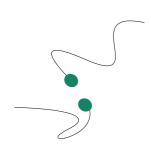


Probing the scale of grand unification

with gravitational waves

Valerie Domcke CERN/EPFL

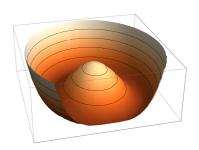
Online workshop Physics of the Early Universe June 16 2022


based on

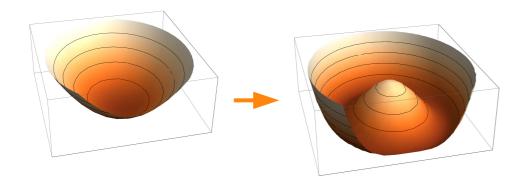
1202.6679, 1203.0285, 1912.03695, 2009.10649, 2107.04578

w. W. Buchmüller, H. Murayama and K. Schmitz

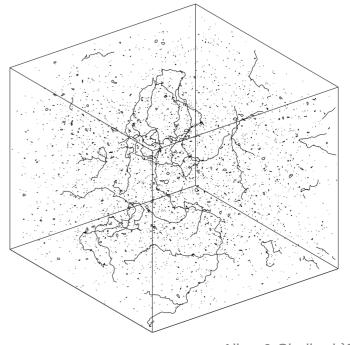
Outline


• Metastable cosmic strings

Gravitational wave signal



• [Spontaneous U(1)_{B-L} breaking as the origin of the hot early Universe]



cosmic strings in a nutshell

- one-dimensional topological defects formed in an early Universe phase transition
- symmetry breaking pattern $G \to H$ produces cosmic strings iff $\Pi_1(G/H) \neq \mathbb{1}$

- form cosmic string network, evolves through
 - string (self-)intersection & loop formation
 - · emission of particles and gravitational waves

Allen & Shellard `90

metastable cosmic strings

consider
$$SO(10) \rightarrow G_{SM} \times U(1)_{B-L} \rightarrow G_{SM}$$

 $\Pi_1(SO(10)/G_{SM}) = 1$

Vilenkin `82; Leblond, Shlaer, Siemens `09; Monin, Voloshin `08/09; Dror et al `19

$$\Pi_1(G_{\mathrm{SM}} \times U(1)/G_{\mathrm{SM}}) = \Pi_1(U(1)) \neq \mathbb{1}$$

cosmic strings no cosmic strings

metastable cosmic strings

consider $SO(10) \rightarrow G_{SM} \times U(1)_{B-L} \rightarrow G_{SM}$

Vilenkin `82; Leblond, Shlaer, Siemens `09; Monin, Voloshin `08/09; Dror et al `19

$$\Pi_1(G_{\mathrm{SM}} \times U(1)/G_{\mathrm{SM}}) = \Pi_1(U(1)) \neq 1 \quad \longrightarrow$$

$$\Pi_1(SO(10)/G_{SM}) = \mathbb{1}$$

cosmic strings no cosmic strings

resolution: no topologically stable cosmic strings

$$SO(10) \rightarrow G_{SM} \times U(1)_{B-L}$$

generates monopoles

metastable string & monopole network

$$G_{SM} \times U(1)_{B-L} \to G_{SM}$$

generates cosmic strings,

metastable cosmic strings

consider
$$SO(10) \rightarrow G_{SM} \times U(1)_{B-L} \rightarrow G_{SM}$$

Vilenkin `82; Leblond, Shlaer, Siemens `09; Monin, Voloshin `08/09; Dror et al `19

