PRIMORDIAL BLACK HOLES AS DARK MATTER FROM INFLATION

Guillermo Ballesteros

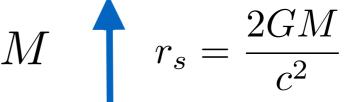
Physics of the Early Universe Workshop 17.06.2022

PRIMORDIAL BLACK HOLES AS DARK MATTER FROM INFLATION

Guillermo Ballesteros

José Beltrán Jiménez, Sebastián Céspedes, Marcos A. G. García, **Alejandro Pérez Rodríguez**, Mauro Pieroni, Mathias Pierre, **Julián Rey**, Fabrizio Rompineve, Luca Santoni, Marco Taoso, Alfredo Urbano

binary BH mergers



 $100\,\mathrm{Hz}$

 $100 \, M_{\odot} - 300 \, \mathrm{km}$

 M_{\odot}

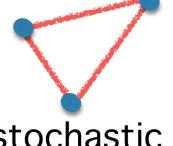
 $0.1\,\mathrm{nm}$

Courtesy

Caltech/MIT/LIGO Laboratory

 $0.03 \, \mathrm{Hz} - 3 \, \mathrm{Hz}$

e.g. LISA



stochastic background of GWs 100% DM asteroid mass

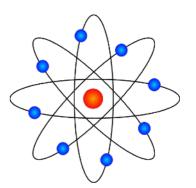
