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 All renormalisable terms
allowed by symmetries
in Minkowski space

 19 parameters –
all have been measured

 Can be extrapolated all 
the way to Planck scale

 For central experimental
values 𝑀H = 125.18 GeV
and 𝑀t = 173.1 GeV

◦ 𝜆 becomes negative at 𝜇Λ ≈ 9.9 × 109 GeV

◦ Minimum value 𝜆min ≈ −0.015 at 𝜇min ≈ 2.8 × 1017 GeV
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(Buttazzo et al 2013)



 Renormalisation group improved Higgs effective potential
𝑉 𝜙 ≈ 𝜆 𝑔𝜙 𝜙4

 Becomes negative
at 𝜙 > 𝜙𝑐 ≈ 1010GeV

 True vacuum at 
Planck scale?

 Current vacuum 
metastable against
quantum tunnelling

 Barrier at 
𝜙bar ≈ 4.6 × 1010 GeV, 

height 𝑉 𝜙bar ≈ 4.3 × 109 GeV
4

(Based on a 3-loop calculation by Bednyakov et al. 2015)
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 Bubble nucleation rate: 

◦ Γ ∼ 𝑒−𝐵, where 

◦ 𝐵 = “bounce” action (Coleman 1977)

◦ Solution of Euclidean equation of motion

 Constant 𝜆 < 0: (Fubini 1976)

𝜙 𝑟 =
2

|𝜆|

2𝑅

𝑟2+𝑅2

 Action 𝐵 =
8𝜋2

3 𝜆

 When 𝜆 runs, 𝐵 ≈
8𝜋2

3 𝜆min
≈ 1800

(depending on Higgs and top masses)

⇒ extremely slow rate Γ ∼ 𝜇min
4 𝑒−𝐵 - but is it slow enough?
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 Assume: Bubbles grow at the speed of light and destroy everything they hit
(see, however, De Luca, Kehagias & Riotto arXiv:2205.10240)
 There cannot have been any bubbles in our past light cone
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 Probability of no bubble in the past light cone:

𝑃 𝒩 = 0 = e− 𝒩 ,

where 𝒩 is the expected number of bubbles (𝑑𝜂 = 𝑑𝑡/𝑎),

𝒩 =
4𝜋

3
න
𝜂0

𝑑𝜂 𝑎 𝜂 4 𝜂0 − 𝜂 3Γ 𝜂

 Therefore, we must have 𝒩 ≲ 1

 Integrate over the whole history of the Universe:
inflation, reheating, hot Big Bang, and late Universe

 (For anthropists: 
𝑑 𝒩

𝑑𝑡
Δ𝑡 ≲ 1)

 ((For quantum immortalists: 
You may go and make a coffee. There is nothing for you in this talk.))
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 Number of bubbles in past lightcone: 𝒩 ≈ 0.125Γ/𝐻0
4

 If 𝒩 ≪ 1, no contradiction Metastability
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(Buttazzo et al. 2013)



 Curved spacetime: 
ℒ = ℒSM + 𝜉𝑅𝜙†𝜙
(Chernikov&Tagirov 1968)

 Symmetries allow one more 
renormalisable term: 
Higgs-curvature coupling 𝜉

 Required for renormalisability,
runs with energy –
Cannot be set to zero!

 Last unknown parameter 
in the Standard Model
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𝑔′2 −

9
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 Becomes negative 
if 𝜉EW = 0

 Conformal value 
𝜉 = 1/6
RG invariant at 1 loop
but not beyond 
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 Curved spacetime: 

ℒ = ℒSM + 𝜉𝑅𝜙†𝜙

 Ricci scalar 𝑅 very small today
 Difficult to measure 𝜉

 Colliders: Suppresses Higgs couplings (Atkins&Calmet 2012)

◦ LHC Bound 𝜉 ≲ 2.6 × 1015

◦ Future (?) ILC: 𝜉 ≲ 4 × 1014

 In contrast, 𝑅 was high in the early Universe
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 Find the gravitational
instanton by solving 
field + Einstein equations
numerically 
(AR&Stopyra 2016)
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 High temperature:
Higher bubble nucleation
rate (Espinosa et al 2008)

 If reheat temperature 𝑇RH
is high enough, this
dominates over late-time
contribution

 Top mass bound
(Delle Rose et al 2016):
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(Markkanen, AR, Stopyra, 2018)



 Inflation: 𝐻 ≲ 9 × 1013 GeV (Planck+BICEP2 2015)

 Assume light Higgs, no direct coupling to inflaton

 Equilibrium field distribution (Starobinsky&Yokoyama 1994)

𝑃 𝜙 ∝ exp −
8𝜋2

3𝐻4
𝑉 𝜙

 Tree-level potential

𝑉 𝜙 = 𝜆 𝜙2 − 𝑣2
2

 Nearly scale-invariant
fluctuations with

amplitude 𝜙 ∼ 𝜆−1/4𝐻
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Higgs fluctuations



 Equilibrium 𝑃 𝜙 ∝ exp −
8𝜋2

3𝐻4 𝑉 𝜙

 Running 𝜆:
Fluctuations take the
Higgs over the barrier
if 𝐻 ≳ 𝜙bar ≈ 1010GeV
(Espinosa et al. 2008; 
Lebedev&Westphal 2013;
Kobakhidze&Spencer-Smith 2013;
Fairbairn&Hogan 2014;
Hook et al. 2014)