$$\Pi_1(G_{\mathrm{SM}} \times U(1)/G_{\mathrm{SM}}) = \Pi_1(U(1)) \neq 1$$

$$\Pi_1(SO(10)/G_{SM}) = \mathbb{1}$$

cosmic strings no cosmic strings

resolution: no topologically stable cosmic strings

$$SO(10) \rightarrow G_{SM} \times U(1)_{B-L}$$

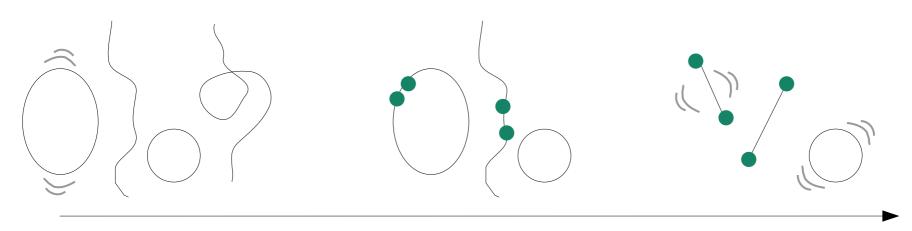
cosmic inflation

$$G_{SM} \times U(1)_{B-L} \to G_{SM}$$

$$\Gamma_d \sim \mu \exp(-\pi \kappa^2), \quad \kappa^2 = m^2/\mu$$

generates monopoles

dilutes monopoles

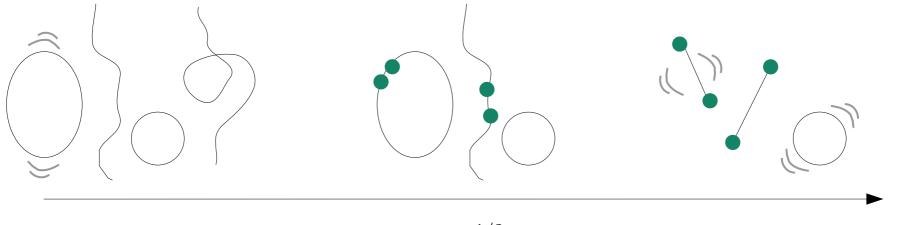

generates cosmic strings,

metastable string & monopole network

decay via nucleation of monopoles

$$\mu \sim v_{B-L}^2$$
 string tension $m \sim v_{GUT}$ monopole mass

dynamics of metastable CS network


scaling regime (long strings & loops)

 $t_s = 1/\Gamma_d^{1/2}$

segments & loops

[see also Leblond, Shlaer, Simons `09]

dynamics of metastable CS network

scaling regime (long strings & loops)

$$t_s = 1/\Gamma_d^{1/2}$$

segments & loops

[see also Leblond, Shlaer, Simons `09]

number densities for long strings, loops and segments from kinetic equations:

$$\partial_t n(\ell, t) = \underline{S(\ell, t)} - \partial_\ell [\underline{u(\ell, t)} \ n(\ell, t)] - [3H(t) + \Gamma_d \ell] n(\ell, t) ,$$

source term

length change per unit time

initial conditions: numerical simulations for scaling regime, matching conditions.

An example: loops

Buchmüller, VD, Schmitz `21

$$\partial_t n(\ell, t) = S(\ell, t) - \partial_\ell \left[u(\ell, t) \ n(\ell, t) \right] - \left[3H(t) + \Gamma_d \ell \right] n(\ell, t) ,$$

$$u(\ell, t) = -\Gamma G \mu \rightarrow \bar{\ell}(t') = \ell + \Gamma G \mu (t - t')$$

energy loss due to GW emission

$$S(\ell, t) = \frac{B}{\alpha^{3/2} t^4} \delta(\ell - \alpha t) \theta(t_s - t)$$

loop production function

 Γ, B, α from numerical simulations

Blanco-Pillado, Olum, Shlaer '14

solution in radiation background:

$$t < t_s:$$

$$\stackrel{\circ}{n}(\ell, t) \simeq \frac{B}{t^{3/2} (\ell + \Gamma G \mu t)^{5/2}} \Theta (\alpha t - \ell)$$

$$t > t_s: \qquad \qquad \mathring{n}\left(\ell, t\right) = \frac{B}{t^{3/2} \left(\ell + \Gamma G \mu t\right)^{5/2}} e^{-\Gamma_d \left[\ell (t - t_s) + 1/2 \Gamma G \mu (t - t_s)^2\right]} \Theta\left(\alpha t_s - \bar{\ell}\left(t_s\right)\right)$$

Another example: segments from loops

Buchmüller, VD, Schmitz `21

$$\partial_t n(\ell, t) = S(\ell, t) - \partial_\ell \left[u(\ell, t) \ n(\ell, t) \right] - \left[3H(t) + \Gamma_d \ell \right] n(\ell, t) ,$$

$$u(\ell, t) = -\tilde{\Gamma}G\mu \rightarrow \bar{\ell}(t') = \ell + \tilde{\Gamma}G\mu(t - t')$$

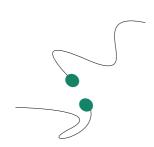
energy loss due to GW emission

$$S(\ell,t) = +2 \Gamma_d \int_{\ell}^{\infty} d\ell' \, \tilde{n}_{>}^{(l)} \left(\ell',t\right) + \Gamma_d \, \ell \, \overset{\circ}{n}_{>} \left(\ell,t\right)$$

segments from loop segments and from full loops

$$\tilde{\Gamma} = \Gamma$$
 (simulations needed!)

solution in radiation background:

