higgs expectation value. Using the see-
saw expression, we can write [12]

✏ ' �3 �e↵

16⇡
· m⌫i mN

v2
, (18)

where �e↵ is the e↵ective CP violating phase in the neu-
trino mass matrix and 0  �e↵  1.

Finally, this lepton asymmetry is converted into the
baryon asymmetry via the electroweak sphaleron pro-
cesses that freeze out at the electroweak phase transition,
giving YB = 28

79
YL [4, 12, 28] and

YB ' 3.5⇥ 10�4
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while the observed value is YB ' 8.7⇥ 10�11 [29].

The required reheating temperature TRH for specific
choices of the right-handed neutrino mass mN as a func-
tion of the equation of state parameter w is displayed in
Fig. 2. Here we take ⇢end = (5 ⇥ 1015 GeV)4 and � =

3

where a is the cosmological scale factor. The a depen-
dence in the rate comes from the evolution of ⇢�, which
is given by [21, 23]
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where aend is the scale factor when inflation ends (de-
fined when the slow-roll parameter equals unity). The
equation of state for � is w = (k � 2)/(k + 2).
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saw expression, we can write [12]

✏ ' �3 �e↵

16⇡
· m⌫i mN

v2
, (18)

where �e↵ is the e↵ective CP violating phase in the neu-
trino mass matrix and 0  �e↵  1.

Finally, this lepton asymmetry is converted into the
baryon asymmetry via the electroweak sphaleron pro-
cesses that freeze out at the electroweak phase transition,
giving YB = 28

79
YL [4, 12, 28] and

YB ' 3.5⇥ 10�4
�e↵

nN

s

⇣
m⌫i

0.05 eV

⌘⇣
mN

1013 GeV

⌘
, (19)

while the observed value is YB ' 8.7⇥ 10�11 [29].

The required reheating temperature TRH for specific
choices of the right-handed neutrino mass mN as a func-
tion of the equation of state parameter w is displayed in
Fig. 2. Here we take ⇢end = (5 ⇥ 1015 GeV)4 and � =
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which can be expressed as function of ⇢end using Eq. (34):
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where we assumed aRH � aend. Note that the depen-
dence on ⇢� used in Eq. (44) hides the fact that we con-
sidered a decaying inflaton during the reheating.

For fermionic dark matter we obtained
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We can simplify the expression to write
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Up until now, we have assumed that the thermal bath
was produced via inflaton decays. However, for low re-
heat temperatures, and hence small values of the Yukawa-
like inflaton coupling, y, it is possible that radiation, in
the form of Higgs bosons, is produced directly from the
condensate via gravitational interactions. This is consid-
ered in the next subsection.

C. � � ! hµ⌫ ! SM SM

The calculation for the production of SM fields pro-
duced by the scattering of the inflaton via gravity is sim-
ilar to the preceding calculation for dark matter. As was
shown in [31] and [37], there exists the possibility that

the thermal bath is produced not by inflaton decay but
rather by inflaton scattering after inflation. This occurs
for instance for low values of y. In this case, the max-
imum temperature is not given by the inflaton width,
but by the scattering process, whereas the final reheat-
ing (and thus TRH) is still dominated by the decay. This
is illustrated in Fig. 2 below. In fact, the gravitational
scattering �� ! hµ⌫ ! HH is always present and can
never be eliminated. Such a process generates an effec-
tive coupling

Lh = �h�
2
H

2
. (51)

From Eq. (A.23) of [37], we can write the left-hand side
of Eq. (30) as
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where N = 4 is the number of real scalars in the Standard
Model, when we neglect the Higgs mass. Identifying this
rate with that in Eq. (20), and (1 + w)��⇢� = !R
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for each real scalar. Thus for the Standard Model Higgs,
and in the case k = 2 we have
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�h can be considered as the lowest possible and inevitable
value for a quartic coupling between the inflaton and
scalars. This may be important and even dominate the
reheating process at its earliest stages. We note that in a
theory with additional weak scale scalars such as the min-
imal supersymmetric Standard Model (MSSM), the grav-
itational production is increased due to the large number
of scalars, N = 98 in the MSSM. Note also that there is a
minimal gravitational production rate for the production
of SM fermions and gauge bosons though this is com-
pletely negligible due to the mass suppression (see e.g.
Eq. (23) for fermions). Thus if we restrict our attention
to the Standard Model, we take N = 4 corresponding to
the four real scalar degrees of freedom.

We now recompute the evolution of the radiation den-
sity using Eq. (30) and (52),
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which can be expressed as function of ⇢end using Eq. (34):
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where we assumed aRH � aend. Note that the depen-
dence on ⇢� used in Eq. (44) hides the fact that we con-
sidered a decaying inflaton during the reheating.

For fermionic dark matter we obtained
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We can simplify the expression to write
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Up until now, we have assumed that the thermal bath
was produced via inflaton decays. However, for low re-
heat temperatures, and hence small values of the Yukawa-
like inflaton coupling, y, it is possible that radiation, in
the form of Higgs bosons, is produced directly from the
condensate via gravitational interactions. This is consid-
ered in the next subsection.

C. � � ! hµ⌫ ! SM SM

The calculation for the production of SM fields pro-
duced by the scattering of the inflaton via gravity is sim-
ilar to the preceding calculation for dark matter. As was
shown in [31] and [37], there exists the possibility that

the thermal bath is produced not by inflaton decay but
rather by inflaton scattering after inflation. This occurs
for instance for low values of y. In this case, the max-
imum temperature is not given by the inflaton width,
but by the scattering process, whereas the final reheat-
ing (and thus TRH) is still dominated by the decay. This
is illustrated in Fig. 2 below. In fact, the gravitational
scattering �� ! hµ⌫ ! HH is always present and can
never be eliminated. Such a process generates an effec-
tive coupling
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2
H

2
. (51)

From Eq. (A.23) of [37], we can write the left-hand side
of Eq. (30) as
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where N = 4 is the number of real scalars in the Standard
Model, when we neglect the Higgs mass. Identifying this
rate with that in Eq. (20), and (1 + w)��⇢� = !R
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for each real scalar. Thus for the Standard Model Higgs,
and in the case k = 2 we have
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�h can be considered as the lowest possible and inevitable
value for a quartic coupling between the inflaton and
scalars. This may be important and even dominate the
reheating process at its earliest stages. We note that in a
theory with additional weak scale scalars such as the min-
imal supersymmetric Standard Model (MSSM), the grav-
itational production is increased due to the large number
of scalars, N = 98 in the MSSM. Note also that there is a
minimal gravitational production rate for the production
of SM fermions and gauge bosons though this is com-
pletely negligible due to the mass suppression (see e.g.
Eq. (23) for fermions). Thus if we restrict our attention
to the Standard Model, we take N = 4 corresponding to
the four real scalar degrees of freedom.

We now recompute the evolution of the radiation den-
sity using Eq. (30) and (52),
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which can be expressed as function of ⇢end using Eq. (34):
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where we assumed aRH � aend. Note that the depen-
dence on ⇢� used in Eq. (44) hides the fact that we con-
sidered a decaying inflaton during the reheating.

For fermionic dark matter we obtained
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We can simplify the expression to write

⌦�

1/2
h
2

0.1
=

⌃k

1/2

2.4
8

k

k + 2

k(k � 1)

✓
10�11

�

◆ 2

k
✓

1040GeV4

⇢RH

◆ 1

4
� 1

k

⇥
✓

⇢end

1064GeV4

◆ 1

k
✓

mX

8.3 ⇥ 106+
6

k GeV

◆3

(50)

Up until now, we have assumed that the thermal bath
was produced via inflaton decays. However, for low re-
heat temperatures, and hence small values of the Yukawa-
like inflaton coupling, y, it is possible that radiation, in
the form of Higgs bosons, is produced directly from the
condensate via gravitational interactions. This is consid-
ered in the next subsection.

C. � � ! hµ⌫ ! SM SM

The calculation for the production of SM fields pro-
duced by the scattering of the inflaton via gravity is sim-
ilar to the preceding calculation for dark matter. As was
shown in [31] and [37], there exists the possibility that

the thermal bath is produced not by inflaton decay but
rather by inflaton scattering after inflation. This occurs
for instance for low values of y. In this case, the max-
imum temperature is not given by the inflaton width,
but by the scattering process, whereas the final reheat-
ing (and thus TRH) is still dominated by the decay. This
is illustrated in Fig. 2 below. In fact, the gravitational
scattering �� ! hµ⌫ ! HH is always present and can
never be eliminated. Such a process generates an effec-
tive coupling

Lh = �h�
2
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From Eq. (A.23) of [37], we can write the left-hand side
of Eq. (30) as
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where N = 4 is the number of real scalars in the Standard
Model, when we neglect the Higgs mass. Identifying this
rate with that in Eq. (20), and (1 + w)��⇢� = !R
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for each real scalar. Thus for the Standard Model Higgs,
and in the case k = 2 we have
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�h can be considered as the lowest possible and inevitable
value for a quartic coupling between the inflaton and
scalars. This may be important and even dominate the
reheating process at its earliest stages. We note that in a
theory with additional weak scale scalars such as the min-
imal supersymmetric Standard Model (MSSM), the grav-
itational production is increased due to the large number
of scalars, N = 98 in the MSSM. Note also that there is a
minimal gravitational production rate for the production
of SM fermions and gauge bosons though this is com-
pletely negligible due to the mass suppression (see e.g.
Eq. (23) for fermions). Thus if we restrict our attention
to the Standard Model, we take N = 4 corresponding to
the four real scalar degrees of freedom.

We now recompute the evolution of the radiation den-
sity using Eq. (30) and (52),
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Once again, there is a maximum temperature which
can be determined by from the value of aend/a which
maximizes Eq. (56),
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and hence a maximum radiation density,
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where we have taken N = 4 and scales as N

1/4. Further-
more, the sum ⌃h
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(58) begins at n = 2, because 2 modes

scatter, and the initial mode has an energy of 2!, which
implies for k = 2,
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It is important to stress the importance of Eqs. (60)
and (61). These correspond to an absolute lower bound
on the maximal temperature of the Universe. We have
not made any assumption other than the existence of
a complex Higgs doublet and the inflaton coupled only
through gravity. Our calculation implies that the Uni-
verse must have passed through this (or a higher) tem-
perature during the early stages of reheating.

