Cosmological Implications of Higgs Vacuum Instability

Arttu Rajantie

Physics of the Early Universe 16 June 2022

Based on:

Review Article:

 Markkanen, AR & Stopyra, [Front.Astron.Space](https://inspirehep.net/literature/1694704) Sci. 5 (2018) 40 Original works:

- Herranen, Markkanen, Nurmi & AR, [PRL113 \(2014\) 211102](https://inspirehep.net/literature/1305878)
- Herranen, Markkanen, Nurmi & AR, [PRL115 \(2015\) 241301](https://inspirehep.net/literature/1375980)
- ▶ AR & Stopyra, [PRD95 \(2017\) 025008](https://inspirehep.net/literature/1467249)
- AR & Stopyra, [PRD97 \(2018\) 025012](https://inspirehep.net/literature/1613509)
- Figueroa, AR & Torrenti, [PRD98 \(2018\) 023532](https://inspirehep.net/literature/1621247)
- Markkanen, Nurmi, AR & Stopyra, [JHEP 1806 \(2018\) 040](https://inspirehep.net/literature/1666388)
- Mantziris, Markkanen & AR, [JCAP03 \(2021\) 077](https://inspirehep.net/literature/1828991)

Standard Model of Particle Physics

- All renormalisable terms allowed by symmetries in Minkowski space
- \rightarrow 19 parameters all have been measured
- Can be extrapolated all the way to Planck scale
- For central experimental values $M_H = 125.18$ GeV and $M_t = 173.1$ GeV
	- δ λ becomes negative at $\mu_{\Lambda} \approx 9.9 \times 10^9$ GeV
	- Minimum value $\lambda_{\text{min}} \approx -0.015$ at $\mu_{\text{min}} \approx 2.8 \times 10^{17}$ GeV

(Buttazzo et al 2013)

Vacuum Instability

- Renormalisation group improved Higgs effective potential $V(\phi) \approx \lambda (g\phi)\phi^4$
- Becomes negative at $\phi > \phi_c \approx 10^{10}$ GeV
- True vacuum at Planck scale?
- Current vacuum metastable against quantum tunnelling

Barrier at

 $\phi_{\text{bar}} \approx 4.6 \times 10^{10}$ GeV,

height $V(\phi_{\text{bar}}) \approx (4.3 \times 10^9 \text{ GeV})^4$ (Based on a 3-loop calculation by Bednyakov et al. 2015)

Tunneling Rate

Bubble nucleation rate:

$$
\circ \ \Gamma \sim e^{-B}, \text{where}
$$

- δ $=$ "bounce" action (Coleman 1977)
- Solution of Euclidean equation of motion
- Constant $\lambda < 0$: (Fubini 1976)

$$
\phi(r) = \sqrt{\frac{2}{|\lambda|}} \frac{2R}{r^2 + R^2}
$$

- Action $B=\frac{8\pi^2}{3!3!}$ $3|\lambda$
- When λ runs, $B \approx \frac{8\pi^2}{3!3}$ $3\lambda_{\min}$ \approx 1800 (depending on Higgs and top masses) ⇒ extremely slow rate $\Gamma\sim \mu^4_{\rm min} e^{-B}$ - but is it slow enough?

Past Light Cone

 Assume: Bubbles grow at the speed of light and destroy everything they hit (see, however, De Luca, Kehagias & Riotto **arXiv:2205.10240**) \Rightarrow There cannot have been any bubbles in our past light cone

Past Light Cone

Probability of no bubble in the past light cone:

 $P(\mathcal{N}=0)=e^{-\langle \mathcal{N} \rangle},$ where $\langle \mathcal{N} \rangle$ is the expected number of bubbles $(d\eta = dt/a)$, 4π η_{0}

$$
\langle \mathcal{N} \rangle = \frac{4\pi}{3} \int_{0}^{\infty} d\eta \; a(\eta)^4 (\eta_0 - \eta)^3 \Gamma(\eta)
$$

- Therefore, we must have $\langle \mathcal{N} \rangle \lesssim 1$
- Integrate over the whole history of the Universe: inflation, reheating, hot Big Bang, and late Universe
- (For anthropists: $d\langle \mathcal{N}$ dt $\Delta t \lesssim 1$
- ((For quantum immortalists: You may go and make a coffee. There is nothing for you in this talk.))