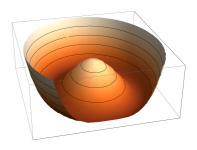

$$t < t_s:$$
 $\tilde{n}^{(l)}(\ell, t) \simeq 0$

$$t > t_s:$$

$$\tilde{n}^{(l)}(\ell, t) \simeq \Gamma_d \left[\ell (t - t_s) + \frac{1}{2} \Gamma G \mu (t - t_s)^2 \right] \hat{n}(\ell, t)$$

(similar procedure for segments from long strings)

Outline


Metastable cosmic strings

Gravitational wave signal

• [Spontaneous U(1)_{B-L} breaking as the origin of the hot early Universe]

gravitational wave signal - SGWB

see eg. Auclair, Blanco-Pillado, Figueroa et al `19

gravitational wave emission from integration over loop distribution function:

$$\Omega_{\rm GW}(f) = \frac{8\pi f (G\mu)^2}{3H_0^2} \sum_{q=1}^{\infty} C_q(f) P_q$$

$$C_q(f) = \frac{2q}{f^2} \int_0^{z_{\text{max}}} dz \frac{n(\ell(z), t(z))}{H(z)(1+z)^6}$$

GW power spectrum of a single loop $P_q = \Gamma/(\zeta(4/3)q^{4/3})$ # of loops emitting GWs observed at frequency f today

of loops with length ℓ at time t

with $\ell = 2q/((1+z)f)$

cosmological history

gravitational wave signal - SGWB

see eg. Auclair, Blanco-Pillado, Figueroa et al `19

gravitational wave emission from integration over loop distribution function:

$$\Omega_{\text{GW}}(f) = \frac{8\pi f (G\mu)^2}{3H_0^2} \sum_{q=1}^{\infty} C_q(f) P_q$$

$$C_{-}(f) = \frac{2q}{3} \int_{-\infty}^{z_{\text{max}}} dz \frac{n(\ell(z), t(z))}{2} dz$$

$$C_q(f) = \frac{2q}{f^2} \int_0^{z_{\text{max}}} dz \underbrace{n(\ell(z), t(z))}_{H(z)(1+z)^6}$$

GW power spectrum of a single loop

$$P_q = \Gamma/(\zeta(4/3)q^{4/3})$$

of loops emitting GWs observed at frequency *f* today

of loops with length ℓ at time t

with
$$\ell = 2q/((1+z)f)$$

cosmological history

$$n(\ell, z) = n(\ell, z)_{\kappa \to \infty} \times e^{-\Gamma_d [\ell(t - t_s) + 1/2\Gamma G\mu(t - t_s)^2]} \times \Theta(\alpha t_s - \ell(t_s))$$

finite CS life time

number density for stable strings

$$n_r(\ell, t) = 0.18 \ t^{-3/2} (\ell + 50G\mu t)^{-5/2}$$

Blanco-Pillado, Olum, Shlaer '14

decay due to monopole production and GW emission

loop production only in scaling regime

Buchmüller, VD, Schmitz `21

gravitational wave signal - SGWB

see eg. Auclair, Blanco-Pillado, Figueroa et al `19

gravitational wave emission from integration over loop distribution function:

$$\Omega_{\rm GW}(f) = \frac{8\pi f (G\mu)^2}{3H_0^2} \sum_{q=1}^{\infty} C_q(f) P_q$$

$$C_q(f) = \frac{2q}{f^2} \int_0^{z_{\text{max}}} dz \frac{n(\ell(z), t(z))}{H(z)(1+z)^6}$$

GW power spectrum of a single loop

$$P_q = \Gamma/(\zeta(4/3)q^{4/3})$$

of loops emitting GWs observed at frequency *f* today

of loops with length ℓ at time t

with
$$\ell = 2q/((1+z)f)$$

cosmological history

analogous for contribution from segments

$$n(\ell, z) = n(\ell, z)_{\kappa \to \infty} \times e^{-\Gamma_d[\ell(t - t_s) + 1/2\Gamma G\mu(t - t_s)^2]} \times \Theta(\alpha t_s - \ell(t_s))$$