For k = 2, the radiation density produced by inflaton
scattering as computed above never comes to dominate
the energy density and can not lead to reheating. Al-
though scattering can lead to reheating if k � 4 [37].
Gravitational scattering is less efficient. The ‘quartic’
coupling defined in Eq. (53) is only constant if k = 2. In
general, it scales as �

k�2

0
. Nevertheless, for k > 4 reheat-

ing from gravitational scattering is possible, though very
inefficient. For example, for k = 6, TRH . 1 eV. As a
result it is usually necessary to include a decay channel
for the inflaton as in Eq. (31).8 For a sufficiently large

8
Note that even including non-perturbative effects including pre-

heating, does not lead to reheating in the absence of a decay

channel for k = 2 [44].

coupling, y, the radiation produced by decay will always
dominate over that produced by scattering as computed
above. In addition, the maximum temperature may be
greater than the lower bound in Eq. (61). However, there
is a critical value of y, such that at smaller couplings, the
gravitational scattering process (52) dominates at some
point during the reheating process. This gives us the re-
heating temperature below which the maximal temper-
ature is fixed by (60), and is independent of additional
couplings beyond gravity between the inflaton and the
standard model sector. To determine the value of this
critical coupling (and hence reheating temperature), it is
useful to rewrite Eq. (35) as
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After some algebra, we found that the maximum of ⇢
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The critical value for y such that the maximum radiation
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It is important to stress the importance of Eqs. (60)
and (61). These correspond to an absolute lower bound
on the maximal temperature of the Universe. We have
not made any assumption other than the existence of
a complex Higgs doublet and the inflaton coupled only
through gravity. Our calculation implies that the Uni-
verse must have passed through this (or a higher) tem-
perature during the early stages of reheating.

For k = 2, the radiation density produced by inflaton
scattering as computed above never comes to dominate
the energy density and can not lead to reheating. Al-
though scattering can lead to reheating if k � 4 [37].
Gravitational scattering is less efficient. The ‘quartic’
coupling defined in Eq. (53) is only constant if k = 2. In
general, it scales as �
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. Nevertheless, for k > 4 reheat-

ing from gravitational scattering is possible, though very
inefficient. For example, for k = 6, TRH . 1 eV. As a
result it is usually necessary to include a decay channel
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coupling, y, the radiation produced by decay will always
dominate over that produced by scattering as computed
above. In addition, the maximum temperature may be
greater than the lower bound in Eq. (61). However, there
is a critical value of y, such that at smaller couplings, the
gravitational scattering process (52) dominates at some
point during the reheating process. This gives us the re-
heating temperature below which the maximal temper-
ature is fixed by (60), and is independent of additional
couplings beyond gravity between the inflaton and the
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critical coupling (and hence reheating temperature), it is
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where TRH is defined by [37]
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Thus for all models with a reheat temperature due to
decays, which is less than that given in Eq. (69), the
maximum temperature during the reheat process is de-
termined by scattering (mediated by gravity) and thus
can not be ignored. Note also that for such small values
of y, the kinetic effects due to the effective mass induced
by the coupling y�f̄f are non-existent, as shown in [37].

We show in Fig. 2 the evolution of the energy densities
of the inflaton (blue), the radiation produced by inflaton
decays (orange dashed), the radiation produced by infla-
ton scattering mediated by gravity (green dashed), and
the total radiation density (red) as function of the scaling
parameter a/aend for a Yukawa-like coupling y = 10�8

with k = 2 and ⇢end = 1064 GeV4. We clearly see that
the beginning of the evolution of the radiation density
is dominated by the scattering of the inflaton via gravi-
ton exchange (orange line), which determines the maxi-
mum temperature. For k = 2, the radiation density from
scattering falls as a

�4 [37], whereas the density from de-
cays falls more slowly as a

�3/2 so that eventually the
latter begins to dominate the population of the thermal
bath when a = aint, until the reheating is complete when
⇢� = ⇢R at a = aRH. For aint � aend, we can approxi-
mate the cross-over point from Eqs. (56) and (63) using
the equality ⇢

y

R
= ⇢

h

R
. For sufficiently small y and for

k = 2, we find

aint

aend

'
✓

8y
2⌃y

2

5N⌃h

2

M
4

P

⇢end

◆� 2

5

, (71)

which gives aint ' 430 aend in good agreement with
the numerical solution for the parameter choices used
in Fig. 2. We stress that the maximum temperature at-
tained Tmax ' 1012 GeV is independent of any beyond
the Standard Model physics, and is purely gravitational
and can not be ignored when production rates are highly
dependent on the ratio Tmax/TRH.

We can finally apply our result to the dark matter pro-
duction through a graviton exchange while the bath is
also dominated by scattering of � through graviton ex-
change. For TRH . 109 GeV, the Boltzmann equation
one needs to consider is
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FIG. 2: Evolution of the radiation density (red) and inflaton

density (blue) as a function of a/aend for a Yukawa-like

coupling y = 10�8
with ⇢end = 1064 GeV

4
and k = 2. This

plot is obtained by solving numerically equations (29), (30)

and (55). The evolution of the radiation density produced

from inflaton decays (orange-dashed) and scattering

mediated by gravity (green-dashed) are also shown.
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where aint corresponds to the value of the scale factor
when the radiation density produced by inflaton decays
begins dominate over that produced by gravitational in-
flaton scattering (this only occurs if y satisfies the bound
in Eq. (67)). For a > aint, the slope of the radiation en-
ergy density curve as a function of a changes as seen in
Fig. 2 and any thermal contribution to the production of
dark matter originates from inflaton decay.

For sufficiently small y, aint � aend, and Eq. (74) can
be simplified and we see that the dark matter yield does
not depend on this intermediate scale factor, but only on
aend and ⇢end. Thus for small y, we can also use Eq. (74)
to evaluate the dark matter density at a = aRH,
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⇢�(aRH) = ↵T
4

RH
= M

4

P

 p
3�

3

k
y
2⌃y

k
�
� 2

k (k + 2)

8⇡(7 � k)

!k

.

(70)
Thus for all models with a reheat temperature due to
decays, which is less than that given in Eq. (69), the
maximum temperature during the reheat process is de-
termined by scattering (mediated by gravity) and thus
can not be ignored. Note also that for such small values
of y, the kinetic effects due to the effective mass induced
by the coupling y�f̄f are non-existent, as shown in [37].

We show in Fig. 2 the evolution of the energy densities
of the inflaton (blue), the radiation produced by inflaton
decays (orange dashed), the radiation produced by infla-
ton scattering mediated by gravity (green dashed), and
the total radiation density (red) as function of the scaling
parameter a/aend for a Yukawa-like coupling y = 10�8

with k = 2 and ⇢end = 1064 GeV4. We clearly see that
the beginning of the evolution of the radiation density
is dominated by the scattering of the inflaton via gravi-
ton exchange (orange line), which determines the maxi-
mum temperature. For k = 2, the radiation density from
scattering falls as a

�4 [37], whereas the density from de-
cays falls more slowly as a

�3/2 so that eventually the
latter begins to dominate the population of the thermal
bath when a = aint, until the reheating is complete when
⇢� = ⇢R at a = aRH. For aint � aend, we can approxi-
mate the cross-over point from Eqs. (56) and (63) using
the equality ⇢
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which gives aint ' 430 aend in good agreement with
the numerical solution for the parameter choices used
in Fig. 2. We stress that the maximum temperature at-
tained Tmax ' 1012 GeV is independent of any beyond
the Standard Model physics, and is purely gravitational
and can not be ignored when production rates are highly
dependent on the ratio Tmax/TRH.

We can finally apply our result to the dark matter pro-
duction through a graviton exchange while the bath is
also dominated by scattering of � through graviton ex-
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plot is obtained by solving numerically equations (29), (30)

and (55). The evolution of the radiation density produced

from inflaton decays (orange-dashed) and scattering

mediated by gravity (green-dashed) are also shown.
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where aint corresponds to the value of the scale factor
when the radiation density produced by inflaton decays
begins dominate over that produced by gravitational in-
flaton scattering (this only occurs if y satisfies the bound
in Eq. (67)). For a > aint, the slope of the radiation en-
ergy density curve as a function of a changes as seen in
Fig. 2 and any thermal contribution to the production of
dark matter originates from inflaton decay.

For sufficiently small y, aint � aend, and Eq. (74) can
be simplified and we see that the dark matter yield does
not depend on this intermediate scale factor, but only on
aend and ⇢end. Thus for small y, we can also use Eq. (74)
to evaluate the dark matter density at a = aRH,
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as |⇠h| . 1015 [17].1 Furthermore, the lower bound on ⇠h

comes from the fact that the Standard Model electroweak
vacuum may not be absolutely stable [18]. To prevent the
vacuum decay due to quantum fluctuations during infla-
tion [19], the effective mass of the Higgs field induced
by the non-minimal coupling must be large enough; this
gives ⇠h & 10�1 [20, 21] (see also [22]).2

The paper is organized as follows: The framework for
our computation is presented in Section II. We discuss
non-minimal gravitational couplings of the inflaton, the
Higgs boson, and a dark matter scalar in detail. We
calculate the dark matter production rates either from
scattering in the thermal bath or from oscillations in the
inflaton condensate. We compare similar processes ob-
tained from the minimal gravitational particle produc-
tion. We choose the Starobinsky model of inflation and
discuss the reheating epoch when the inflaton begins os-
cillating. In Section III we discuss the resulting abun-
dance of dark matter produced from the thermal bath
and directly from scattering of the inflaton condensate.
We also compute the effects of the non-minimal couplings
on the maximum temperature attained during reheating.
We then compare different processes in Section IV, before
summarizing our results in Section V.

II. THE FRAMEWORK

A. Scalar-gravity Lagrangian

The theory we consider comprises 3 scalar fields non-
minimally coupled to gravity: the inflaton �, the Higgs
field3

H, for which we adopt the Unitary gauge, H =
(0, h)T /

p
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Note that the scalar field kinetic term is not canonical.
In general, it is impossible to make a field redefinition
that would bring it to the canonical form, unless all three
non-minimal couplings vanish.5 For the theory (9) to be

5 Such a redefinition exists if the three-dimensional manifold
spanned by the fields �, h and X is flat. One can show that
it is not the case if at least one of the couplings is non-zero.
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by the non-minimal coupling must be large enough; this
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Higgs boson, and a dark matter scalar in detail. We
calculate the dark matter production rates either from
scattering in the thermal bath or from oscillations in the
inflaton condensate. We compare similar processes ob-
tained from the minimal gravitational particle produc-
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discuss the reheating epoch when the inflaton begins os-
cillating. In Section III we discuss the resulting abun-
dance of dark matter produced from the thermal bath
and directly from scattering of the inflaton condensate.
We also compute the effects of the non-minimal couplings
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We then compare different processes in Section IV, before
summarizing our results in Section V.
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well-defined, the kinetic function (10) must be positive-
definite. Computing the eigenvalues, one arrives at the
condition
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which is satisfied automatically for positive values of the
couplings. Note that the negative couplings are also al-
lowed for certain scalar field magnitudes.
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We can expand the kinetic and potential terms in the
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kinetic term for the scalar fields and deduce the leading-
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masses mi, mj , and the Mandelstam variables; see Ap-
pendix A for details.

