COSMIC STRINGS AND BLACK HOLES

A. Vilenkin

Cosmic strings and black holes

String loops can be captured by black holes and can interact with them in interesting ways.

Work with:

Yuri Levin, Andrei Gruzinov , Hengrui Xing, Heling Deng

Strings could be formed at a symmetry breaking phase transition in the early universe.

Nielsen & Olesen (1)

Nielsen & Olesen (1973) Kibble (1976)

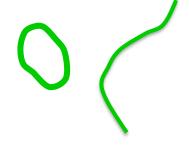
Predicted in a wide variety of particle physics models.

Can be either infinite or closed.

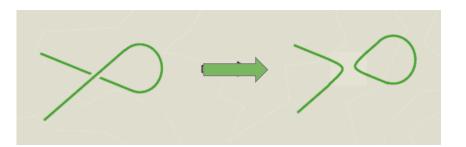
 μ – mass per unit length

$$10^{-34} \lesssim G\mu \lesssim 10^{-10}$$

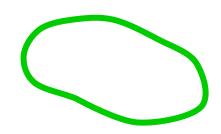
Tension = μ relativistic motion.



String reconnection



Loop dynamics



Nambu-Goto action: $S = -\mu \mathcal{A} \checkmark$

$$S = -\mu \mathcal{A}$$

Worldsheet area

Solution of NG eqs of motion:

$$\mathbf{x}(\sigma,t) = \frac{1}{2} \left[\mathbf{a}(\sigma-t) + \mathbf{b}(\sigma+t) \right]$$

$$0 < \sigma < L, \quad L = m/\mu$$
 Invariant length

Loops oscillate with a period T = L/2.

$$\mathbf{a'}^2 = \mathbf{b'}^2 = 1$$

Loop captured by a black hole

H. Xing, Y. Levin, A. Gruzinov, & A.V. (2020)

It is like a loop pinned at one point.

Boundary conditions: $\mathbf{x}(0,t) = \mathbf{x}(L,t) = 0$.

$$\mathbf{x}(\sigma, t) = \frac{1}{2} \left[\mathbf{a}(\sigma - t) - \mathbf{a}(-\sigma - t) \right]$$

The loop oscillates with a period 2L.

$$M \gg \mu L$$

$$R = GM$$

Loop captured by a black hole

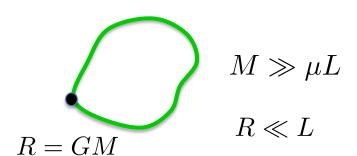
H. Xing, Y. Levin, A. Gruzinov, & A.V. (2020)

It is like a loop pinned at one point.

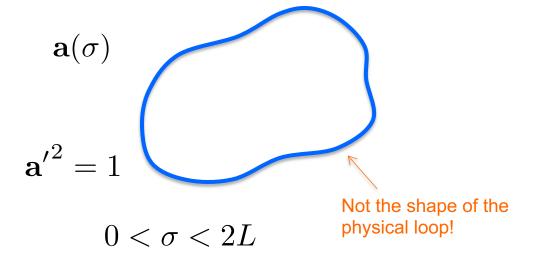
Boundary conditions: $\mathbf{x}(0,t) = \mathbf{x}(L,t) = 0$.

$$\mathbf{x}(\sigma, t) = \frac{1}{2} \left[\mathbf{a}(\sigma - t) - \mathbf{a}(-\sigma - t) \right]$$

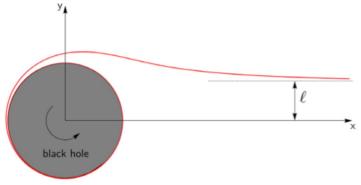
The loop oscillates with a period 2L.



Fixed auxiliary curve



Rotating black hole

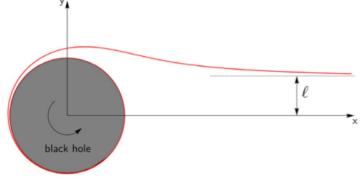


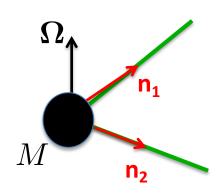
If the string is in the equatorial plane, $\ell = 4R^2\Omega$.

The torque is $Q=\mu\ell=4\mu R^2\Omega$.

Frolov et al (!989)

Rotating black hole





If the string is in the equatorial plane, $\ell=4R^2\Omega$.

The torque is $Q=\mu\ell=4\mu R^2\Omega$.