finite CS life time

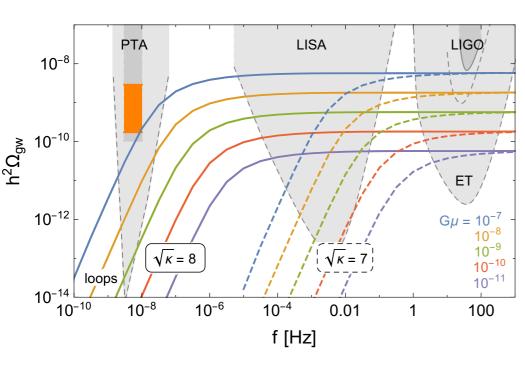
number density for stable strings

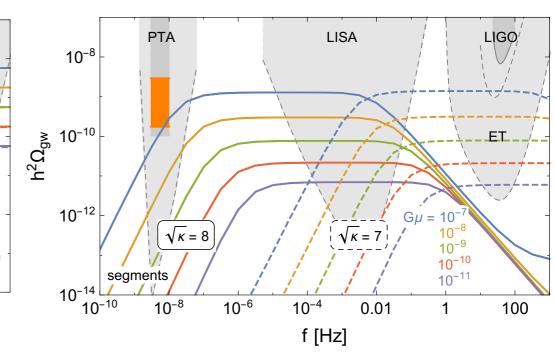
$$n_r(\ell, t) = 0.18 \ t^{-3/2} (\ell + 50G\mu t)^{-5/2}$$

Blanco-Pillado, Olum, Shlaer '14

decay due to monopole production and GW emission

loop production only in scaling regime

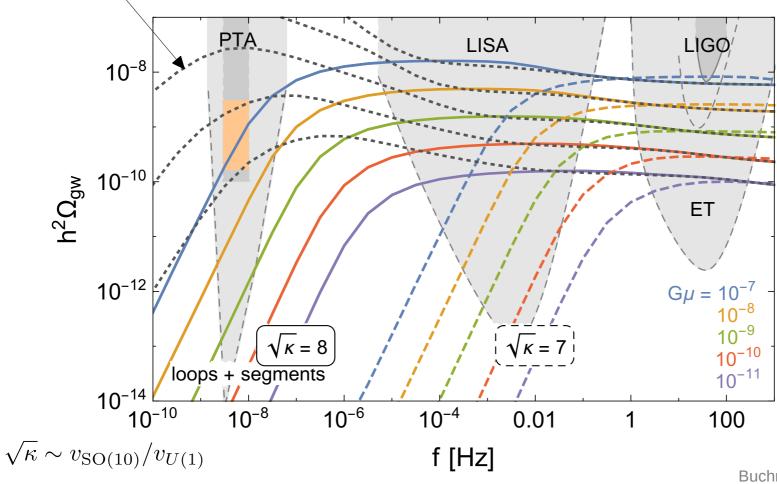

Buchmüller, VD, Schmitz `21


GWs from loops and segments

assuming radiation domination

Buchmüller, VD, Schmitz `21

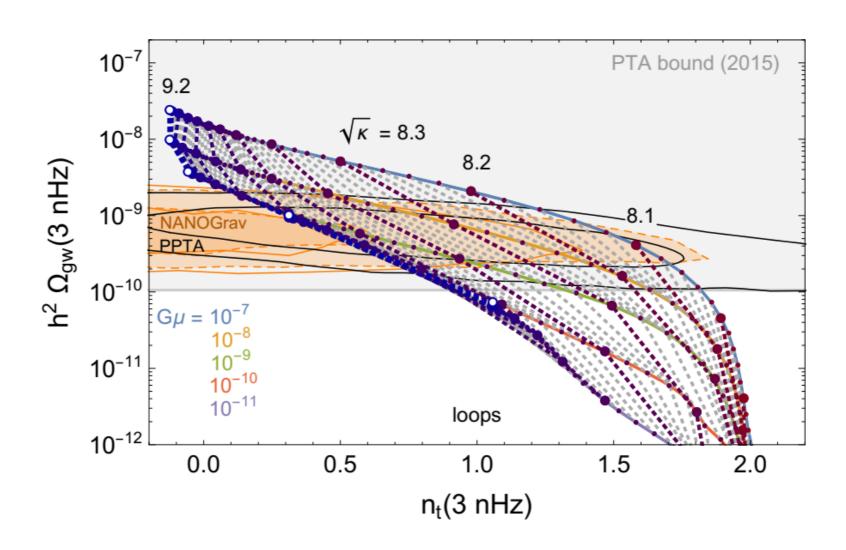
$$\sqrt{\kappa} \sim v_{\rm SO(10)}/v_{U(1)}$$


- plateau as for stable strings
- suppression at small frequencies due to finite CS life time
- dominant contribution