The small-field approximation (12) implies the boundp
|⇠S | . MP /hSi with S = �, h,X. Since the inflaton

value at the end of inflation is �end ⇠ MP and afterwards
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�3, where a is the cosmological scale factor, then
|⇠�| . (a/aend)3. In particular, at the onset of inflaton
oscillations
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Note that since our calculations involve the effective cou-
plings �⇠

�X (�⇠
�h), which depend both on ⇠� and ⇠X (⇠h),

the relatively small value of |⇠�| can, in principle, be com-
pensated by a large value of the other couplings.

In Fig. 1, we show the scattering processes obtained
from the Lagrangian (13). These contribute to reheating
(when h is in the final state) and dark matter production
(when X is in the final state).

Finally, in evaluating the cosmological parameters, it
is important to stay within the validity of the low-energy
theory. The cutoff of the theory can be estimated as (see,
e.g., [25])

⇤ ⇠
MP

maxi |⇠i|
. (15)

In particular, the temperature of reheating must not ex-
ceed ⇤.

B. Graviton exchange

Let us first consider the case of vanishing ⇠�, h,X , i.e.,
the case of the minimal coupling of the scalar fields to
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FIG. 1: Feynman diagram for the 4-point interactions
between the inflaton �, the dark matter scalar candidate X,
and the Higgs boson h, given by the Lagrangian (13).

gravity [5, 6, 13, 26–29]. It was argued in [5, 6] that the
interaction between the dark and visible sectors induced
by gravity leads to unavoidable contributions to reheat-
ing and dark matter production, in the thermal bath or
via the scattering of the inflaton condensate, through the
graviton exchange processes shown in Fig. 2. It is there-
fore important to compare the minimal gravitational par-
ticle production to similar processes obtained from the
Lagrangian in Eq. (13) with non-minimal couplings.
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FIG. 2: Feynman diagram for the (dark) matter production
through the gravitational scattering of the inflaton or the
Higgs boson from the thermal bath.

To study the universal gravitational interactions in
minimally coupled gravity, we expand the space-time
metric around flat space using gµ⌫ ' ⌘µ⌫ + 2hµ⌫/MP ,
where hµ⌫ is the canonically-normalized perturbation.
The gravitational interactions are characterized by the
following Lagrangian,
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Note that in this work, we consider only the Higgs field in
the visible sector. Generalization to the complete spec-
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via the scattering of the inflaton condensate, through the
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ticle production to similar processes obtained from the
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the Einstein frame action. We find the following effective interaction Lagrangian:

Le↵ = �
1

2

✓
⇠��

2

M
2

P

+
⇠XX

2

M
2

P

◆
@
µ
h@µh�

1

2

✓
⇠hh

2

M
2

P

+
⇠XX

2

M
2

P

◆
@
µ
�@µ��

1

2

✓
⇠��

2

M
2

P

+
⇠hh

2

M
2

P

◆
@
µ
X@µX

+
6⇠h⇠XhX

M
2

P

@
µ
h@µX +

6⇠h⇠�h�

M
2

P

@
µ
h@µ�+

6⇠�⇠X�X

M
2

P

@
µ
�@µX +m

2

XX
2

✓
⇠��

2

M
2

P

+
⇠hh

2

M
2

P

◆

+ m
2

��
2
M

2

P

✓
⇠XX

2

M
2

P

+
⇠hh

2

M
2

P

◆
+m

2

hh
2

✓
⇠��

2

M
2

P

+
⇠XX

2

M
2

P

◆
, (73)

and we can rewrite the above Lagrangian in terms of the
effective couplings as Eq. (13), with
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where s, t are the Mandelstam variables. The latter cou-
plings assume an inflaton condensate in the initial state
rather than a thermal Higgs in the initial state account-
ing for the lack of symmetry in the three couplings.

B. THERMAL PRODUCTION

In this appendix we calculate the thermal dark mat-
ter production rate R

T, ⇠
X (T ) arising from the effective

four-point interaction �hXh
2
X

2, where �hX is given by
Eq. (74). We also calculate the production rate R

T
X(T )

for the thermal scattering processes mediated by gravity
alone, SM SM ! X X, that are unavoidable in models
with a minimal coupling to gravity (⇠�,h,X = 0) [6, 31],
and compare the two results.

The production rate R
T, ⇠
X (T ) can be computed from

Eq. (21). The matrix element squared is given by
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where in the limit where the Higgs boson mass is ne-
glected, the Mandelstam variables s and t are given by
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Similarly, using Eqs. (18)-(20), we find the matrix ele-
ment squared for minimally coupled gravity:
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where we have neglected the Higgs field mass. We find
the coefficients:
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Note that when both contributions are kept, and we ne-
glect mh ⌧ mX , the full coefficients (including interfer-
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which reduces to Eqs. (84-86) when all ⇠i = 0.
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where we assumed that mX ⌧ m�, T , and thus neglected

the terms �
(⇠)
2, 3. If we use H '
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where we integrated Eq. (44) in the interval aend < a <

aRH.
The relic abundance is given by [40]
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and if we combine it with Eq. (45), we obtain
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with
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where g0 = 43/11 and we use the Standard Model value
gRH = 427/4.

We observe that ⌦T, ⇠
X / �

⇠
1
T

3

RH
. Therefore large val-

ues of the couplings ⇠h and ⇠X would require a decrease
in the reheating temperature. In Section IV we compare
the scattering rates and the dark matter abundances with
the minimally coupled case.

B. � � ! X X

Another mode of dark matter production is through
the scattering of the inflaton itself. Whereas the graviton
exchange channel was treated with care in [5, 6], in the
case of non-minimal coupling it suffices to replace R
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X

in Eq. (44) with the production rate (27),
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and to integrate between aend and aRH, which leads to
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For aRH � aend, using Eq. (39) we can express n�, ⇠

X as a
function of ⇢end:
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and we find
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where we assumed the Starobinsky value for ⇢end. The
analogous expression for models with minimally coupled
gravity is found by replacing �

⇠
�X ! ��X .

Up to this point we have assumed that the radiation is
produced via the direct inflaton decay to a fermion pair.
In the next subsection we discuss an unavoidable radi-
ation production channel when the inflaton condensate
scattering produces Higgs bosons in models with mini-
mal and non-minimal coupling to gravity.

C. � � ! h h

Gravitational processes that produce dark matter can
also populate the thermal bath in the same way. Even if
this Planck-suppressed production mechanism does not
dominate throughout the entire reheating process, it was
shown in [6] that for TRH . 109 GeV it is graviton
exchange that dominates the production of the ther-
mal bath at the very beginning of the reheating, when
⇢� ⇠ ⇢end. In fact, it was shown that the maximal tem-
perature reached, Tmax, (which can be considered as an
absolute lower bound on Tmax) is Tmax ⇠ 1012 GeV. It is
therefore natural to determine the value of the couplings
(⇠�, ⇠h), for which non-minimal gravitational processes
generate the thermal bath at early times, and the max-
imal temperature which can be attained by these pro-
cesses.

Following the discussion in the previous subsection, to
compute the radiation energy density produced by grav-
itational couplings we implement the rate R

�, ⇠
h (30) into

the Friedmann equation (36)

d⇢R

dt
+ 4H⇢R ' Nh

�
⇠ 2

�h

8⇡

⇢
2

�

m
3

�

, (53)

where we took into account that each scattering corre-
sponds to an energy transfer of 2m�.8 The solution to

8 Or equivalently that each Higgs quanta carries an energy m�.

(1 + …
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trum of the Standard Model is straightforward, and we
leave it for future work.

For models with minimally coupled gravity, the pro-
cesses �/h(p1) + �/h(p2) ! h/X(p3) + h/X(p4) can be
parametrized by

M
00

/ M
0

µ⌫⇧
µ⌫⇢�

M
0

⇢� , (18)

where the graviton propagator for the canonically-
normalized field hµ⌫ with exchange momentum k =
p1 + p2 is given by

⇧µ⌫⇢�(k) =
⌘
µ⇢
⌘
⌫� + ⌘

µ�
⌘
⌫⇢

� ⌘
µ⌫
⌘
⇢�

2k2
, (19)

and the partial amplitude, M0

µ⌫ , is given by

M
0

µ⌫ =
1

2
[p1µp2⌫ + p1⌫p2µ � ⌘µ⌫p1 · p2 � ⌘µ⌫V

00
S ] , (20)

with analogous expression for the final state in terms of
outgoing momenta p3,4 and the final state potential. In
Fig. 2 we show the s-channel graviton exchange scatter-
ing obtained from the Lagrangian (16) for the production
of dark matter from either the Higgs field or the inflaton
condensate as well as the reheating process (the produc-
tion of Higgs bosons from the inflaton condensate).

C. Production rates

In this work, we consider three processes:

A. The production of dark matter from the scattering
of thermal Higgs bosons (assuming reheating is pro-
duced by inflaton decay). In this case, the dark mat-
ter is populated via a freeze-in mechanism throughout
the reheating period.

B. The production of dark matter from direct excitations
of the inflaton condensate. This process, which can
be viewed as gravitational inflaton scattering, is inde-
pendent of the presence of a thermal bath.

C. The creation of a radiative bath at the start of reheat-
ing arising from the Higgs boson production through
gravitational inflaton scattering. Since such a pro-
cess is unavoidable in minimally coupled gravity, it
is interesting to know when such a process becomes
dominant in models with non-minimal couplings ⇠i.

The thermal dark matter production rate R(T ) for the
process hh ! XX can be calculated from6 [30]

R(T ) =
2⇥Nh

1024⇡6

Z
f1f2E1 dE1E2 dE2 d cos ✓12

Z
|M|

2 d⌦13 ,

(21)

6 We include the symmetry factors associated with identical initial
and final states in the definition of |M|2, and a factor of 2 is
explicitly included in the definition of the rate to account for the
production of 2 identical particles.

where Ei is the energy of particle i = 1, 2, ✓13 and ✓12

are the angles formed by momenta p1,3 and p1,2, respec-
tively. Nh = 4 is the number of internal degrees of free-
dom for 1 complex Higgs doublet, |M|

2 is the matrix
amplitude squared with all symmetry factors included.
This accounts for the explicit factor of 2 in the numera-
tor of Eq. (21). The thermal distribution function of the
incoming Higgs particles is given by the Bose-Einstein
distribution

fi =
1

eEi/T � 1
. (22)

The rate for minimal gravitational interactions from
Eq. (16) was derived in [6, 31]. The rate we use here
differs in two respects. As noted earlier, we only include
Higgs scalars in the initial state whereas in [6, 31], all
Standard Model particle initial states were included. Sec-
ondly, we keep terms depending on the dark matter mass
which had not previously been taken into account. This
allows us to consider dark matter masses approaching the
inflaton mass and/or the reheating temperature.

