Cosmological Implications of Higgs Vacuum Instability

Arttu Rajantie

Physics of the Early Universe 16 June 2022

Based on:

Review Article:

Markkanen, AR & Stopyra, <u>Front.Astron.Space Sci. 5 (2018) 40</u>
 Original works:

- Herranen, Markkanen, Nurmi & AR, PRL113 (2014) 211102
- Herranen, Markkanen, Nurmi & AR, PRL115 (2015) 241301
- AR & Stopyra, <u>PRD95 (2017) 025008</u>
- AR & Stopyra, <u>PRD97 (2018) 025012</u>
- Figueroa, AR & Torrenti, <u>PRD98 (2018) 023532</u>
- Markkanen, Nurmi, AR & Stopyra, JHEP 1806 (2018) 040
- Mantziris, Markkanen & AR, JCAP03 (2021) 077

Standard Model of Particle Physics

- All renormalisable terms allowed by symmetries in Minkowski space
- 19 parameters all have been measured
- Can be extrapolated all the way to Planck scale
- For central experimental values $M_{\rm H} = 125.18 \text{ GeV}$ and $M_{\rm t} = 173.1 \text{ GeV}$
 - λ becomes negative at $\mu_{\Lambda} \approx 9.9 \times 10^9$ GeV
 - Minimum value $\lambda_{\min} \approx -0.015$ at $\mu_{\min} \approx 2.8 \times 10^{17}$ GeV

(Buttazzo et al 2013)

Vacuum Instability

- Renormalisation group improved Higgs effective potential $V(\phi) \approx \lambda(g\phi)\phi^4$
- Becomes negative at $\phi > \phi_c \approx 10^{10} {\rm GeV}$
- True vacuum at Planck scale?
- Current vacuum metastable against quantum tunnelling
- Barrier at

 $\phi_{\text{bar}} \approx 4.6 \times 10^{10} \text{ GeV},$ height $V(\phi_{\text{bar}}) \approx (4.3 \times 10^9 \text{ GeV})^4$ (Based on a 3-loop calculation by Bednyakov et al. 2015)

Tunneling Rate

Bubble nucleation rate:

•
$$\Gamma \sim e^{-B}$$
, where

- B = "bounce" action (Coleman 1977)
- Solution of Euclidean equation of motion
- Constant $\lambda < 0$: (Fubini 1976)

$$\phi(r) = \sqrt{\frac{2}{|\lambda|}} \frac{2R}{r^2 + R^2}$$

- Action $B = \frac{8\pi^2}{3|\lambda|}$
- When λ runs, $B \approx \frac{8\pi^2}{3|\lambda_{\min}|} \approx 1800$

(depending on Higgs and top masses)

 \Rightarrow extremely slow rate $\Gamma \sim \mu_{\min}^4 e^{-B}$ - but is it slow enough?

Past Light Cone

 Assume: Bubbles grow at the speed of light and destroy everything they hit (see, however, De Luca, Kehagias & Riotto <u>arXiv:2205.10240</u>)
 ⇒ There cannot have been any bubbles in our past light cone

Past Light Cone

Probability of no bubble in the past light cone:

 $P(\mathcal{N} = 0) = e^{-\langle \mathcal{N} \rangle},$ where $\langle \mathcal{N} \rangle$ is the expected number of bubbles $(d\eta = dt/a),$ $\langle \mathcal{N} \rangle = \frac{4\pi}{3} \int_{-\infty}^{\eta_0} d\eta \ a(\eta)^4 (\eta_0 - \eta)^3 \Gamma(\eta)$

- Therefore, we must have $\langle \mathcal{N} \rangle \lesssim 1$
- Integrate over the whole history of the Universe: inflation, reheating, hot Big Bang, and late Universe
- (For anthropists: $\frac{d\langle N \rangle}{dt} \Delta t \lesssim 1$)
- ((For quantum immortalists: You may go and make a coffee. There is nothing for you in this talk.))

Late Universe Stability Bounds

(Buttazzo et al. 2013)

- Number of bubbles in past lightcone: $\langle \mathcal{N} \rangle \approx 0.125\Gamma/H_0^4$
- If $\langle \mathcal{N} \rangle \ll 1$, no contradiction \Rightarrow Metastability

Higgs-Curvature Coupling

Curved spacetime:

 $\mathcal{L} = \mathcal{L}_{SM} + \xi R \phi^{\dagger} \phi$ (Chernikov&Tagirov 1968)

- Symmetries allow one more renormalisable term: Higgs-curvature coupling ξ
- Required for renormalisability, runs with energy – Cannot be set to zero!
- Last unknown parameter in the Standard Model

Z = - = FAL FAN + $i \not= \not D \not= + h.c.$ + $f : y_{ij} \not=_{j} \not=_{hc}$ $\left| \sum_{\alpha} \varphi \right|^2 - V(\phi)$ $+\xi R\phi^2$

Running ξ

$$\mu \frac{d\xi}{d\mu} = \left(\xi - \frac{1}{6}\right) \frac{12\lambda + 6y_t^2 - \frac{3}{2}g'^2 - \frac{9}{2}g^2}{16\pi^2}$$