- only if no unconfined flux
- cut-off at high frequencies due to regularization of total emitted GW power

gravitational wave spectrum

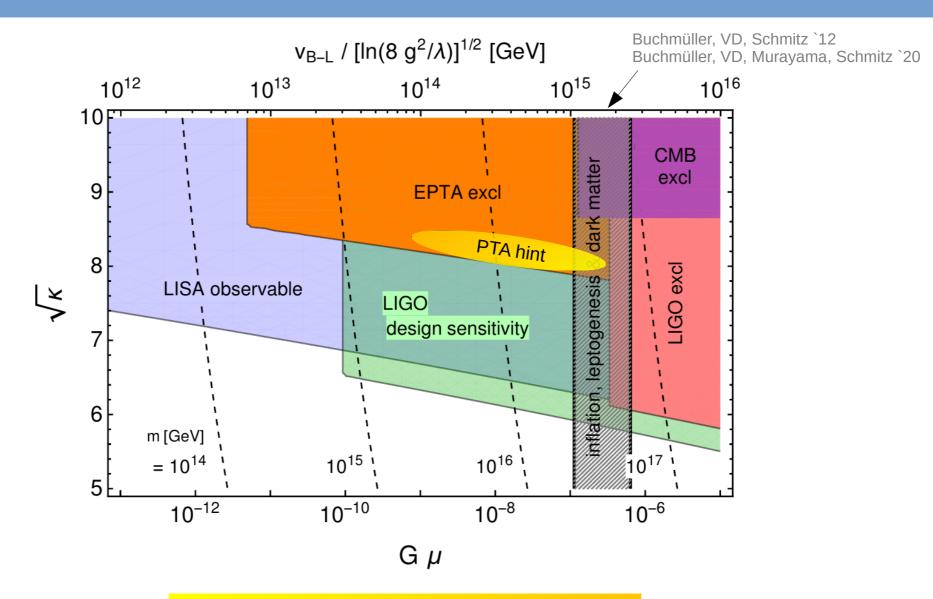
stable cosmic strings (highly constrained by PTA)


metastable cosmic strings: discovery space for LISA, LIGO & beyond

Buchmüller, VD, Schmitz `21

 $SO(10) \to G_{\rm SM} \times U(1)_{B-L} \to G_{\rm SM}$ with $v_{B-L} \lesssim v_{GUT}$ can be tested with GWs!

metastable cosmic strings at PTAs?



parameter space of metastable strings

metastable GUT- scale strings are testable

parameter space of metastable strings

metastable GUT- scale strings are testable

conclusions & outlook

- Metastable cosmic strings are a fairly generic byproduct of GUTs with large stochastic GW signals possible at PTAs, LIGO or LISA
 - → testable with upcoming GW detectors
- Excess noise observed in NANOGrav and PPTA data may be the first glimpse at a SGWB?
- Cosmological B-L breaking can link hybrid inflation, reheating, leptogenesis and dark matter production at GUT scale – testable!

conclusions & outlook

- Metastable cosmic strings are a fairly generic byproduct of GUTs with large stochastic GW signals possible at PTAs, LIGO or LISA
 - → testable with upcoming GW detectors
- Excess noise observed in NANOGrav and PPTA data may be the first glimpse at a SGWB?
- Cosmological B-L breaking can link hybrid inflation, reheating, leptogenesis and dark matter production at GUT scale – testable!

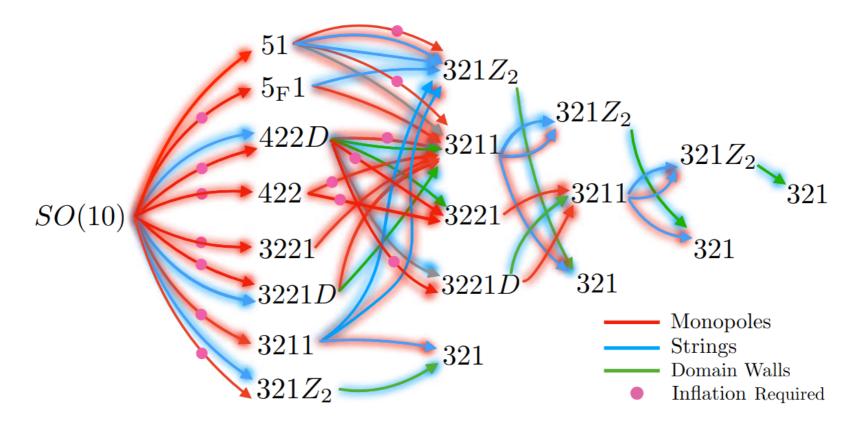
Questions ?