For minimal (non-minimal) gravitational interactions,
we find that the thermal dark matter production rate can
be expressed as

R
T, (⇠)
X (T ) = �

(⇠)
1

T
8

M
4

P

+ �
(⇠)
2

m
2

XT
6

M
4

P

+ �
(⇠)
3

m
4

XT
4

M
4

P

, (23)

where the coefficients �(⇠)
1, 2, 3 are given in Appendix B by

Eqs. (84-86) (Eqs. (80-82)). The ratio of the non-minimal
to minimal rate is shown in Fig. 3. However, we note
that when ⇠i ⇠ O(1) both rates are comparable and in-
terference effects become significant. The full coefficients
�1, 2, 3 including interference are given by Eqs. (87-89)
from Appendix B. We leave the comparison of the ef-
fects on dark matter production from the two rates for
the next section.

The rate for dark matter produced from inflaton os-
cillations of the inflaton condensate for a potential of
the form V = ��

k were considered in detail in [6, 32].
The time-dependent inflaton can be written as �(t) =
�0(t)P(t), where �0(t) is the time-dependent amplitude
that includes the effects of redshift and P(t) describes the
periodicity of the oscillation. The dark matter produc-
tion rate is calculated by writing the potential in terms
of the Fourier modes of the oscillations [6, 32–34]

V (�) = V (�0)
1X

n=�1
P

k
ne

�in!t = ⇢�

1X

n=�1
P

k
ne

�in!t
.

(24)
For k = 2 (the only case considered here), the frequency
of oscillation is simply, ! = m�.

The rate generated by non-minimal couplings can be
readily calculated using the Lagrangian (13), which leads
to

R
�, ⇠
X =

2⇥ �
⇠ 2

�X

⇡

⇢
2

�

m
4

�

⌃k
0
, (25)
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FIG. 3: Contours of the ratio of the dark matter production
rates from the thermal bath based on non-minimal
gravitational interactions to those based on minimal
interactions. The ratio is displayed in the (⇠h, ⇠X) plane.
Note that as discussed in the Introduction, negative values of
⇠h may require new physics (such as supersymmetry) to
stabilize the Higgs vacuum.

where

⌃k
0
=

1X

n=1

|P
k
n|

2

s

1�
4m2

X

E2
n

, (26)

and En = n! is the energy of the n-th inflaton oscillation
mode. For k = 2, only the second Fourier mode in the
sum contributes, with

P
|P

2

n|
2 = 1

16
. Thus, the rate

becomes

R
�, ⇠
X =

2⇥ �
⇠ 2

�X

16⇡

⇢
2

�

m
4

�

s

1�
m

2

X

m
2

�

, (27)

where ⇢� is the energy density of the inflaton and the
interaction term �

⇠
�X is given in Appendix A by Eq. (75).

It was shown in [5] that the dark matter production
rate through the exchange of a graviton, computed from
the partial amplitude (18), is

R
�
X =

2⇥ ⇢
2

�

256⇡M4

P

 
1 +

m
2

X

2m2

�

!2s

1�
m

2

X

m
2

�

, (28)

which can be written in the same form as (27) by defining
an effective coupling ��X

��X = �
m

2

�

4M2

P

 
1 +

m
2

X

2m2

�

!
. (29)

FIG. 4: Contours of the ratio of the dark matter production
rates from oscillations in the inflaton condensate based on
non-minimal gravitational interactions to those based on
minimal interactions. The ratio is displayed in the (⇠�, ⇠X)
plane.

A comparison of the non-minimal to minimal rates for
the production of dark matter from inflaton scattering is
shown in Fig. 4.

For the production of Higgs bosons through inflaton
condensate scattering, we follow a similar procedure, and
from the Lagrangian (13) we find

R
�, ⇠
h ' Nh

2⇥ �
⇠ 2

�h

16⇡

⇢
2

�

m
4

�

, (30)

where we assumed that mh ⌧ m�, Nh = 4 is the num-
ber of internal degrees of freedom for 1 complex Higgs
doublet, and �

⇠
�h is given in Appendix A by Eq. (76).

On the other hand, it was argued in [6] that the scat-
tering �� ! hh through the graviton exchange can also
be parameterized by an effective coupling

Lh = ���h�
2
h
2
, (31)

with

��h = �
m

2

�

4M2

P

, (32)

and the rate R
�
h is given by the analogous expression

to (30) with �
⇠
�h replaced by ��h.

The full four-point coupling of course is given by the
sum �

⇠
�h/X + ��h/X . However, except for values where
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the Einstein frame action. We find the following effective interaction Lagrangian:
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and we can rewrite the above Lagrangian in terms of the
effective couplings as Eq. (13), with

�
⇠
hX =

1

4M2

P

⇥
⇠h(2m

2

X + s) + ⇠X(2m2

h + s)

+
�
12⇠X⇠h(m
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, (74)
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⇤
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(76)
where s, t are the Mandelstam variables. The latter cou-
plings assume an inflaton condensate in the initial state
rather than a thermal Higgs in the initial state account-
ing for the lack of symmetry in the three couplings.

B. THERMAL PRODUCTION

In this appendix we calculate the thermal dark mat-
ter production rate R

T, ⇠
X (T ) arising from the effective

four-point interaction �hXh
2
X

2, where �hX is given by
Eq. (74). We also calculate the production rate R

T
X(T )

for the thermal scattering processes mediated by gravity
alone, SM SM ! X X, that are unavoidable in models
with a minimal coupling to gravity (⇠�,h,X = 0) [6, 31],
and compare the two results.

The production rate R
T, ⇠
X (T ) can be computed from

Eq. (21). The matrix element squared is given by

|M
hX, ⇠

|
2 = 4�⇠ 2

hX , (77)

where in the limit where the Higgs boson mass is ne-
glected, the Mandelstam variables s and t are given by
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2
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4m2
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s
cos ✓13 � 1

!
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2

X , (78)

s =2E1E2 (1� cos ✓12) . (79)

We find the following coefficients for Eq. (23)
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Similarly, using Eqs. (18)-(20), we find the matrix ele-
ment squared for minimally coupled gravity:
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|
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Xt+m
4

X

�2

s2
, (83)

where we have neglected the Higgs field mass. We find
the coefficients:

�1 =
⇡
3

81000
, (84)

�2 = �
⇣(3)2

30⇡5
, (85)

�3 =
1

4320⇡
. (86)

Note that when both contributions are kept, and we ne-
glect mh ⌧ mX , the full coefficients (including interfer-
ence) are given by
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[2 + 5⇠h (32⇠h � 2)] . (89)

which reduces to Eqs. (84-86) when all ⇠i = 0.
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where we assumed that mX ⌧ m�, T , and thus neglected

the terms �
(⇠)
2, 3. If we use H '

p
⇢�(a)p
3MP

, which is valid for
a ⌧ aRH, we can rewrite Eq. (34) as

dY
⇠
X

da
=

p
3MP

p
⇢RH

a
2

✓
a

aRH

◆ 3

2

R
T, (⇠)
X (a) . (44)

We find that the solution to this equation is
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where we integrated Eq. (44) in the interval aend < a <

aRH.
The relic abundance is given by [40]
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and if we combine it with Eq. (45), we obtain
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with
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(48)
where g0 = 43/11 and we use the Standard Model value
gRH = 427/4.

We observe that ⌦T, ⇠
X / �

⇠
1
T

3

RH
. Therefore large val-

ues of the couplings ⇠h and ⇠X would require a decrease
in the reheating temperature. In Section IV we compare
the scattering rates and the dark matter abundances with
the minimally coupled case.

B. � � ! X X

Another mode of dark matter production is through
the scattering of the inflaton itself. Whereas the graviton
exchange channel was treated with care in [5, 6], in the
case of non-minimal coupling it suffices to replace R

T, ⇠
X

in Eq. (44) with the production rate (27),
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and to integrate between aend and aRH, which leads to
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For aRH � aend, using Eq. (39) we can express n�, ⇠

X as a
function of ⇢end:
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and we find
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(52)

where we assumed the Starobinsky value for ⇢end. The
analogous expression for models with minimally coupled
gravity is found by replacing �

⇠
�X ! ��X .

Up to this point we have assumed that the radiation is
produced via the direct inflaton decay to a fermion pair.
In the next subsection we discuss an unavoidable radi-
ation production channel when the inflaton condensate
scattering produces Higgs bosons in models with mini-
mal and non-minimal coupling to gravity.

C. � � ! h h

Gravitational processes that produce dark matter can
also populate the thermal bath in the same way. Even if
this Planck-suppressed production mechanism does not
dominate throughout the entire reheating process, it was
shown in [6] that for TRH . 109 GeV it is graviton
exchange that dominates the production of the ther-
mal bath at the very beginning of the reheating, when
⇢� ⇠ ⇢end. In fact, it was shown that the maximal tem-
perature reached, Tmax, (which can be considered as an
absolute lower bound on Tmax) is Tmax ⇠ 1012 GeV. It is
therefore natural to determine the value of the couplings
(⇠�, ⇠h), for which non-minimal gravitational processes
generate the thermal bath at early times, and the max-
imal temperature which can be attained by these pro-
cesses.

Following the discussion in the previous subsection, to
compute the radiation energy density produced by grav-
itational couplings we implement the rate R

�, ⇠
h (30) into

the Friedmann equation (36)

d⇢R

dt
+ 4H⇢R ' Nh
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, (53)

where we took into account that each scattering corre-
sponds to an energy transfer of 2m�.8 The solution to

8 Or equivalently that each Higgs quanta carries an energy m�.
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trum of the Standard Model is straightforward, and we
leave it for future work.

For models with minimally coupled gravity, the pro-
cesses �/h(p1) + �/h(p2) ! h/X(p3) + h/X(p4) can be
parametrized by

M
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where the graviton propagator for the canonically-
normalized field hµ⌫ with exchange momentum k =
p1 + p2 is given by
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and the partial amplitude, M0

µ⌫ , is given by

M
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2
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00
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with analogous expression for the final state in terms of
outgoing momenta p3,4 and the final state potential. In
Fig. 2 we show the s-channel graviton exchange scatter-
ing obtained from the Lagrangian (16) for the production
of dark matter from either the Higgs field or the inflaton
condensate as well as the reheating process (the produc-
tion of Higgs bosons from the inflaton condensate).