- Becomes negative if $\xi_{\rm EW} = 0$
- Conformal value
 ξ = 1/6
 RG invariant at 1 loop
 but not beyond

Measuring ξ

• Curved spacetime:

 $\mathcal{L} = \mathcal{L}_{\rm SM} + \xi R \phi^{\dagger} \phi$

- Ricci scalar *R* very small today \Rightarrow Difficult to measure ξ
- Colliders: Suppresses Higgs couplings (Atkins&Calmet 2012)
 - LHC Bound $|\xi| \lesssim 2.6 \times 10^{15}$
 - Future (?) ILC: $|\xi| \lesssim 4 \times 10^{14}$
- In contrast, *R* was high in the early Universe

Late Universe Stability Bounds

 Find the gravitational instanton by solving field + Einstein equations numerically (AR&Stopyra 2016)

Hot Big Bang

- High temperature: Higher bubble nucleation rate (Espinosa et al 2008)
- If reheat temperature $T_{\rm RH}$ is high enough, this dominates over late-time contribution
- Top mass bound (Delle Rose et al 2016):

GeV

Higgs Fluctuations from Inflation

- Inflation: $H \leq 9 \times 10^{13}$ GeV (Planck+BICEP2 2015)
- Assume light Higgs, no direct coupling to inflaton
- Equilibrium field distribution (Starobinsky&Yokoyama 1994)

Tree-level potential $V(\phi) = \lambda (\phi^2 - v^2)^2$

• Nearly scale-invariant fluctuations with amplitude $\phi \sim \lambda^{-1/4} H$

Imperial College

London

Higgs Fluctuations from Inflation

- Equilibrium $P(\phi) \propto \exp\left[-\frac{8\pi^2}{3H^4}V(\phi)\right]$
- Running λ : Fluctuations take the Higgs over the barrier if $H \gtrsim \phi_{bar} \approx 10^{10} \text{GeV}$ (Espinosa et al. 2008; Lebedev&Westphal 2013; Kobakhidze&Spencer-Smith 2013; Fairbairn&Hogan 2014; Hook et al. 2014)
- Does this imply an upper limit on the scale of inflation H ≤ 10¹⁰GeV ?

Spacetime Curvature

- Effective Higgs mass term $m_{\rm eff}^2(t) = m_{\rm H}^2 + \xi R(t)$
- Ricci scalar in FRW spacetime:

$$R = 6\left(\frac{\dot{a}^2}{a^2} + \frac{\ddot{a}}{a}\right) = 3(1 - 3w)H^2$$

ninated $w = 1/3$ $R = 0$
ated $w = 0$ $R = 3H^2$
Sitter $w = -1$ $R = 12H^2$

- Radiation dominated
- Matter dominated
- Inflation / de Sitter

Higgs During Inflation

- Inflation: Constant $R = 12H^2$
- Effective mass term

$$m_{\rm eff}^2 = m_{\rm H}^2 + \xi R = m_{\rm H}^2 + 12\xi H^2$$

- Tree level: (Espinosa et al 2008)
 - $\xi > 0$: Increases barrier height Makes the low-energy vacuum more stable
 - $\xi < 0$: Decreases barrier height Makes the low energy vacuum less stable
- *H* contributes to loop corrections: For $H \gg \phi$, the RGI scale is $\mu \approx H$

 $V(\phi) \approx \lambda(H)\phi^4$

 \Rightarrow No barrier if $H \gtrsim 10^{10}$ GeV (HMNR 2014)

Effective Potential in Curved Spacetime

One-loop computation in de Sitter:

$$V_{\rm SM}^{\rm eff}(\varphi(\mu)) = -\frac{1}{2}m^2(\mu)\varphi^2(\mu) + \frac{\xi(\mu)}{2}R\varphi^2(\mu) + \frac{\lambda(\mu)}{4}\varphi^4(\mu) + V_{\Lambda}(\mu) - 12\kappa(\mu)H^2 + \alpha(\mu)H^4 + \frac{1}{64\pi^2}\sum_{i=1}^{31} \left\{ n_i\mathcal{M}_i^4(\mu) \left[\log\left(\frac{|\mathcal{M}_i^2|}{\mu^2}\right) - d_i \right] + n'_iH^4 \log\left(\frac{|\mathcal{M}_i^2(\mu)|}{\mu^2}\right) \right\}.$$
 (5.3)