backup slides

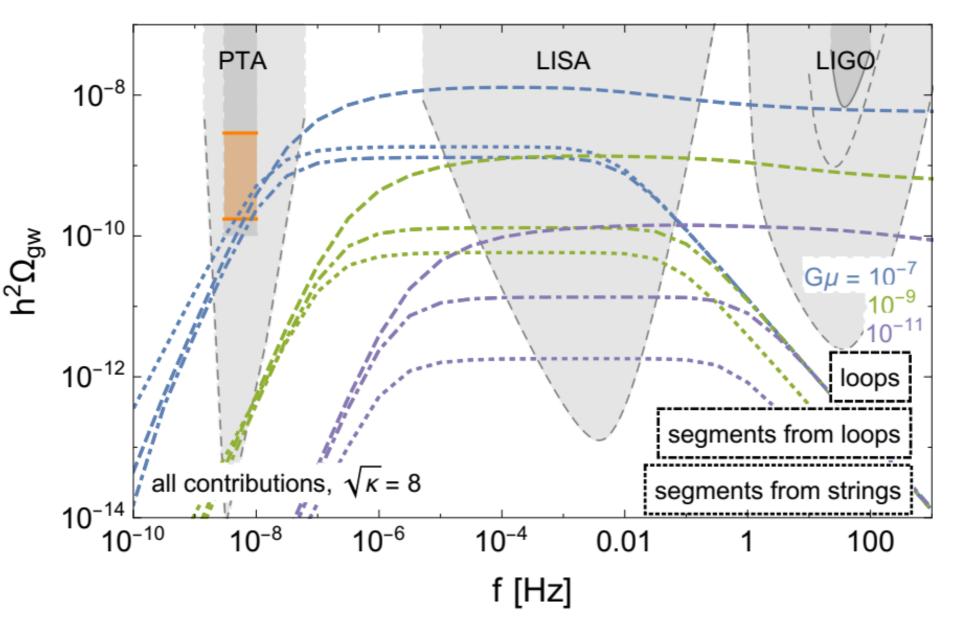
examples of symmetry breaking patterns

$$51 = SU(5) \times U(1)_{X}/\mathbb{Z}_{5} ,$$

$$5_{F}1 = SU(5)_{\text{flipped}} \times U(1)_{\text{flipped}}/\mathbb{Z}_{5} ,$$

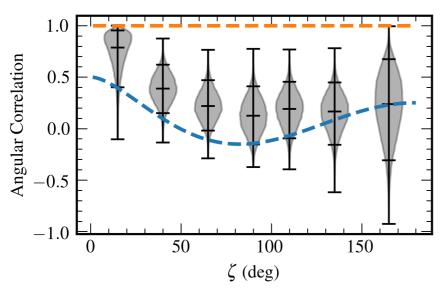

$$422 = SU(4)_{c} \times SU(2)_{L} \times SU(2)_{R}/\mathbb{Z}_{2} ,$$

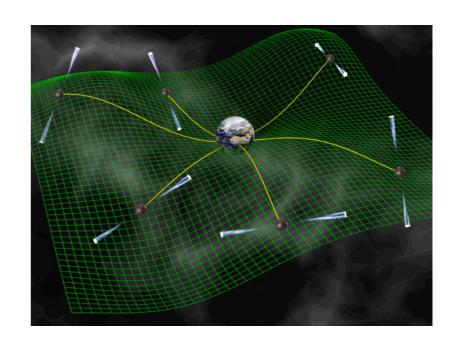
$$3221 = SU(3)_{c} \times SU(2)_{L} \times SU(2)_{R} \times U(1)_{B-L}/\mathbb{Z}_{6} ,$$


$$3211 = SU(3)_{c} \times SU(2)_{L} \times U(1)_{Y} \times U(1)_{X}/\mathbb{Z}_{6} ,$$

$$321 = SU(3)_{c} \times SU(2)_{L} \times U(1)_{Y}/\mathbb{Z}_{6}.$$
(20)

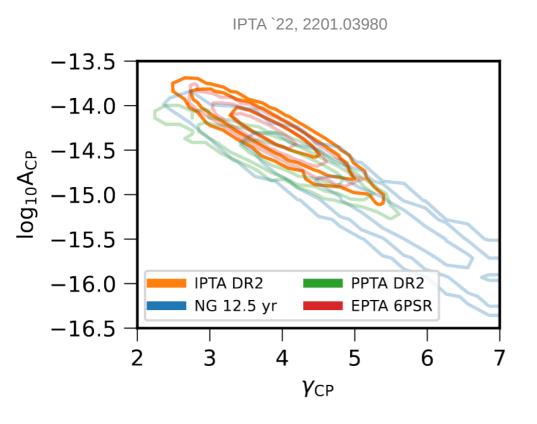
from Dunsky, Ghoshal, Murayama, Sakakihara, White `21

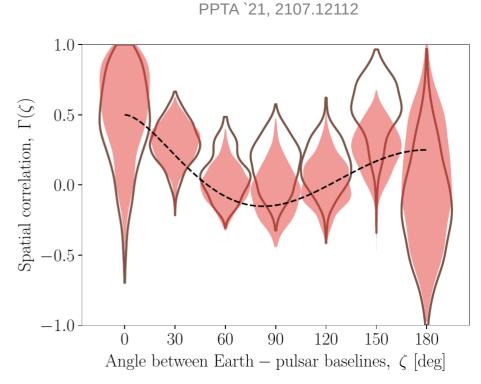

GWs from segments


NANOGrav: A first glimpse of the SGWB?