window

 $10^{-12} \, M_{\odot}$

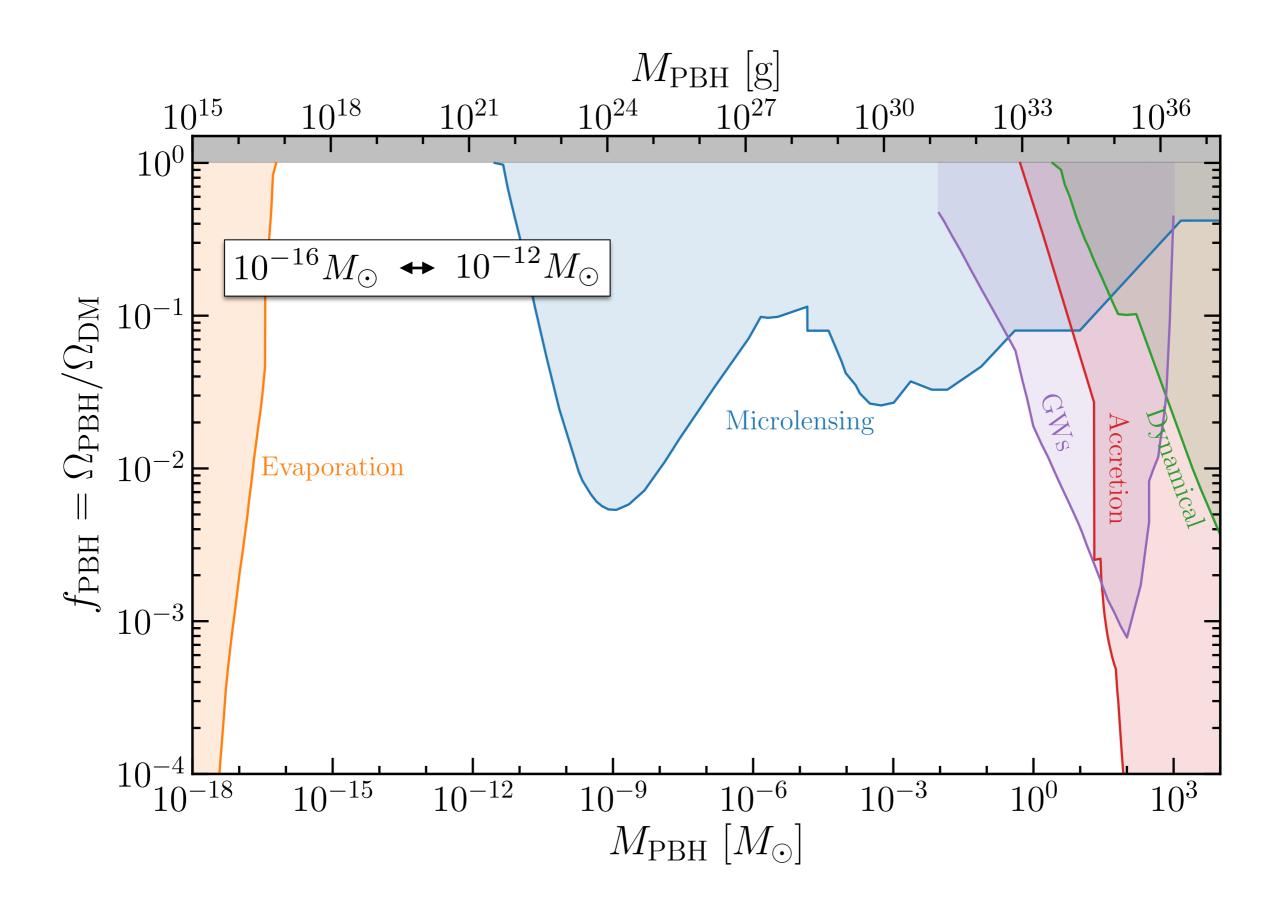
$$10^{-16} M_{\odot}$$

 $3\,\mathrm{nm}$

 $3 \, \mathrm{km}$



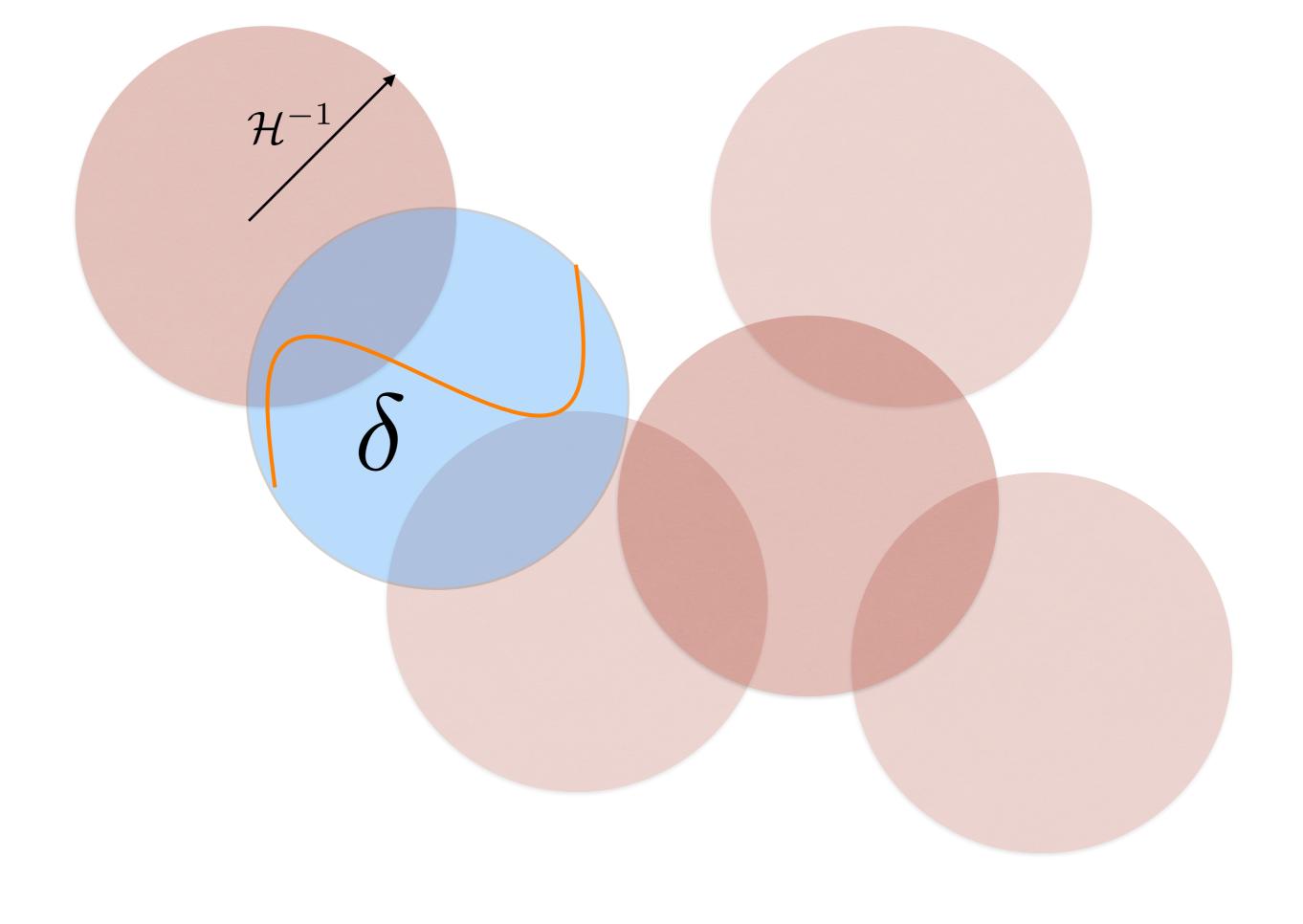
 $3 \times 10^{-4} \, \mathrm{nm}$

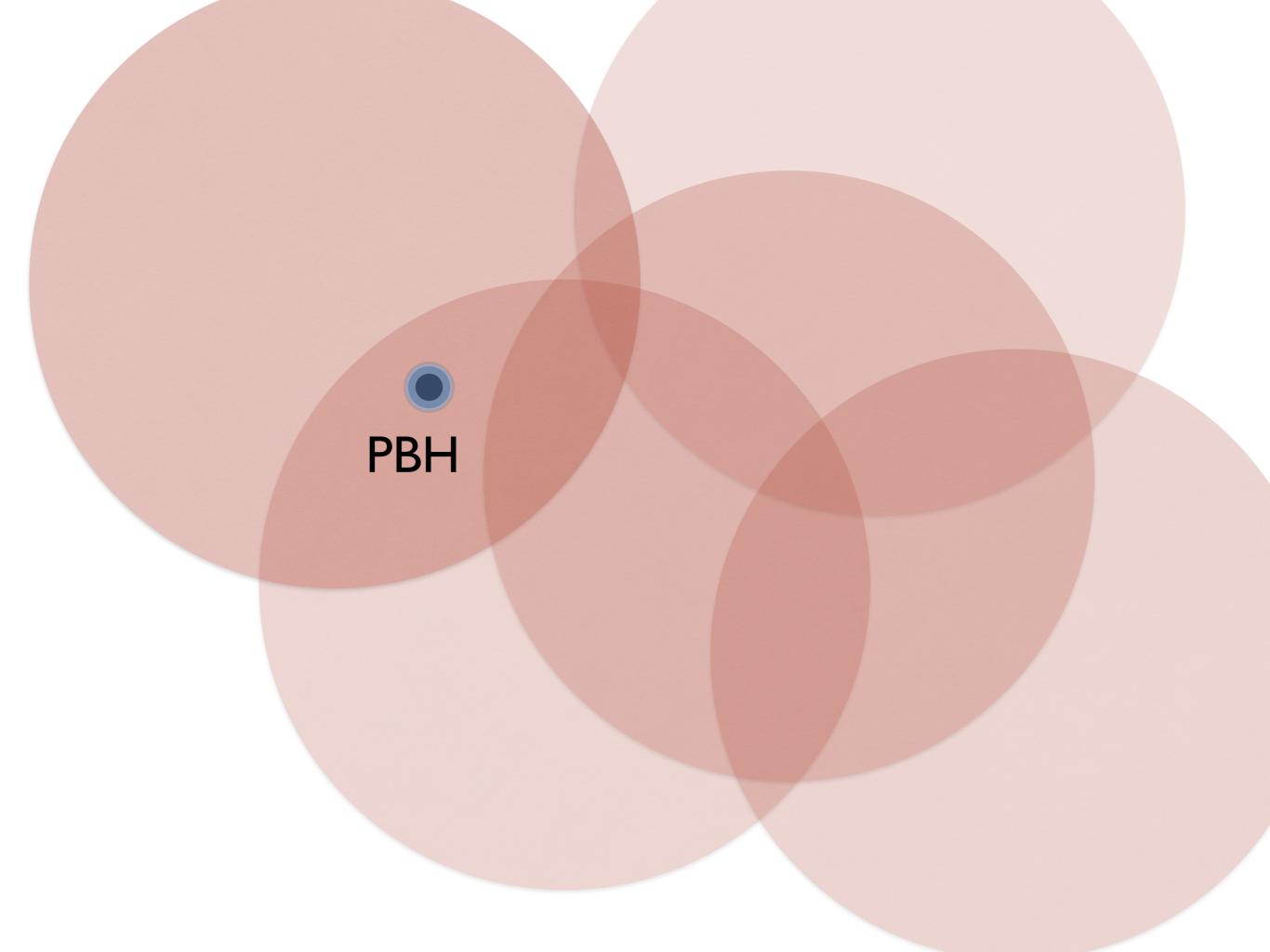


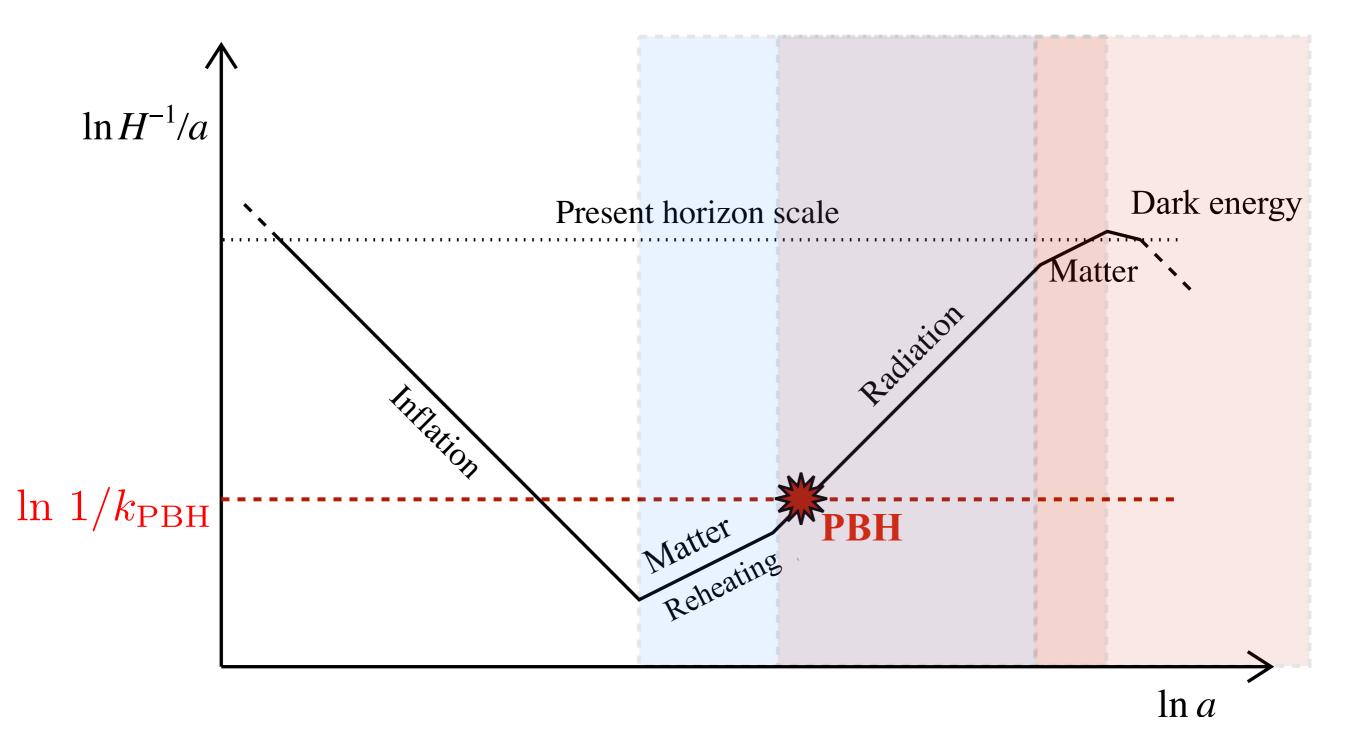
https://github.com/bradkav/PBHbounds

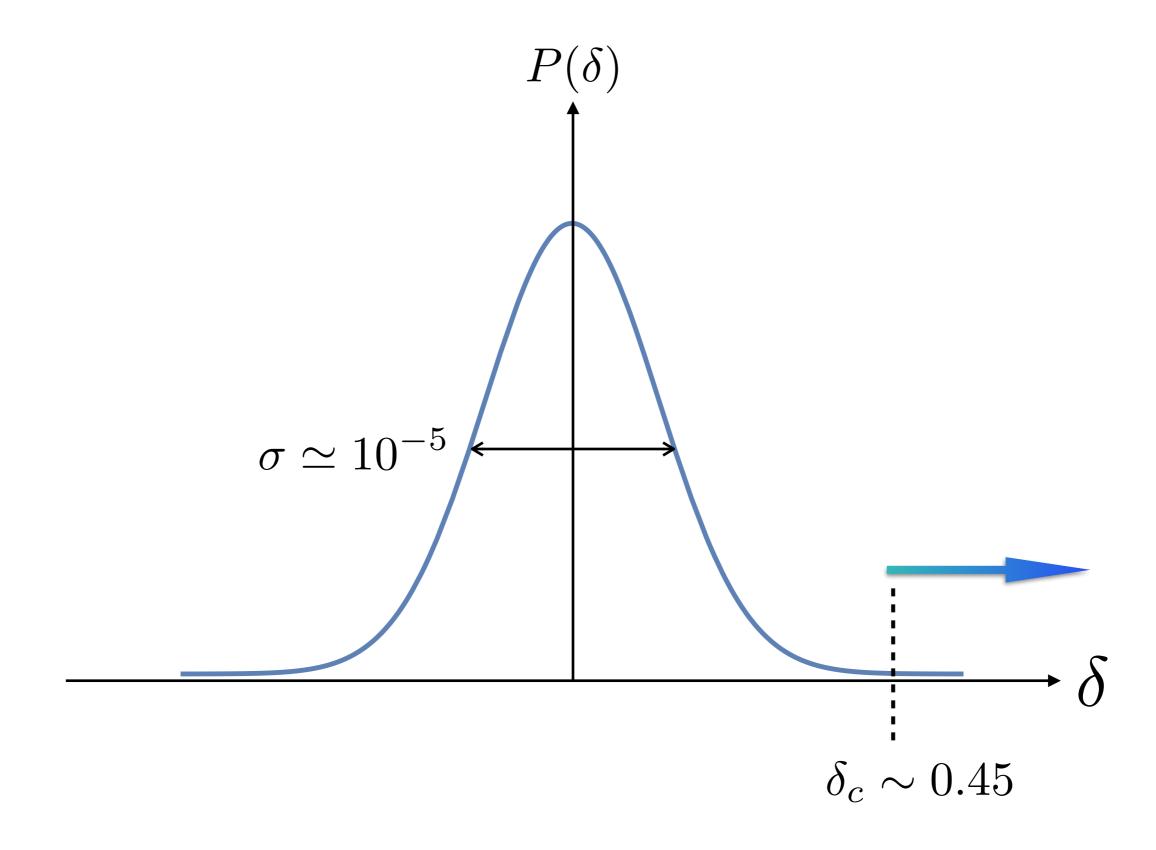