C. Production rates

In this work, we consider three processes:

A. The production of dark matter from the scattering
of thermal Higgs bosons (assuming reheating is pro-
duced by inflaton decay). In this case, the dark mat-
ter is populated via a freeze-in mechanism throughout
the reheating period.

B. The production of dark matter from direct excitations
of the inflaton condensate. This process, which can
be viewed as gravitational inflaton scattering, is inde-
pendent of the presence of a thermal bath.

C. The creation of a radiative bath at the start of reheat-
ing arising from the Higgs boson production through
gravitational inflaton scattering. Since such a pro-
cess is unavoidable in minimally coupled gravity, it
is interesting to know when such a process becomes
dominant in models with non-minimal couplings ⇠i.

The thermal dark matter production rate R(T ) for the
process hh ! XX can be calculated from6 [30]

R(T ) =
2⇥Nh

1024⇡6

Z
f1f2E1 dE1E2 dE2 d cos ✓12

Z
|M|

2 d⌦13 ,

(21)

6 We include the symmetry factors associated with identical initial
and final states in the definition of |M|2, and a factor of 2 is
explicitly included in the definition of the rate to account for the
production of 2 identical particles.

where Ei is the energy of particle i = 1, 2, ✓13 and ✓12

are the angles formed by momenta p1,3 and p1,2, respec-
tively. Nh = 4 is the number of internal degrees of free-
dom for 1 complex Higgs doublet, |M|

2 is the matrix
amplitude squared with all symmetry factors included.
This accounts for the explicit factor of 2 in the numera-
tor of Eq. (21). The thermal distribution function of the
incoming Higgs particles is given by the Bose-Einstein
distribution

fi =
1

eEi/T � 1
. (22)

The rate for minimal gravitational interactions from
Eq. (16) was derived in [6, 31]. The rate we use here
differs in two respects. As noted earlier, we only include
Higgs scalars in the initial state whereas in [6, 31], all
Standard Model particle initial states were included. Sec-
ondly, we keep terms depending on the dark matter mass
which had not previously been taken into account. This
allows us to consider dark matter masses approaching the
inflaton mass and/or the reheating temperature.

For minimal (non-minimal) gravitational interactions,
we find that the thermal dark matter production rate can
be expressed as
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where the coefficients �(⇠)
1, 2, 3 are given in Appendix B by

Eqs. (84-86) (Eqs. (80-82)). The ratio of the non-minimal
to minimal rate is shown in Fig. 3. However, we note
that when ⇠i ⇠ O(1) both rates are comparable and in-
terference effects become significant. The full coefficients
�1, 2, 3 including interference are given by Eqs. (87-89)
from Appendix B. We leave the comparison of the ef-
fects on dark matter production from the two rates for
the next section.

The rate for dark matter produced from inflaton os-
cillations of the inflaton condensate for a potential of
the form V = ��

k were considered in detail in [6, 32].
The time-dependent inflaton can be written as �(t) =
�0(t)P(t), where �0(t) is the time-dependent amplitude
that includes the effects of redshift and P(t) describes the
periodicity of the oscillation. The dark matter produc-
tion rate is calculated by writing the potential in terms
of the Fourier modes of the oscillations [6, 32–34]

V (�) = V (�0)
1X

n=�1
P

k
ne

�in!t = ⇢�

1X

n=�1
P

k
ne

�in!t
.

(24)
For k = 2 (the only case considered here), the frequency
of oscillation is simply, ! = m�.

The rate generated by non-minimal couplings can be
readily calculated using the Lagrangian (13), which leads
to

R
�, ⇠
X =

2⇥ �
⇠ 2

�X

⇡

⇢
2

�

m
4

�

⌃k
0
, (25)

….
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see that for values of ⇠i & 0.1 (f(⇠h, ⇠X) & 1

30
), non-

minimal gravitational production dominates over gravi-
ton exchange. In this case, it becomes easier to obtain
the correct dark matter density for more reasonable val-
ues of TRH and/or mX . For example, for a common value
⇠ = ⇠h = ⇠X = 1, a temperature of TRH ⇠ 1.2 ⇥ 1013

GeV, thus slightly below the inflaton mass, is sufficient
to produce an EeV dark matter candidate, whereas for
⇠ = 1000, TRH ⇠ 1011 GeV will saturate the relic density
for a 2.6 TeV dark matter mass. We show this result in
Fig. 7 where we plot the reheating temperature needed to
satisfy the relic density constraint as function of mX for
different value of ⇠. For each value of ⇠, the relic density
exceeds ⌦Xh

2 = 0.12 above the corresponding curve. As
one can see, the line for ⇠ = 0 is in the upper corner of
the figure at high values of TRH and mX and these drop
significantly at higher values of ⇠.

FIG. 7: Region of parameter space respecting the relic
density constraint ⌦Xh2 = 0.12 in the plane (mX ,TRH) for
different values of ⇠ = ⇠h = ⇠X and ⇢end ' 0.175m2

�M
2

P in
the case of gravitational production from the thermal bath
h h ! X X. Both minimal and non-minimal contributions
are taken into account.

As was shown in [5, 6], another possibility to avoid
the necessity of high reheating temperatures and/or dark
matter masses is the production of matter from the os-
cillations within the inflaton condensate when the energy
stored in the condensate is much larger than the reheat-
ing temperature. A simple comparison between Eqs. (47)
and (52) shows that the production of dark matter via
inflaton scattering when ⇠i 6= 0 generally dominates over
the production of dark matter from the thermal bath:
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X
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' 34
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T
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' 185
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2
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(5 + 12⇠)2

1 + 6⇠ + 12⇠2
� 1 , (68)

where we took ⇠ = ⇠� = ⇠h = ⇠X and mX ⌧ m� in

the last equality. We are therefore able to state that
the relic density of dark matter generated by the non-
minimal gravitational scattering of the inflaton is always
much more abundant than that produced by the thermal
bath.

Dark matter production from inflaton scattering via
minimal graviton exchange also dominates over minimal
gravitational thermal production [6]. This state of affairs
is anything but surprising. Indeed, the energy available
in the inflaton condensate at the onset of oscillations is
much greater than that available in the thermal bath
during the reheating process. As the scattering cross-
sections are themselves highly dependent on the energies
through the energy-momentum tensor, it is quite normal
that inflaton scattering is the dominant process for both
minimal and non-minimal gravitational couplings.

Since inflaton scattering dominates in both the min-
imal and non-minimal gravitational interactions we can
compare the two. We obtain

⌦�, ⇠
X

⌦�
X

=
�
⇠ 2

�X

�
2

�X

' 4⇠2(5 + 12⇠)2 , (69)

and we see again that non-minimal interactions dominate
when ⇠ > 1/12 or < �1/2.

We show in Fig. 8 the region of the parameter space
in the (mX , TRH) plane allowed by the relic density con-
straint, adding all of the minimal and non minimal grav-
itational contributions, from inflaton scattering and as
well as Higgs scattering from the thermal bath taking
⇠� = ⇠h = ⇠X = ⇠. As expected, for ⇠ = 0 we recover
the result found in [6]. As one can see, the difficulty in
the gravitational production from the thermal bath is in-
deed alleviated as a reheating temperature TRH ' 1011

GeV allows for the production of a PeV scale dark matter
candidate. If in addition we introduce the non-minimal
couplings ⇠, the necessary reheating temperature to fit
the Planck data may be as low as the electroweak scale
for a GeV candidate if ⇠ & 1000.

Finally, we note that given the dark matter mass and
reheating temperature (if that sector of beyond the Stan-
dard Model physics were known), the contours in Fig. 8
allow us to place an upper bound on the non-minimal
couplings, ⇠. We can rewrite Eq. (52) as

⌦Xh
2

0.12
= 4.1⇥ 10�7(12⇠2 + 5⇠ +

1

2
)2

✓
TRH

1010GeV

◆

⇥

⇣
mX

1GeV

⌘✓
m�

3⇥ 1013GeV

◆
, (70)

when mX ⌧ m� and ⇠ = ⇠� = ⇠X . Then, for example, if
mX = 1 TeV, and TRH = 109 GeV, we obtain an upper
limit of |⇠| . 4.
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where we assumed that mX ⌧ m�, T , and thus neglected

the terms �
(⇠)
2, 3. If we use H '

p
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, which is valid for
a ⌧ aRH, we can rewrite Eq. (34) as
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We find that the solution to this equation is
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where we integrated Eq. (44) in the interval aend < a <

aRH.
The relic abundance is given by [40]
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and if we combine it with Eq. (45), we obtain
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with
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(48)
where g0 = 43/11 and we use the Standard Model value
gRH = 427/4.

We observe that ⌦T, ⇠
X / �

⇠
1
T

3

RH
. Therefore large val-

ues of the couplings ⇠h and ⇠X would require a decrease
in the reheating temperature. In Section IV we compare
the scattering rates and the dark matter abundances with
the minimally coupled case.

B. � � ! X X

Another mode of dark matter production is through
the scattering of the inflaton itself. Whereas the graviton
exchange channel was treated with care in [5, 6], in the
case of non-minimal coupling it suffices to replace R

T, ⇠
X

in Eq. (44) with the production rate (27),
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and to integrate between aend and aRH, which leads to

n
�, ⇠
X (aRH) =

�
⇠ 2

�X⇢
3/2
RH

MP

4
p
3⇡m4

�

"✓
aRH

aend

◆ 3

2

� 1

#s

1�
m

2

X

m
2

�

.

(50)
For aRH � aend, using Eq. (39) we can express n�, ⇠

X as a
function of ⇢end:
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and we find
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(52)

where we assumed the Starobinsky value for ⇢end. The
analogous expression for models with minimally coupled
gravity is found by replacing �

⇠
�X ! ��X .

Up to this point we have assumed that the radiation is
produced via the direct inflaton decay to a fermion pair.
In the next subsection we discuss an unavoidable radi-
ation production channel when the inflaton condensate
scattering produces Higgs bosons in models with mini-
mal and non-minimal coupling to gravity.