Pulsar timing array NANOGrav, Sept 2020:

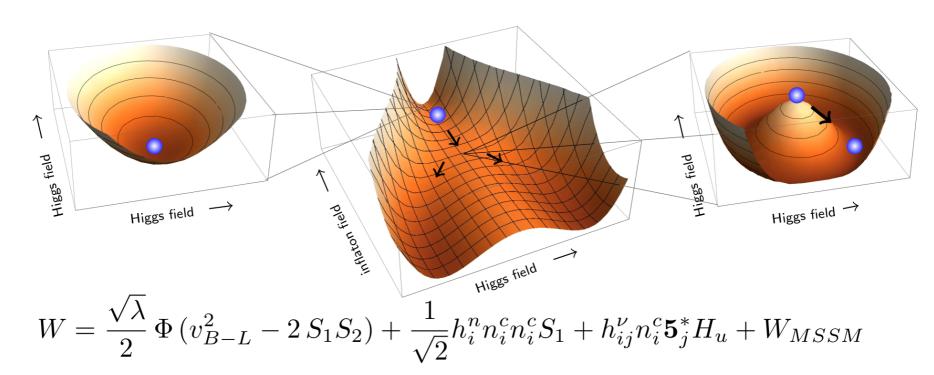
"Our analysis finds strong evidence of a stochastic process, modeled as a power-law, with common amplitude and spectral slope across pulsars."




NANOGrav collaboration `20

"However, we find no statistically significant evidence that this process has quadrupolar spatial correlations, which we would consider necessary to claim a GWB detection consistent with General Relativity."

PPTA, EPTA and IPTA results


amplitude and spectral tilt compatitive with NANOGrav

no significant detection of quandropolar spatial correlation

Maybe. Stay tuned for more data!

Cosmological B-L breaking

extend SM by gauging $U(1)_{B-L}$ & adding 3 RH neutrinos:

Before

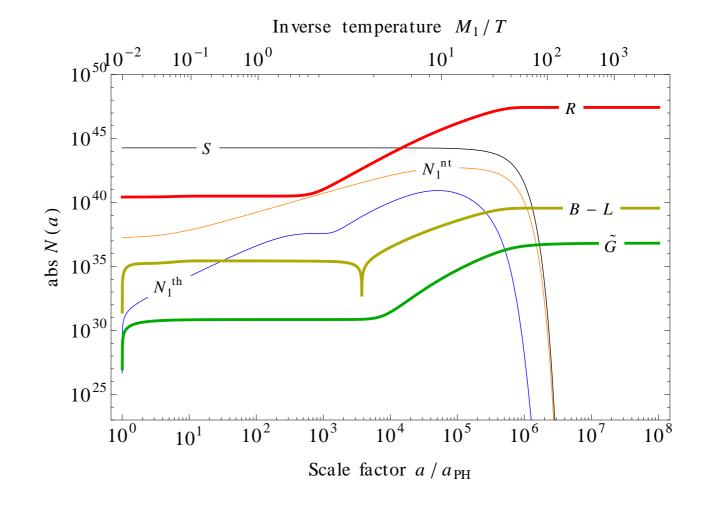
hybrid inflation

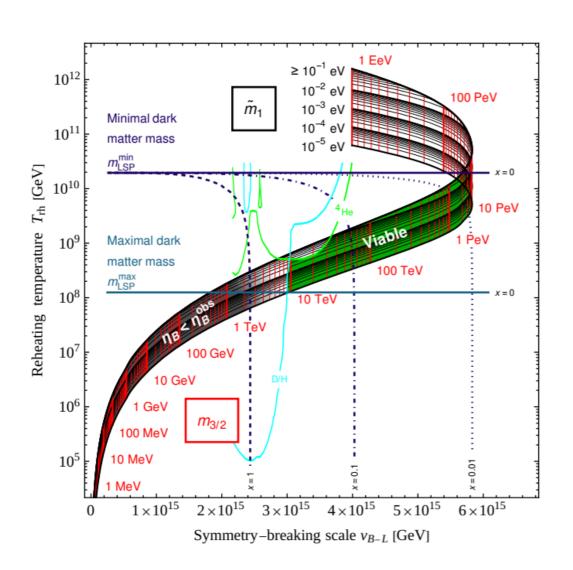
[Dvali et al. '94]