 Does this imply an upper limit on
the scale of inflation
𝐻 ≲ 1010GeV ?
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Higgs fluctuations



 Effective Higgs mass term 𝑚eff
2 (𝑡) = 𝑚H

2 + 𝜉𝑅(𝑡)

 Ricci scalar in FRW spacetime: 

𝑅 = 6
ሶ𝑎2

𝑎2
+

ሷ𝑎

𝑎
= 3 1 − 3𝑤 𝐻2

◦ Radiation dominated 𝑤 = 1/3 𝑅 = 0

◦ Matter dominated 𝑤 = 0 𝑅 = 3𝐻2

◦ Inflation / de Sitter 𝑤 = −1 𝑅 = 12𝐻2
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 Inflation: Constant 𝑅 = 12𝐻2

 Effective mass term

𝑚eff
2 = 𝑚H

2 + 𝜉𝑅 = 𝑚H
2 + 12𝜉𝐻2

 Tree level: (Espinosa et al 2008)

◦ 𝜉 > 0: Increases barrier height
Makes the low-energy vacuum more stable

◦ 𝜉 < 0: Decreases barrier height
Makes the low energy vacuum less stable

 𝐻 contributes to loop corrections:
For 𝐻 ≫ 𝜙, the RGI scale is 𝜇 ≈ 𝐻

𝑉 𝜙 ≈ 𝜆 𝐻 𝜙4

  No barrier if 𝐻 ≳ 1010 GeV (HMNR 2014)
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 One-loop computation in de Sitter:
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(MNRS 2018)



 One-loop computation for 𝜉 = 0
(in units of 𝜇inst ≈ 6.6 × 109 GeV)

 When spacetime curvature is high,
the barrier disappears (MNRS 2018)
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(MNRS 2018)
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𝑉
𝜙

𝜙

𝜉 ≳ 0.06

𝑉max ∼
36𝜉2𝐻4

|𝜆|

𝜉 ≲ 0.02

Minkowski



 If 𝐻 ≳ 𝜇inst = 6.6 × 109GeV and there is no new physics,
vacuum stability during inflation requires 𝜉 ≳ 0
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(MNRS 2018)



 In real inflationary models, 𝐻 depends on time:
Affects decay rate Γ and volume of past light cone

 (Mantziris, Markkanen & AR, 2021):
Consider three single-field inflation models

 Bubbles most likely produced
during the last few e-foldings
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 In real inflationary models, 𝐻 depends on time:
Affects decay rate Γ and volume of past light cone

 (Mantziris, Markkanen & AR, 2021):
Consider three single-field inflation models

 Bubbles most likely produced
during the last few e-foldings

 Stability requires 
𝜉 ≳ 0.06

in all three model
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Hawking-Moss instanton Coleman-de Luccia instanton



Toy model Standard Model

 Multiple coexisting solutions (AR&Stopyra, PRD 2018)

 Quantum (Coleman-de Luccia) tunnelling rate Γ ∼ 𝑒−𝐵 nearly constant until 
Hawking-Moss starts to dominate  Always the relevant process for the constraint
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(AR&Stopyra, PRD 2018)



 Reheating: Inflation (𝑅 = 12𝐻2) → radiation (𝑅 = 0)

𝑅 𝑡 =
2𝑚2𝜒2 − ሶ𝜒2

𝑀Pl
2

 Effective Higgs mass 𝑚eff
2 = 𝑚H

2 + 𝜉𝑅 oscillates:

◦ Parametric resonance (“Geometric preheating”) 
(Bassett&Liberati 1998, Tsujikawa et al. 1999)

 𝑅 goes negative when 𝜒 ∼ 0

◦ If 𝜉 > 0, Higgs becomes tachyonic (HMNR 2015)

◦ Exponential amplification

𝜙2
𝐻
∼

2

3 3𝜉

𝐻

2𝜋

2

𝑒
2 𝜉𝜒ini
𝑀Pl ∼

𝐻2

𝜉
𝑒2 𝜉
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(HMNR 2015)

Not enough
growth

Field backreaction

Becomes
nonlinear

Instability! ?
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Figueroa, AR & Torrenti, 2018

true
vacuum

 𝑉 𝜒 =
1

2
𝑚2𝜒2, 𝑀top = 172.12 GeV



 Stability depends on top mass and 
speed of reheating

 𝑀top = 173.34 GeV:

vacuum survival until 𝑡 = 100/𝑚
requires 𝜉 ≲ 9

 Li et al (arXiv:2206.05926):
Much stronger bound 𝜉 ≲ 2
in Starobinsky inflation
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Figueroa, AR & Torrenti, 2018



 Minimal scenario:
Standard Model + 𝑚2𝜒2 chaotic inflation,
no direct coupling to inflaton

0.06 ≲ 𝜉 ≲ 9
 15 orders of magnitude stronger than the LHC bound

𝜉 ≲ 2.6 × 1015

 Caveats:

◦ Assumes no direct coupling to inflaton (see, e.g., Ema et al. 2016, 2017)
– Would still need |𝜉| ≲ 𝑂(1)

◦ Assumes no new physics 
– Could stabilise potential altogether, or destabilise further

◦ Assumes high scale inflation 𝐻 ≳ 109 GeV
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