C. � � ! h h

Gravitational processes that produce dark matter can
also populate the thermal bath in the same way. Even if
this Planck-suppressed production mechanism does not
dominate throughout the entire reheating process, it was
shown in [6] that for TRH . 109 GeV it is graviton
exchange that dominates the production of the ther-
mal bath at the very beginning of the reheating, when
⇢� ⇠ ⇢end. In fact, it was shown that the maximal tem-
perature reached, Tmax, (which can be considered as an
absolute lower bound on Tmax) is Tmax ⇠ 1012 GeV. It is
therefore natural to determine the value of the couplings
(⇠�, ⇠h), for which non-minimal gravitational processes
generate the thermal bath at early times, and the max-
imal temperature which can be attained by these pro-
cesses.

Following the discussion in the previous subsection, to
compute the radiation energy density produced by grav-
itational couplings we implement the rate R

�, ⇠
h (30) into

the Friedmann equation (36)

d⇢R

dt
+ 4H⇢R ' Nh

�
⇠ 2
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2
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m
3

�

, (53)

where we took into account that each scattering corre-
sponds to an energy transfer of 2m�.8 The solution to

8 Or equivalently that each Higgs quanta carries an energy m�.
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where we integrated Eq. (44) in the interval aend < a <

aRH.
The relic abundance is given by [40]
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and if we combine it with Eq. (45), we obtain
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where g0 = 43/11 and we use the Standard Model value
gRH = 427/4.

We observe that ⌦T, ⇠
X / �

⇠
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RH
. Therefore large val-

ues of the couplings ⇠h and ⇠X would require a decrease
in the reheating temperature. In Section IV we compare
the scattering rates and the dark matter abundances with
the minimally coupled case.

B. � � ! X X

Another mode of dark matter production is through
the scattering of the inflaton itself. Whereas the graviton
exchange channel was treated with care in [5, 6], in the
case of non-minimal coupling it suffices to replace R
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X

in Eq. (44) with the production rate (27),
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where we assumed the Starobinsky value for ⇢end. The
analogous expression for models with minimally coupled
gravity is found by replacing �

⇠
�X ! ��X .

Up to this point we have assumed that the radiation is
produced via the direct inflaton decay to a fermion pair.
In the next subsection we discuss an unavoidable radi-
ation production channel when the inflaton condensate
scattering produces Higgs bosons in models with mini-
mal and non-minimal coupling to gravity.

C. � � ! h h

Gravitational processes that produce dark matter can
also populate the thermal bath in the same way. Even if
this Planck-suppressed production mechanism does not
dominate throughout the entire reheating process, it was
shown in [6] that for TRH . 109 GeV it is graviton
exchange that dominates the production of the ther-
mal bath at the very beginning of the reheating, when
⇢� ⇠ ⇢end. In fact, it was shown that the maximal tem-
perature reached, Tmax, (which can be considered as an
absolute lower bound on Tmax) is Tmax ⇠ 1012 GeV. It is
therefore natural to determine the value of the couplings
(⇠�, ⇠h), for which non-minimal gravitational processes
generate the thermal bath at early times, and the max-
imal temperature which can be attained by these pro-
cesses.

Following the discussion in the previous subsection, to
compute the radiation energy density produced by grav-
itational couplings we implement the rate R
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the Friedmann equation (36)
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where we took into account that each scattering corre-
sponds to an energy transfer of 2m�.8 The solution to

8 Or equivalently that each Higgs quanta carries an energy m�.
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see that for values of ⇠i & 0.1 (f(⇠h, ⇠X) & 1

30
), non-

minimal gravitational production dominates over gravi-
ton exchange. In this case, it becomes easier to obtain
the correct dark matter density for more reasonable val-
ues of TRH and/or mX . For example, for a common value
⇠ = ⇠h = ⇠X = 1, a temperature of TRH ⇠ 1.2 ⇥ 1013

GeV, thus slightly below the inflaton mass, is sufficient
to produce an EeV dark matter candidate, whereas for
⇠ = 1000, TRH ⇠ 1011 GeV will saturate the relic density
for a 2.6 TeV dark matter mass. We show this result in
Fig. 7 where we plot the reheating temperature needed to
satisfy the relic density constraint as function of mX for
different value of ⇠. For each value of ⇠, the relic density
exceeds ⌦Xh

2 = 0.12 above the corresponding curve. As
one can see, the line for ⇠ = 0 is in the upper corner of
the figure at high values of TRH and mX and these drop
significantly at higher values of ⇠.

FIG. 7: Region of parameter space respecting the relic
density constraint ⌦Xh2 = 0.12 in the plane (mX ,TRH) for
different values of ⇠ = ⇠h = ⇠X and ⇢end ' 0.175m2
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P in
the case of gravitational production from the thermal bath
h h ! X X. Both minimal and non-minimal contributions
are taken into account.

As was shown in [5, 6], another possibility to avoid
the necessity of high reheating temperatures and/or dark
matter masses is the production of matter from the os-
cillations within the inflaton condensate when the energy
stored in the condensate is much larger than the reheat-
ing temperature. A simple comparison between Eqs. (47)
and (52) shows that the production of dark matter via
inflaton scattering when ⇠i 6= 0 generally dominates over
the production of dark matter from the thermal bath:
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where we took ⇠ = ⇠� = ⇠h = ⇠X and mX ⌧ m� in

the last equality. We are therefore able to state that
the relic density of dark matter generated by the non-
minimal gravitational scattering of the inflaton is always
much more abundant than that produced by the thermal
bath.

Dark matter production from inflaton scattering via
minimal graviton exchange also dominates over minimal
gravitational thermal production [6]. This state of affairs
is anything but surprising. Indeed, the energy available
in the inflaton condensate at the onset of oscillations is
much greater than that available in the thermal bath
during the reheating process. As the scattering cross-
sections are themselves highly dependent on the energies
through the energy-momentum tensor, it is quite normal
that inflaton scattering is the dominant process for both
minimal and non-minimal gravitational couplings.

Since inflaton scattering dominates in both the min-
imal and non-minimal gravitational interactions we can
compare the two. We obtain
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and we see again that non-minimal interactions dominate
when ⇠ > 1/12 or < �1/2.

We show in Fig. 8 the region of the parameter space
in the (mX , TRH) plane allowed by the relic density con-
straint, adding all of the minimal and non minimal grav-
itational contributions, from inflaton scattering and as
well as Higgs scattering from the thermal bath taking
⇠� = ⇠h = ⇠X = ⇠. As expected, for ⇠ = 0 we recover
the result found in [6]. As one can see, the difficulty in
the gravitational production from the thermal bath is in-
deed alleviated as a reheating temperature TRH ' 1011

GeV allows for the production of a PeV scale dark matter
candidate. If in addition we introduce the non-minimal
couplings ⇠, the necessary reheating temperature to fit
the Planck data may be as low as the electroweak scale
for a GeV candidate if ⇠ & 1000.

Finally, we note that given the dark matter mass and
reheating temperature (if that sector of beyond the Stan-
dard Model physics were known), the contours in Fig. 8
allow us to place an upper bound on the non-minimal
couplings, ⇠. We can rewrite Eq. (52) as
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when mX ⌧ m� and ⇠ = ⇠� = ⇠X . Then, for example, if
mX = 1 TeV, and TRH = 109 GeV, we obtain an upper
limit of |⇠| . 4.

5

FIG. 3: Contours of the ratio of the dark matter production
rates from the thermal bath based on non-minimal
gravitational interactions to those based on minimal
interactions. The ratio is displayed in the (⇠h, ⇠X) plane.
Note that as discussed in the Introduction, negative values of
⇠h may require new physics (such as supersymmetry) to
stabilize the Higgs vacuum.
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and En = n! is the energy of the n-th inflaton oscillation
mode. For k = 2, only the second Fourier mode in the
sum contributes, with
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where ⇢� is the energy density of the inflaton and the
interaction term �

⇠
�X is given in Appendix A by Eq. (75).

It was shown in [5] that the dark matter production
rate through the exchange of a graviton, computed from
the partial amplitude (18), is
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which can be written in the same form as (27) by defining
an effective coupling ��X
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FIG. 4: Contours of the ratio of the dark matter production
rates from oscillations in the inflaton condensate based on
non-minimal gravitational interactions to those based on
minimal interactions. The ratio is displayed in the (⇠�, ⇠X)
plane.

A comparison of the non-minimal to minimal rates for
the production of dark matter from inflaton scattering is
shown in Fig. 4.

For the production of Higgs bosons through inflaton
condensate scattering, we follow a similar procedure, and
from the Lagrangian (13) we find

R
�, ⇠
h ' Nh

2⇥ �
⇠ 2

�h

16⇡

⇢
2

�

m
4

�

, (30)

where we assumed that mh ⌧ m�, Nh = 4 is the num-
ber of internal degrees of freedom for 1 complex Higgs
doublet, and �

⇠
�h is given in Appendix A by Eq. (76).

On the other hand, it was argued in [6] that the scat-
tering �� ! hh through the graviton exchange can also
be parameterized by an effective coupling

Lh = ���h�
2
h
2
, (31)

with

��h = �
m

2

�

4M2

P

, (32)

and the rate R
�
h is given by the analogous expression

to (30) with �
⇠
�h replaced by ��h.

The full four-point coupling of course is given by the
sum �

⇠
�h/X + ��h/X . However, except for values where
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where we integrated Eq. (44) in the interval aend < a <

aRH.
The relic abundance is given by [40]
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and if we combine it with Eq. (45), we obtain
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where g0 = 43/11 and we use the Standard Model value
gRH = 427/4.

We observe that ⌦T, ⇠
X / �

⇠
1
T

3

RH
. Therefore large val-

ues of the couplings ⇠h and ⇠X would require a decrease
in the reheating temperature. In Section IV we compare
the scattering rates and the dark matter abundances with
the minimally coupled case.

B. � � ! X X

Another mode of dark matter production is through
the scattering of the inflaton itself. Whereas the graviton
exchange channel was treated with care in [5, 6], in the
case of non-minimal coupling it suffices to replace R

T, ⇠
X

in Eq. (44) with the production rate (27),
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and to integrate between aend and aRH, which leads to
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For aRH � aend, using Eq. (39) we can express n�, ⇠

X as a
function of ⇢end:
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and we find
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where we assumed the Starobinsky value for ⇢end. The
analogous expression for models with minimally coupled
gravity is found by replacing �

⇠
�X ! ��X .

Up to this point we have assumed that the radiation is
produced via the direct inflaton decay to a fermion pair.
In the next subsection we discuss an unavoidable radi-
ation production channel when the inflaton condensate
scattering produces Higgs bosons in models with mini-
mal and non-minimal coupling to gravity.