Phase transition

- tachyonic preheating
- cosmic strings

After


- reheating
- leptogenesis
- dark matter


cosmological B-L breaking

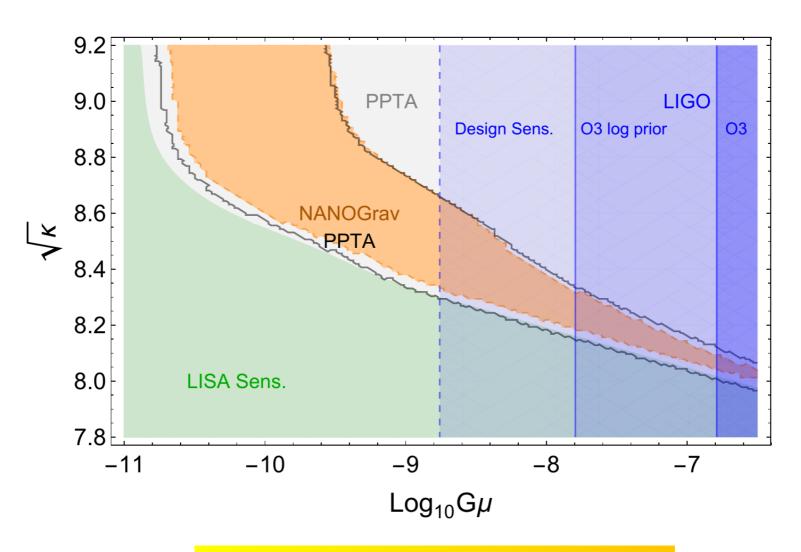
Buchmüller, VD, Schmitz `12, Buchmüller, VD, Kamada, Schmitz `13+`14

parameter space

Buchmüller, VD, Schmitz `12, Buchmüller, VD, Kamada, Schmitz `13+`14 Buchmüller, VD, Murayama, Schmitz `19

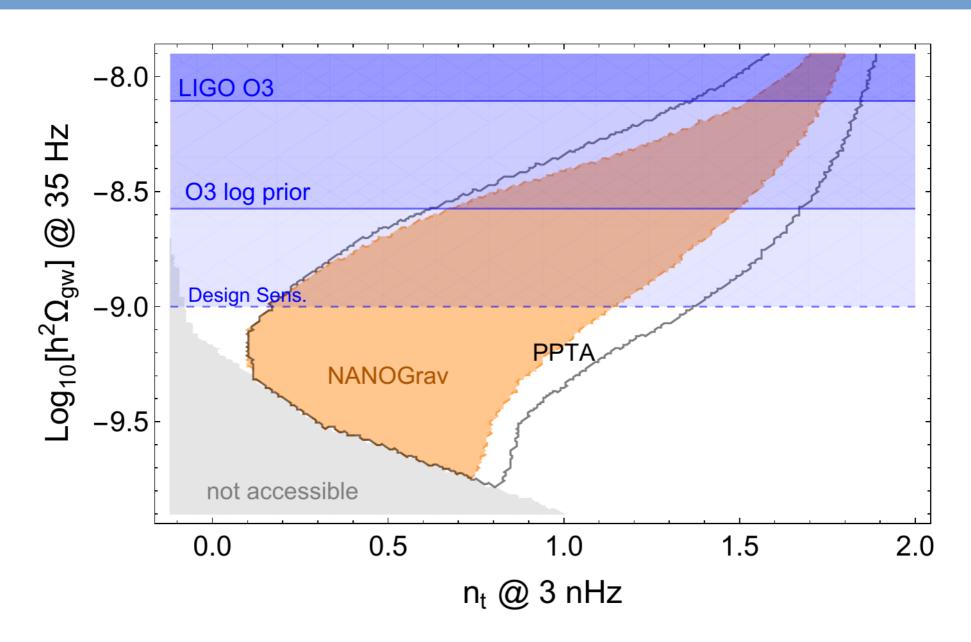
parameters:

 $v_{B-L}, T_{rh}, \widetilde{m}_1, m_{3/2}, m_{LSP}$


observables:

 $A_s, n_s, \Omega_{DM}, \eta_B$

viable parameter space well constrained, in particular B-L breaking scale \sim O(1) x 10¹⁵ GeV


metastable cosmic strings

prospects for GW searches

PTA hint will be probed with interferometers

Prospects