Late Universe Stability Bounds

(Buttazzo et al. 2013)

- ▶ Number of bubbles in past lightcone: $\langle \mathcal{N} \rangle \approx 0.125 \Gamma/H_0^4$
- If $\langle N\rangle\ll 1$, no contradiction \Rightarrow Metastability

Higgs-Curvature Coupling

Curved spacetime:

 $\mathcal{L} = \mathcal{L}_{\text{SM}} + \xi R \phi^{\dagger} \phi$ (Chernikov&Tagirov 1968)

- Symmetries allow one more renormalisable term: Higgs-curvature coupling ξ
- Required for renormalisability, runs with energy – Cannot be set to zero!
- Last unknown parameter in the Standard Model

 $L = -\frac{1}{4} F_{av} F^{\prime\prime}$ + iFBx +h.c
+ X: Yuy X3p+hc $|\mathcal{R}\mathcal{B}|^2 - \vee(\phi)$ $+\xi R\phi^2$

Running ξ

$$
\mu \frac{d\xi}{d\mu} = \left(\xi - \frac{1}{6}\right) \frac{12\lambda + 6y_t^2 - \frac{3}{2}g'^2 - \frac{9}{2}g^2}{16\pi^2}
$$

- ▶ Becomes negative if $\xi_{\rm EW} = 0$
- Conformal value $\xi = 1/6$ RG invariant at 1 loop but not beyond

Measuring ξ

Curved spacetime:

$$
\mathcal{L} = \mathcal{L}_{\rm SM} + \xi R \phi^{\dagger} \phi
$$

- Ricci scalar R very small today \Rightarrow Difficult to measure ξ
- ▶ Colliders: Suppresses Higgs couplings (Atkins&Calmet 2012)
	- LHC Bound $|\xi|$ ≲ 2.6 \times 10^{15}
	- ∘ Future (?) ILC: $|\xi| \lesssim 4 \times 10^{14}$
- In contrast, R was high in the early Universe

Late Universe Stability Bounds

 Find the gravitational instanton by solving field + Einstein equations numerically (AR&Stopyra 2016)

Hot Big Bang

- High temperature: Higher bubble nucleat rate (Espinosa et al 20
- If reheat temperature is high enough, this dominates over late-t contribution
- Top mass bound (Delle Rose et al 2016)

Ge

 $+$

(Markkanen, AR, Stopyra, 2018)

**Imperial College
London**

Higgs Fluctuations from Inflation

 $8\pi^2$

 $3H⁴$

- Inflation: $H \lesssim 9 \times 10^{13}$ GeV (Planck+BICEP2 2015)
- Assume light Higgs, no direct coupling to inflaton

 $P(\phi) \propto \exp |-\rangle$

Equilibrium field distribution (Starobinsky&Yokoyama 1994)

 Tree-level potential $V(\phi) = \lambda (\phi^2 - v^2)^2$

 Nearly scale-invariant fluctuations with amplitude $\phi \sim \lambda^{-1/4} H$

Imperial College

London

Higgs Fluctuations from Inflation

- ► Equilibrium $P(\phi) \propto \exp \left[-\frac{8\pi^2}{3H^4}\right]$ $\frac{8\pi}{3H^4}V(\phi)$
- Running λ : Fluctuations take the Higgs over the barrier if $H \gtrsim \phi_{\text{bar}} \approx 10^{10} \text{GeV}$ (Espinosa et al. 2008; Lebedev&Westphal 2013; Kobakhidze&Spencer-Smith 2013; Fairbairn&Hogan 2014; Hook et al. 2014)
- Does this imply an upper limit on the scale of inflation $H \lesssim 10^{10}$ GeV?

Spacetime Curvature

- Effective Higgs mass term $m_{\text{eff}}^2(t) = m_H^2 + \xi R(t)$
- Ricci scalar in FRW spacetime:

◦ Matter dominated **Matter**

$R = 6 \left(\frac{\dot{a}^2}{a^2} + \frac{\ddot{a}}{a} \right) = 3(1 - 3w)H^2$		
\circ Radiation dominated	$w = 1/3$	$R = 0$
\circ Matter dominated	$w = 0$	$R = 3H^2$
\circ Inflation / de Sitter	$w = -1$	$R = 12H^2$

Higgs During Inflation

- Inflation: Constant $R = 12H^2$
- Effective mass term

$$
m_{\text{eff}}^2 = m_H^2 + \xi R = m_H^2 + 12\xi H^2
$$

- Tree level: (Espinosa et al 2008)
	- $\delta > 0$: Increases barrier height Makes the low-energy vacuum more stable
	- $\delta \leq 0$: Decreases barrier height Makes the low energy vacuum less stable
- \blacktriangleright H contributes to loop corrections: For $H \gg \phi$, the RGI scale is $\mu \approx H$

 $V(\phi) \approx \lambda(H)\phi^4$

 \Rightarrow No barrier if $H \gtrsim 10^{10}$ GeV (HMNR 2014)

Effective Potential in Curved Spacetime

▶ One-loop computation in de Sitter:

$$
V_{\rm SM}^{\rm eff}(\varphi(\mu)) = -\frac{1}{2}m^2(\mu)\varphi^2(\mu) + \frac{\xi(\mu)}{2}R\varphi^2(\mu) + \frac{\lambda(\mu)}{4}\varphi^4(\mu) + V_{\Lambda}(\mu) - 12\kappa(\mu)H^2 + \alpha(\mu)H^4 + \frac{1}{64\pi^2}\sum_{i=1}^{31} \left\{ n_i \mathcal{M}_i^4(\mu) \left[\log \left(\frac{|\mathcal{M}_i^2|}{\mu^2} \right) - d_i \right] + n_i'H^4 \log \left(\frac{|\mathcal{M}_i^2(\mu)|}{\mu^2} \right) \right\}.
$$
 (5.3)