C. � � ! h h

Gravitational processes that produce dark matter can
also populate the thermal bath in the same way. Even if
this Planck-suppressed production mechanism does not
dominate throughout the entire reheating process, it was
shown in [6] that for TRH . 109 GeV it is graviton
exchange that dominates the production of the ther-
mal bath at the very beginning of the reheating, when
⇢� ⇠ ⇢end. In fact, it was shown that the maximal tem-
perature reached, Tmax, (which can be considered as an
absolute lower bound on Tmax) is Tmax ⇠ 1012 GeV. It is
therefore natural to determine the value of the couplings
(⇠�, ⇠h), for which non-minimal gravitational processes
generate the thermal bath at early times, and the max-
imal temperature which can be attained by these pro-
cesses.

Following the discussion in the previous subsection, to
compute the radiation energy density produced by grav-
itational couplings we implement the rate R

�, ⇠
h (30) into

the Friedmann equation (36)
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dt
+ 4H⇢R ' Nh
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, (53)

where we took into account that each scattering corre-
sponds to an energy transfer of 2m�.8 The solution to

8 Or equivalently that each Higgs quanta carries an energy m�.
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where we integrated Eq. (44) in the interval aend < a <

aRH.
The relic abundance is given by [40]

⌦Xh
2 = 1.6⇥ 108

g0

gRH

n(TRH)

T
3

RH

mX

1 GeV
, (46)

and if we combine it with Eq. (45), we obtain

⌦T, (⇠)
X h

2 =
2

3
⌦(⇠)

k

"
1 + 3

✓
⇢RH

⇢end

◆ 5

6

�
25

7

✓
⇢RH

⇢end

◆ 1

2

�
3

7

✓
⇢RH

⇢end

◆ 5

3

#
, (47)

with

⌦(⇠)
k = 1.6⇥108

g0

gRH

�
(⇠)
1

p
3

p
↵

mX

1 GeV

T
3

RH

M
3

P

"
1�

✓
⇢RH

⇢end

◆ 5

6

#�2

,

(48)
where g0 = 43/11 and we use the Standard Model value
gRH = 427/4.

We observe that ⌦T, ⇠
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. Therefore large val-

ues of the couplings ⇠h and ⇠X would require a decrease
in the reheating temperature. In Section IV we compare
the scattering rates and the dark matter abundances with
the minimally coupled case.

B. � � ! X X

Another mode of dark matter production is through
the scattering of the inflaton itself. Whereas the graviton
exchange channel was treated with care in [5, 6], in the
case of non-minimal coupling it suffices to replace R
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where we assumed the Starobinsky value for ⇢end. The
analogous expression for models with minimally coupled
gravity is found by replacing �

⇠
�X ! ��X .

Up to this point we have assumed that the radiation is
produced via the direct inflaton decay to a fermion pair.
In the next subsection we discuss an unavoidable radi-
ation production channel when the inflaton condensate
scattering produces Higgs bosons in models with mini-
mal and non-minimal coupling to gravity.

C. � � ! h h

Gravitational processes that produce dark matter can
also populate the thermal bath in the same way. Even if
this Planck-suppressed production mechanism does not
dominate throughout the entire reheating process, it was
shown in [6] that for TRH . 109 GeV it is graviton
exchange that dominates the production of the ther-
mal bath at the very beginning of the reheating, when
⇢� ⇠ ⇢end. In fact, it was shown that the maximal tem-
perature reached, Tmax, (which can be considered as an
absolute lower bound on Tmax) is Tmax ⇠ 1012 GeV. It is
therefore natural to determine the value of the couplings
(⇠�, ⇠h), for which non-minimal gravitational processes
generate the thermal bath at early times, and the max-
imal temperature which can be attained by these pro-
cesses.

Following the discussion in the previous subsection, to
compute the radiation energy density produced by grav-
itational couplings we implement the rate R
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where we took into account that each scattering corre-
sponds to an energy transfer of 2m�.8 The solution to

8 Or equivalently that each Higgs quanta carries an energy m�.
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see that for values of ⇠i & 0.1 (f(⇠h, ⇠X) & 1

30
), non-

minimal gravitational production dominates over gravi-
ton exchange. In this case, it becomes easier to obtain
the correct dark matter density for more reasonable val-
ues of TRH and/or mX . For example, for a common value
⇠ = ⇠h = ⇠X = 1, a temperature of TRH ⇠ 1.2 ⇥ 1013

GeV, thus slightly below the inflaton mass, is sufficient
to produce an EeV dark matter candidate, whereas for
⇠ = 1000, TRH ⇠ 1011 GeV will saturate the relic density
for a 2.6 TeV dark matter mass. We show this result in
Fig. 7 where we plot the reheating temperature needed to
satisfy the relic density constraint as function of mX for
different value of ⇠. For each value of ⇠, the relic density
exceeds ⌦Xh

2 = 0.12 above the corresponding curve. As
one can see, the line for ⇠ = 0 is in the upper corner of
the figure at high values of TRH and mX and these drop
significantly at higher values of ⇠.

FIG. 7: Region of parameter space respecting the relic
density constraint ⌦Xh2 = 0.12 in the plane (mX ,TRH) for
different values of ⇠ = ⇠h = ⇠X and ⇢end ' 0.175m2

�M
2

P in
the case of gravitational production from the thermal bath
h h ! X X. Both minimal and non-minimal contributions
are taken into account.

As was shown in [5, 6], another possibility to avoid
the necessity of high reheating temperatures and/or dark
matter masses is the production of matter from the os-
cillations within the inflaton condensate when the energy
stored in the condensate is much larger than the reheat-
ing temperature. A simple comparison between Eqs. (47)
and (52) shows that the production of dark matter via
inflaton scattering when ⇠i 6= 0 generally dominates over
the production of dark matter from the thermal bath:
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5
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T
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(5 + 12⇠)2

1 + 6⇠ + 12⇠2
� 1 , (68)

where we took ⇠ = ⇠� = ⇠h = ⇠X and mX ⌧ m� in

the last equality. We are therefore able to state that
the relic density of dark matter generated by the non-
minimal gravitational scattering of the inflaton is always
much more abundant than that produced by the thermal
bath.

Dark matter production from inflaton scattering via
minimal graviton exchange also dominates over minimal
gravitational thermal production [6]. This state of affairs
is anything but surprising. Indeed, the energy available
in the inflaton condensate at the onset of oscillations is
much greater than that available in the thermal bath
during the reheating process. As the scattering cross-
sections are themselves highly dependent on the energies
through the energy-momentum tensor, it is quite normal
that inflaton scattering is the dominant process for both
minimal and non-minimal gravitational couplings.

Since inflaton scattering dominates in both the min-
imal and non-minimal gravitational interactions we can
compare the two. We obtain

⌦�, ⇠
X

⌦�
X

=
�
⇠ 2

�X

�
2

�X

' 4⇠2(5 + 12⇠)2 , (69)

and we see again that non-minimal interactions dominate
when ⇠ > 1/12 or < �1/2.

We show in Fig. 8 the region of the parameter space
in the (mX , TRH) plane allowed by the relic density con-
straint, adding all of the minimal and non minimal grav-
itational contributions, from inflaton scattering and as
well as Higgs scattering from the thermal bath taking
⇠� = ⇠h = ⇠X = ⇠. As expected, for ⇠ = 0 we recover
the result found in [6]. As one can see, the difficulty in
the gravitational production from the thermal bath is in-
deed alleviated as a reheating temperature TRH ' 1011

GeV allows for the production of a PeV scale dark matter
candidate. If in addition we introduce the non-minimal
couplings ⇠, the necessary reheating temperature to fit
the Planck data may be as low as the electroweak scale
for a GeV candidate if ⇠ & 1000.

Finally, we note that given the dark matter mass and
reheating temperature (if that sector of beyond the Stan-
dard Model physics were known), the contours in Fig. 8
allow us to place an upper bound on the non-minimal
couplings, ⇠. We can rewrite Eq. (52) as

⌦Xh
2

0.12
= 4.1⇥ 10�7(12⇠2 + 5⇠ +

1

2
)2

✓
TRH

1010GeV

◆

⇥

⇣
mX

1GeV

⌘✓
m�

3⇥ 1013GeV

◆
, (70)

when mX ⌧ m� and ⇠ = ⇠� = ⇠X . Then, for example, if
mX = 1 TeV, and TRH = 109 GeV, we obtain an upper
limit of |⇠| . 4.

11

FIG. 8: Region of parameter space respecting the relic
density constraint ⌦Xh2 = 0.12 in the plane (mX ,TRH) for
different values of ⇠� = ⇠h = ⇠X = ⇠ and ⇢end ' 0.175m2

�M
2

P

in the case of production from gravitational inflaton
scattering � � ! X X. Both minimal and non-minimal
contributions are taken into account.

V. CONCLUSIONS

In this paper, we have generalized the minimal grav-
itational interactions in the early Universe, i.e., the s-
channel exchange of a graviton, to include non-minimal
couplings of all scalars to the Ricci curvature R. We
consider a scalar sector Si consisting of the inflaton con-
densate �, the Higgs field H and a dark matter can-
didate X, and we have analyzed the impact of cou-
plings of the type ⇠iS

2

i R on the reheating process and
dark matter production. The latter can be generated
by the thermal Higgs scattering or excitations of the in-
flaton, both through minimal and non-minimal gravita-
tional couplings. Whereas the Higgs scattering through
the exchange of a graviton necessitates a very large re-
heating temperature and/or dark matter mass in order
to fulfill Planck CMB constraints (TRH ' 1014 GeV with
mX ' 109 GeV), for ⇠ & 0.1, the non-minimal cou-
pling dominates the process and alleviates the tension.
For ⇠ ' 1000, a dark matter mass of ⇠ 1 PeV with
TRH ' 1010 GeV will satisfy the constraint, see Fig. 7.
However, thermal production is not the sole source of
dark matter production through gravity. When we in-
clude the contribution (necessarily present) of the infla-
ton scattering, we showed that the energy stored in the
condensate at the end of inflation compensates largely
the reduced gravitational Planck coupling. These pro-
cesses yield the correct relic abundance through minimal
graviton exchange for a dark matter mass of ⇠ 108 GeV
with TRH ' 1010 GeV, and the constraint is satisfied for
a dark matter mass of ⇠ 100 GeV and TRH & 104 GeV
if one adds non-minimal couplings of the order ⇠ ' 100
as we show in Fig. 8. Gravitational inflaton scattering

also affects the reheating process, producing a maximum
temperature ' 1012 GeV with minimal couplings, reach-
ing as large as T

⇠
max

' 5|⇠|Tmax ' 1014 GeV for ⇠ = 100
as one can see in Fig. 5. This result can be re-expressed
as an upper limit to |⇠| given values of mX and TRH.