Frolov et al (!989)

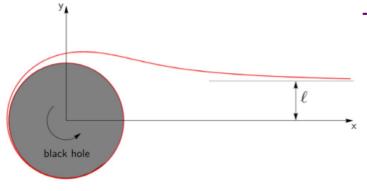
Equal and opposite torque acts on the string:

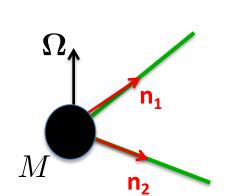
$$\mathbf{Q} = 4\mu R^2 [\mathbf{\Omega} - (\mathbf{n} \cdot \mathbf{\Omega})\mathbf{n} - \mathbf{n} \times \dot{\mathbf{n}}]$$

$$\omega = \mathbf{n} imes \dot{\mathbf{n}}$$
 – angular velocity of the string.

$$L \gg R$$
 quasistationary

Rotating black hole





If the string is in the equatorial plane, $\ell=4R^2\Omega$.

The torque is $Q=\mu\ell=4\mu R^2\Omega$.

Frolov et al (!989)

Equal and opposite torque acts on the string:

$$\mathbf{Q} = 4\mu R^2 [\mathbf{\Omega} - (\mathbf{n} \cdot \mathbf{\Omega})\mathbf{n} - \mathbf{n} \times \dot{\mathbf{n}}]$$

 $\omega = \mathbf{n} imes \dot{\mathbf{n}}$ – angular velocity of the string.

$$L \gg R$$
 quasistationary

Rate of energy change:

$$\dot{E} = \mathbf{Q}_1 \cdot \omega_1 + \mathbf{Q}_2 \cdot \omega_2$$

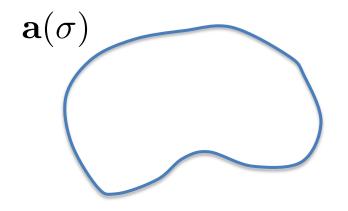
For
$$\Omega = 0$$
: $\dot{E} = -4\mu R^2(\omega_1^2 + \omega_2^2)$

The loop loses all its energy at $t \sim L^3/R^2 \gg L$.

Horizon friction

Loop orbit evolves slowly compared to the oscillation period.

This can be described as *slow deformation of the auxiliary curve*.

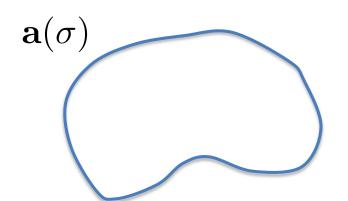


Averaged over oscillation period:

$$\mathbf{v}(\sigma) = \frac{8R^2}{L} [\mathbf{a}'(\sigma) \times \mathbf{\Omega} + \mathbf{a}''(\sigma)]$$

Loop orbit evolves slowly compared to the oscillation period.

This can be described as slow deformation of the auxiliary curve.



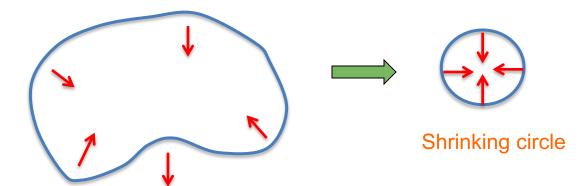
Averaged over oscillation period:

$$\mathbf{v}(\sigma) = \frac{8R^2}{L} [\mathbf{a}'(\sigma) \times \mathbf{\Omega} + \mathbf{a}''(\sigma)]$$

For
$$\mathbf{\Omega}=0$$
: $\mathbf{v}(\sigma)\propto\mathbf{a}''(\sigma)$

Curve shortening flow

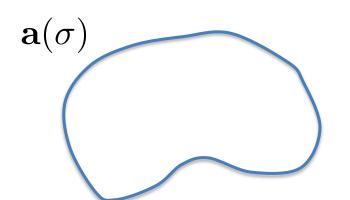
Gage (!984), Gage & Hamilton (1986), ...



In the end the loop is swallowed by the BH.

Loop orbit evolves slowly compared to the oscillation period.

This can be described as *slow deformation of the auxiliary curve*.



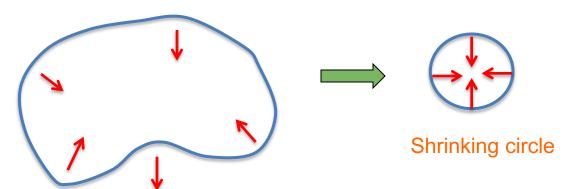
Averaged over oscillation period:

$$\mathbf{v}(\sigma) = \frac{8R^2}{L} [\mathbf{a}'(\sigma) \times \mathbf{\Omega} + \mathbf{a}''(\sigma)]$$

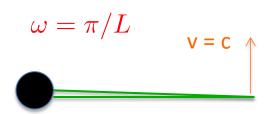
For
$$\Omega=0$$
: $\mathbf{v}(\sigma)\propto \mathbf{a}''(\sigma)$

Curve shortening flow

Gage (!984), Gage & Hamilton (1986), ...



In the end the loop is swallowed by the BH.