Ψ	i	$\overline{n_i}$	d_i	n'_i	\mathcal{M}_i^2	Ψ	i	n_i	d_i	n'_i	\mathcal{M}_i^2
	1	2	3/2	-34/15	$m_W^2 + H^2$		21	1	3/2	-17/15	H^2
W^{\pm}	2	6	5/6	-34/5	$m_W^2 + H^2$	γ	22	3	5/6	-17/5	H^2
	3	-2	3/2	4/15	$m_W^2 - 2H^2$		23	-1	3/2	2/15	-2H
	4	1	3/2	-17/15	$m_Z^2 + H^2$		24	8	3/2	-136/15	H^2
Z^0	5	3	5/6	-17/5	$m_Z^2 + H^2$	g	25	24	5/6	-136/5	H^2
	6	-1	3/2	2/15	$m_Z^2 - 2H^2$		26	-8	3/2	16/15	-2H
q	7 - 12	-12	3/2	38/5	$m_q^2 + H^2$	ν	27 - 29	-2	3/2	19/15	H^2
l	13 - 15	-4	3/2	38/15	$m_l^2 + H^2$	c_{γ}	30	-1	3/2	2/15	-2H
h	16	1	3/2	-2/15	$m_h^2 + 12(\xi - 1/6)H^2$	c_g	31	-8	3/2	16/15	-2H
χ_W	17	2	3/2	-4/15	$m_{\chi}^2 + \zeta_W m_W^2 + 12(\xi - 1/6)H^2$	(MNRS 2018)					
χ_Z	18	1	3/2	-2/15	$m_{\chi}^2 + \zeta_Z m_Z^2 + 12(\xi - 1/6)H^2$	('			•/		
c_W	19	$^{-2}$	3/2	4/15	$\zeta_W m_W^2 - 2H^2$						
c_Z	20	-1	3/2	2/15	$\zeta_Z m_Z^2 - 2H^2$						

Potential in Curved Spacetime

- One-loop computation for $\xi = 0$ (in units of $\mu_{inst} \approx 6.6 \times 10^9$ GeV)
- When spacetime curvature is high, the barrier disappears (MNRS 2018)

(De)Stabilising the Potential

• If $H \ge \mu_{inst} = 6.6 \times 10^9 \text{GeV}$ and there is no new physics, vacuum stability during inflation requires $\xi \ge 0$

Time-Dependent Hubble Rate

- In real inflationary models, H depends on time:
 Affects decay rate Γ and volume of past light cone
- (Mantziris, Markkanen & AR, 2021):
 Consider three single-field inflation models
- Bubbles most likely produced during the last few e-foldings

Time-Dependent Hubble Rate

- In real inflationary models, H depends on time:
 Affects decay rate Γ and volume of past light cone
- (Mantziris, Markkanen & AR, 2021):
 Consider three single-field inflation models
- Bubbles most likely produced during the last few e-foldings
- Stability requires

 $\xi \gtrsim 0.06$ in all three model

Quantum Tunneling

Hawking-Moss instanton

Quantum Tunneling

- Multiple coexisting solutions (AR&Stopyra, PRD 2018)
- Quantum (Coleman-de Luccia) tunnelling rate $\Gamma \sim e^{-B}$ nearly constant until Hawking-Moss starts to dominate \Rightarrow Always the relevant process for the constraint

Multiple Solutions

(AR&Stopyra, PRD 2018)

End of Inflation

► Reheating: Inflation $(R = 12H^2) \rightarrow \text{radiation} (R = 0)$ $2m^2\chi^2 - 2m^2\chi^2 - 2m^2\chi^2$

$$R(t) = \frac{2m \chi}{M_{\rm Pl}^2}$$

- Effective Higgs mass $m_{eff}^2 = m_{H}^2 + \xi R$ oscillates:
 - Parametric resonance ("Geometric preheating") (Bassett&Liberati 1998, Tsujikawa et al. 1999)
- *R* goes negative when $\chi \sim 0$
 - If $\xi > 0$, Higgs becomes tachyonic (HMNR 2015)
 - Exponential amplification

$$\left\langle \phi^2 \right\rangle_H \sim \frac{2}{3\sqrt{3}\xi} \left(\frac{H}{2\pi}\right)^2 e^{\frac{2\sqrt{\xi}\chi_{\rm ini}}{M_{\rm Pl}}} \sim \frac{H^2}{\xi} e^{2\sqrt{\xi}}$$

Vacuum Decay at the End of Inflation

Lattice Simulations

Figueroa, AR & Torrenti, 2018

•
$$V(\chi) = \frac{1}{2}m^2\chi^2$$
, $M_{\rm top} = 172.12 \,\,{\rm GeV}$

Instability Time

- Stability depends on top mass and speed of reheating
- $M_{top} = 173.34 \text{ GeV}$: vacuum survival until t = 100/mrequires $\xi \leq 9$
- Li et al (arXiv:2206.05926): Much stronger bound ξ ≤ 2 in Starobinsky inflation

Figueroa, AR & Torrenti, 2018

Constraints on ξ

• Minimal scenario: Standard Model + $m^2 \chi^2$ chaotic inflation, no direct coupling to inflaton

$0.06 \lesssim \xi \lesssim 9$

▶ 15 orders of magnitude stronger than the LHC bound

 $|\xi| \lesssim 2.6 \times 10^{15}$

- Caveats:
 - Assumes no direct coupling to inflaton (see, e.g., Ema et al. 2016, 2017)
 - Would still need $|\xi| \lesssim O(1)$
 - Assumes no new physics
 - Could stabilise potential altogether, or destabilise further
 - Assumes high scale inflation $H \gtrsim 10^9 \text{ GeV}$