Potential in Curved Spacetime

- One-loop computation for $\xi = 0$ (in units of $\mu_{inst} \approx 6.6 \times 10^9$ GeV)
- When spacetime curvature is high, the barrier disappears (MNRS 2018)

A. Rajantie, Cosmological Implications of Higgs Vacuum Instability, 16 June 2022

(De)Stabilising the Potential

If $H \gtrsim \mu_{\text{inst}} = 6.6 \times 10^9$ GeV and there is no new physics, vacuum stability during inflation requires $\xi \gtrsim 0$

Time-Dependent Hubble Rate

- In real inflationary models, H depends on time: Affects decay rate Γ and volume of past light cone
- (Mantziris, Markkanen & AR, 2021): Consider three single-field inflation models
- Bubbles most likely produced during the last few e-foldings

Time-Dependent Hubble Rate

- In real inflationary models, H depends on time: Affects decay rate Γ and volume of past light cone
- (Mantziris, Markkanen & AR, 2021): Consider three single-field inflation models
- Bubbles most likely produced during the last few e-foldings
- Stability requires

 $\xi \gtrsim 0.06$ in all three model

Quantum Tunneling

A. Rajantie, Cosmological Implications of Higgs Vacuum Instability, 16 June 2022

Quantum Tunneling

Toy model Standard Model B_{Cdl}, CdL Bounce $10[°]$ -B_{HM}, Hawking-Moss solution \cdot V_{Ocrit} \bf{m} B_c, flat false vacuum action Decay exponent, 10^{\degree} $B_{fv} = 49.25$ \cdot 10² B $10[°]$ 10 10^{2} ₀ 2×10^{-20} 5 10 15 1×10^{-20} \times 10⁻³ V_0/M_P^4 $V_0 [M_{\rm pl}^4]$

 B_{CdL} , CdL Bounces B_{HM} , Hawking-Moss solution

 3×10^{-20}

 4×10^{-20}

- Multiple coexisting solutions (AR&Stopyra, PRD 2018)
- ▶ Quantum (Coleman-de Luccia) tunnelling rate $\Gamma \sim e^{-B}$ nearly constant until Hawking-Moss starts to dominate \Rightarrow Always the relevant process for the constraint

Multiple Solutions

(AR&Stopyra, PRD 2018)

End of Inflation

Reheating: Inflation ($R = 12H^2$) \rightarrow radiation ($R = 0$)

$$
R(t) = \frac{2m^2\chi^2 - \dot{\chi}^2}{M_{\rm Pl}^2}
$$

- Effective Higgs mass $m_{\text{eff}}^2 = m_H^2 + \xi R$ oscillates:
	- Parametric resonance ("Geometric preheating") (Bassett&Liberati 1998, Tsujikawa et al. 1999)
- $至$ R goes negative when $χ \sim 0$
	- [○] If $\xi > 0$, Higgs becomes tachyonic (HMNR 2015)
	- Exponential amplification

$$
\langle \phi^2 \rangle_H \sim \frac{2}{3\sqrt{3}\xi} \left(\frac{H}{2\pi}\right)^2 e^{\frac{2\sqrt{\xi}\chi_{\rm ini}}{M_{\rm Pl}}} \sim \frac{H^2}{\xi} e^{2\sqrt{\xi}}
$$

Vacuum Decay at the End of Inflation

Lattice Simulations

$$
V(\chi) = \frac{1}{2}m^2\chi^2, M_{\text{top}} = 172.12 \text{ GeV}
$$

A. Rajantie, Cosmological Implications of Higgs Vacuum Instability, 16 June 2022

Instability Time

- Stability depends on top mass and speed of reheating
- $M_{\text{top}} = 173.34 \text{ GeV}$: vacuum survival until $t = 100/m$ requires $\xi \lesssim 9$
- Li et al (arXiv:2206.05926): Much stronger bound $\xi \lesssim 2$ in Starobinsky inflation

Figueroa, AR & Torrenti, 2018

Constraints on ξ

- Minimal scenario:
	- Standard Model + $m^2\chi^2$ chaotic inflation, no direct coupling to inflaton

$0.06 \leq \xi \leq 9$

15 orders of magnitude stronger than the LHC bound

 $\overline{|\xi|} \lesssim 2.6 \times 10^{15}$

- Caveats:
	- Assumes no direct coupling to inflaton (see, e.g., Ema et al. 2016, 2017)
		- Would still need $|\xi| \lesssim O(1)$
	- Assumes no new physics
		- Could stabilise potential altogether, or destabilise further
	- Assumes high scale inflation $H \gtrsim 10^9$ GeV