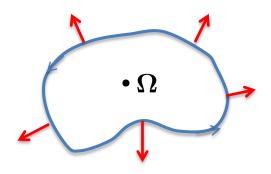


The physical loop is a rotating double line.

A strong emitter of gravitational waves.

Now consider $\Omega \neq 0$

$$\mathbf{v}(\sigma) = \frac{8R^2}{L} [\mathbf{a}'(\sigma) \times \mathbf{\Omega} + \mathbf{a}''(\sigma)]$$

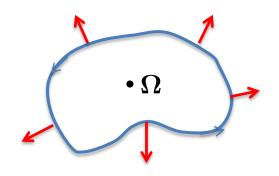


The 1st term dominates if $\Omega L\gg 1$.

Auxiliary curve expands, approaching a circle.

Now consider $\Omega \neq 0$

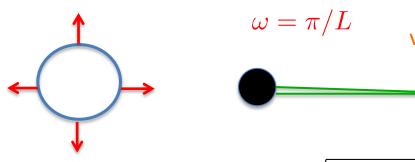
$$\mathbf{v}(\sigma) = \frac{8R^2}{L} [\mathbf{a}'(\sigma) \times \mathbf{\Omega} + \mathbf{a}''(\sigma)]$$



For a circular auxiliary curve:

The 1st term dominates if $\Omega L\gg 1$.

Auxiliary curve expands, approaching a circle.



$$L = \sqrt{L_0^2 + 16\pi R^2 \Omega t}$$

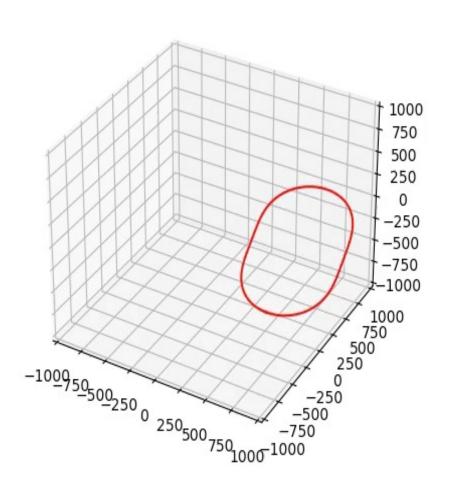
The loop grows by extracting rotational energy from the BH.

Complete spin down of a supermassive BH in 10¹⁰ yrs for $G\mu \gtrsim 10^{-15}$.

Numerical simulations

Heling Deng

Loop in Schwarzschild spacetime



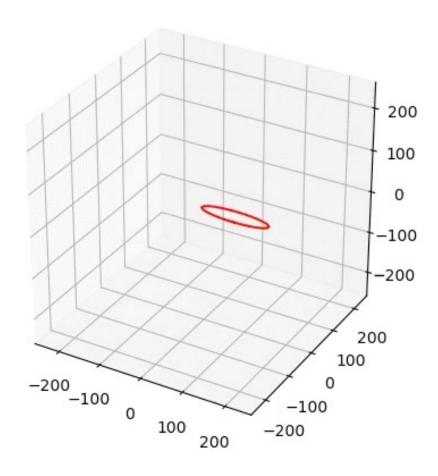
 $L_i/R \sim 100$

Numerical simulations

Heling Deng

Loop in Kerr spacetime

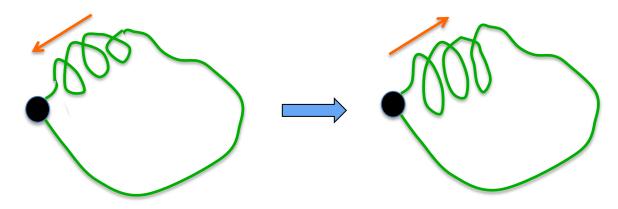
 $L_i/R \sim 50$



Superradiance

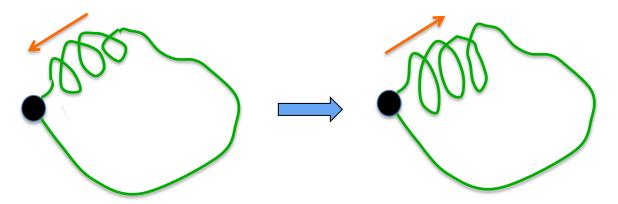
Helical wave amplifies upon reflection.

Zel'dovich



Superradiance

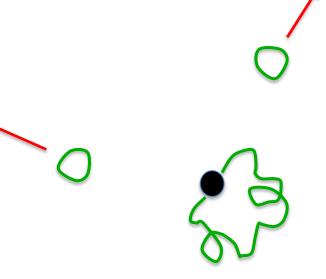
Helical wave amplifies upon reflection.



Then travels to the other side – and amplifies again!

Perturbations quickly become nonlinear.