We can not over-emphasize that all of our results are
unavoidable, in the sense that they are purely gravita-
tional, and do not rely on physics beyond the Strandard
Mode. The relic density of dark matter, and maximum
temperature of the thermal bath computed here should
be considered as lower bounds, that should be imple-
mented in any extension of the Standard Model, what-
ever is its nature.

Note added : During the completion of the manuscript,
some overlapping results were presented in [41].
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APPENDIX

A. PARTICLE PRODUCTION WITH A
NON-MINIMAL COUPLING

The full Jordan frame action we consider is given by
Eq. (2). The conformal transformation to the Einstein
frame is given by

gµ⌫ = ⌦2
g̃µ⌫ , (71)

where gµ⌫ is the Einstein frame spacetime metric and the
conformal factor is expressed by Eq. (3). It can readily
be shown that the scalar curvature transforms as (see,
e.g., [42])

R̃ = ⌦2 [R+ 6gµ⌫rµr⌫ ln⌦� 6gµ⌫ (rµ ln⌦) (r⌫ ln⌦)] .
(72)

After eliminating the total divergence term, we find the
Einstein frame action (9).

To find the effective interaction terms we assume the
small field limit (12) and expand the conformal factors in

Non-minimal Gravitational Portals
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Note that the dependence on the scale factor a is very dif-
ferent from that found in Eq. (40) due to inflaton decay.
Indeed, the Higgs bosons produced by gravitational scat-
tering (minimal as well as non-minimal) are redshifted
to a greater extent because of the high dependence of
the rate on their energy due to the form of the energy-
momentum tensor T

0

µ⌫ . Since ⇢R / a
�4 in Eq. (54) (at

large a) and ⇢� / a
�3 in Eq. (39), reheating through

this process does not occur (i.e., ⇢R never comes to dom-
inate the total energy at late times) and inflaton decay
is necessary.9

However, as in the case of the reheating from the in-
flaton decay, the energy density in Eq. (54) exhibits a
maximum when a = amax = (81/64)aend. The maximum
radiation density is then,
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and from this expression we find that the maximum tem-
perature produced by gravitational interactions is given
by
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where we took ⇠� = ⇠h = ⇠ in the last equality. The
analogous expression for models with minimally coupled
gravity is found by replacing �

⇠
�h ! ��h.

To compare the maximum temperature obtained by
non-minimal interactions with respect to minimal grav-
itational interactions, we can rewrite Eq. (56) (now in-
cluding minimal interactions in T

⇠
max

) as
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The value of ⇠ for which the maximum temperature gen-
erated by the non-minimal coupling surpasses the one
from graviton exchange is shown in Fig. 5 and is deter-
mined using

s
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�h|

|��h|
=
p
2|⇠| (|5 + 12⇠|)

1

2 > 1 (58)

9 This conclusion is avoided if the inflaton potential about mini-
mum is approximated by �k with a higher power of k > 4 [6, 9].
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FIG. 5: The maximum temperature during reheating
generated separately by minimal and non-minimal
gravitational scattering of Higgs bosons in the thermal bath.

which is satisfied when ⇠ > 1/12 or ⇠ < �1/2, as dis-
cussed earlier.

As noted above and discussed in [6], minimal (and non-
minimal) gravitational interactions for a quadratic infla-
ton potential do not lead to the completion of the re-
heating process, thus requiring additional inflaton inter-
actions for decay. Although radiation density produced
in scattering falls off faster than that from decay, at early
time, the radiation density may in fact dominate and de-
termine Tmax. To determine when the � � ! h h process
leads to the maximum temperature, we rewrite Eq. (40)
as:
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(59)
Using Eq. (42), we find that the maximum radiation den-
sity produced by the inflaton decay is given by

⇢
y
max

=

p
3y2m�M

3

P

32⇡

✓
⇢end

M
4

P

◆ 1

2

✓
3

8

◆ 3

5

. (60)

The maximum temperature is therefore determined by
(non-minimal) gravitational interactions when
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This leads to the following reheating temperature:
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where TRH is given by [32]
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when the reheating temperature is determined by inflaton
decay.

The primary effect of the gravitational scattering pro-
cesses on reheating is the augmentation of Tmax for suf-
ficiently small inflaton decay coupling, y. This can be
seen in Fig. 6 where we show the evolution of the energy
density of radiation from scattering and decay as well as
the energy density of the inflaton as a function of a/aend
for �

⇠
�h = 0 and �

⇠
�h/��h = 100, respectively.
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FIG. 6: Evolution of the inflaton density (blue) and the
total radiation density (red), with radiation density produced
from inflaton decays (dashed orange) and � � ! h h
scattering processes ⇢�, ⇠R (dotted green) and ⇢�R (dash-dotted
purple) with �⇠

�h/��h = 100 (or ⇠� = ⇠h = ⇠ ' �2.3 or 1.8),
as a function of a/aend for a Yukawa-like coupling y = 10�8

and ⇢end ' 0.175m2

�M
2

P ' 9⇥ 1062 GeV4. The black dashed
lines corresponds to the ratios aint/aend ' 150 and 6500,
which agrees with Eq. (66). The numerical solutions are
obtained from Eqs. (35), (36), and (53).

As we saw in Eq. (58), minimal gravitational inter-
actions dominate over non-minimal interactions when
�
⇠
�h < ��h or when

12⇠�⇠h + 3⇠h + 2⇠� <
1

2
, (65)

when we neglect contributions proportional to the Higgs
mass. In this case, the maximum temperature is deter-
mined by gravitational interactions when y . 2.1⇥ 10�6

from Eq. (62) using ��h from Eq. (32). The evolution of
the energy densities in this case is shown in Fig. 6 with
y = 10�8. However as the energy density of radiation
after the maximum falls faster than ⇢�, reheating in the
Universe is determined by the inflaton decay. For a suf-
ficiently small coupling y, the energy density from the
decay dominates the radiation density at a > aint, where
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For ��h = 3.8⇥10�11, m� = 3⇥1013 GeV, and y = 10�8

we have aint ⇡ 160aend, as seen in the figure.
When Eq. (65) is not satisfied, non-minimal interac-

tions may dominate as shown in the bottom panel of
Fig. 6, for �

⇠
�h = 100��h and y = 10�8. The cross-over

can be determined from Eq. (66) with the replacement
��h ! �

⇠
�h. In this example, aint ⇡ 6500aend.

IV. RESULTS

We now turn to some general results that may be ob-
tained from the framework described above. Concern-
ing the gravitational production of dark matter from the
thermal bath, the difficulty of populating the Universe
via the exchange of a graviton was already known [6, 31].
Summing the minimal and non-minimal contributions in
Eq. (47), we find for ⇢RH ⌧ ⇢end

⌦T
X

0.12
' [1 + 30f(⇠h, ⇠X)]

✓
TRH

1014 GeV

◆3✓
mX

4.0⇥ 109 GeV

◆

=
⇥
1 + 120⇠2(1 + 6⇠ + 12⇠2)

⇤

⇥

✓
TRH

1014 GeV

◆3✓
mX

4.0⇥ 109 GeV

◆
(67)

with

f(⇠h, ⇠X) = ⇠
2

h+2⇠h⇠X + ⇠
2

X +12⇠h⇠X (⇠h + ⇠X + 4⇠h⇠X)

where we assumed ⇠h = ⇠X = ⇠ in the last equality, for
simplicity. It is clear that, if we set ⇠ = 0, i.e. if we con-
sider only graviton exchange, the reheating temperature
necessary to obtain a reasonable density respecting the
data [23] is dangerously close to the mass of the infla-
ton, even for extremely large dark matter masses. This
problem had already been raised in [31] and resolved in
[5, 6] by considering the dark matter produced from the
(minimal) gravitational inflaton scattering.

On the other hand, from Eq. (67) we see that there
is another solution to this tension if one allows for non-
minimal gravitational couplings. Indeed, it is easy to
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when the reheating temperature is determined by inflaton
decay.

The primary effect of the gravitational scattering pro-
cesses on reheating is the augmentation of Tmax for suf-
ficiently small inflaton decay coupling, y. This can be
seen in Fig. 6 where we show the evolution of the energy
density of radiation from scattering and decay as well as
the energy density of the inflaton as a function of a/aend
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P ' 9⇥ 1062 GeV4. The black dashed
lines corresponds to the ratios aint/aend ' 150 and 6500,
which agrees with Eq. (66). The numerical solutions are
obtained from Eqs. (35), (36), and (53).

As we saw in Eq. (58), minimal gravitational inter-
actions dominate over non-minimal interactions when
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2
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when we neglect contributions proportional to the Higgs
mass. In this case, the maximum temperature is deter-
mined by gravitational interactions when y . 2.1⇥ 10�6

from Eq. (62) using ��h from Eq. (32). The evolution of
the energy densities in this case is shown in Fig. 6 with
y = 10�8. However as the energy density of radiation
after the maximum falls faster than ⇢�, reheating in the
Universe is determined by the inflaton decay. For a suf-
ficiently small coupling y, the energy density from the
decay dominates the radiation density at a > aint, where
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we have aint ⇡ 160aend, as seen in the figure.
When Eq. (65) is not satisfied, non-minimal interac-

tions may dominate as shown in the bottom panel of
Fig. 6, for �
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can be determined from Eq. (66) with the replacement
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IV. RESULTS

We now turn to some general results that may be ob-
tained from the framework described above. Concern-
ing the gravitational production of dark matter from the
thermal bath, the difficulty of populating the Universe
via the exchange of a graviton was already known [6, 31].
Summing the minimal and non-minimal contributions in
Eq. (47), we find for ⇢RH ⌧ ⇢end
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where we assumed ⇠h = ⇠X = ⇠ in the last equality, for
simplicity. It is clear that, if we set ⇠ = 0, i.e. if we con-
sider only graviton exchange, the reheating temperature
necessary to obtain a reasonable density respecting the
data [23] is dangerously close to the mass of the infla-
ton, even for extremely large dark matter masses. This
problem had already been raised in [31] and resolved in
[5, 6] by considering the dark matter produced from the
(minimal) gravitational inflaton scattering.

On the other hand, from Eq. (67) we see that there
is another solution to this tension if one allows for non-
minimal gravitational couplings. Indeed, it is easy to
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• Reheating- an essential component of all inflation models

• In many cases, the instantaneous reheating approximation is 
too crude.

• Particle Production enhanced in the early phases of reheating 
when rates are proportional to Tn+6 with n > 6 (expected for 
gravitino production in high scale susy models).

• Gravitational portals determine a minimal particle production 
rate and a minimal maximum temperature during reheating.

• Can be an important (and minimal) component for 
leptogenesis. 

Summary