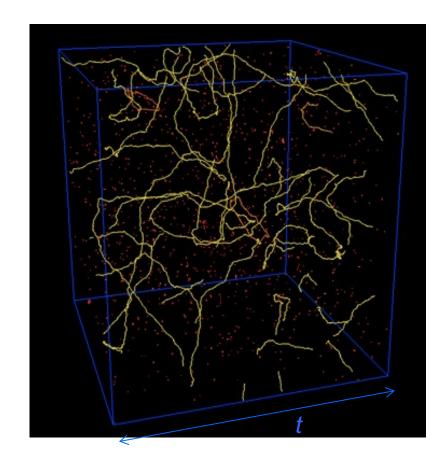
May lead to continuous loop production.



STRING EVOLUTION AND CAPTURE

Self-similar evolution

- Each horizon volume contains several long strings and a large number of loops with a wide distribution of sizes.
- Loops oscillate and decay by emitting gravitational waves.
- Loop density: $n \propto (G\mu)^{-3/2}$



Bennett & Bouchet (1990)

Allen & Shellard (1990)

Ringeval, Sakellariadou & Bouchet (2005)

Vanchurin & Olum (2005)

Blanco-Pillado, Olum & Shlaer (2011)

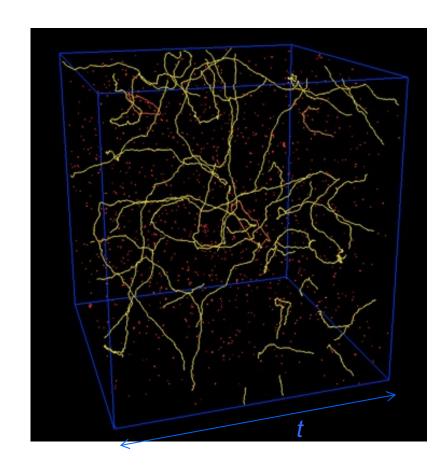
Self-similar evolution

- Each horizon volume contains several long strings and a large number of loops with a wide distribution of sizes.
- Loops oscillate and decay by emitting gravitational waves.
- Loop density: $n \propto (G\mu)^{-3/2}$

Loop capture

The probability of capture by a SMBH is $P \sim 1$ for $G\mu \lesssim 10^{-17}$.

H. Xing, Y. Levin, A. Gruzinov, & A.V. (2020)



Bennett & Bouchet (1990)

Allen & Shellard (1990)

Ringeval, Sakellariadou & Bouchet (2005)

Vanchurin & Olum (2005)

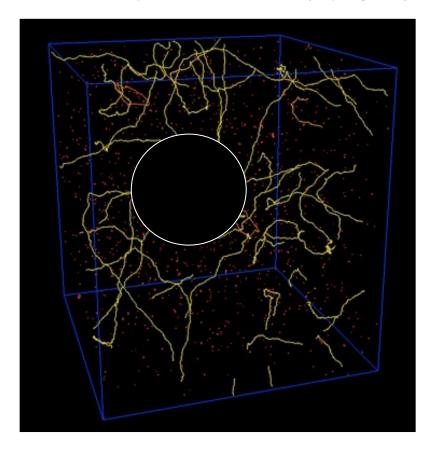
Blanco-Pillado, Olum & Shlaer (2011)

Strings and primordial BHs

A. Gruzinov, Y. Levin & A.V. (2020)

A. Lopez, K. Olum & A.V. (in progress)

- BHs have size ~ horizon at formation.
- A few strings are captured by each BH.
 - BH-string network.



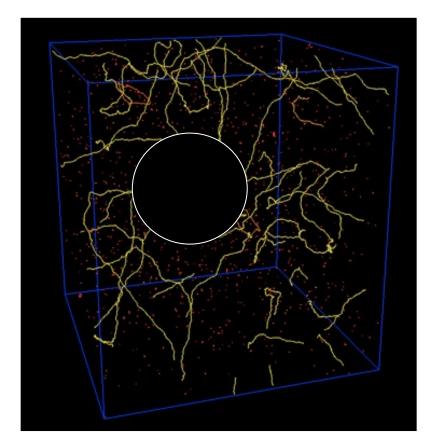
Strings and primordial BHs

A. Gruzinov, Y. Levin & A.V. (2020)

A. Lopez, K. Olum & A.V. (in progress)

- BHs have size ~ horizon at formation.
- A few strings are captured by each BH.

BHs can disconnect from the network, but only with loops attached.



Conclusions

String loops are likely to be captured by SMBH in galactic centers (for sufficiently small $G\mu$) and by primordial BHs (for BH mass and any $G\mu$).

A variety of physical effects:

- BH spin down
- Superradiance
- GW emission

Work in progress: reconnections, evolution of BH-string networks, etc.