Green, Kavanagh 2007.10722 (v3 December 2020)

Primordial black hole formation from single-field inflation









Individual masses

$$M \sim \frac{4}{3}\pi \rho H^{-3} \sim 10^{-14} \left(\frac{10^{13} \,\mathrm{Mpc}^{-1}}{k}\right)^2 M_{\odot}$$

$$N_e \simeq 18 - \frac{1}{2} \log \frac{M}{M_{\odot}}$$

Abundance

$$\beta(M) = \frac{1}{\sqrt{2\pi\sigma^2(M)}} \int_{\delta_c}^{\infty} d\delta \exp\left(\frac{-\delta^2}{2\sigma^2(M)}\right)$$

$$\sigma^2 \sim \mathcal{P}_{\mathcal{R}}$$

$$\sigma^2(M) = \frac{16}{81} \int \frac{\mathrm{d}q}{q} (qR)^4 \mathcal{P}_{\mathcal{R}} W(qR)^2$$

$$\frac{\Omega_{\rm PBH}(M)}{\Omega_{\rm DM}} \simeq \frac{\beta}{10^{-16}} \left(\frac{M}{5 \cdot 10^{-16} M\odot} \right)^{-1/2}$$

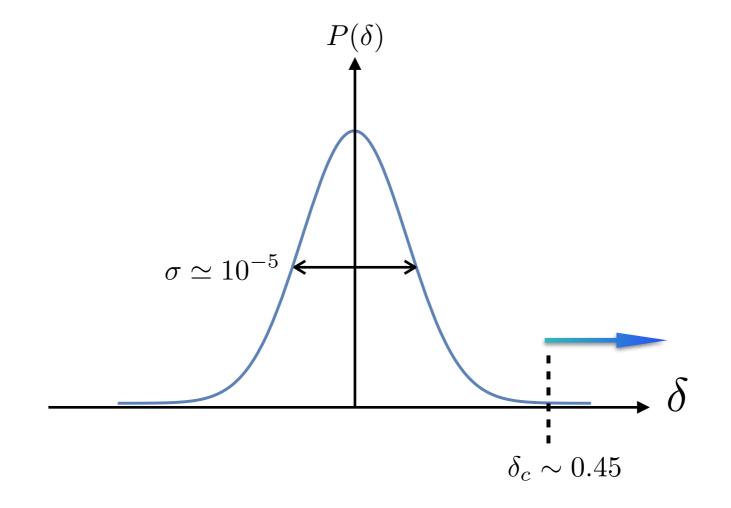
$$\mathcal{P}_{\mathcal{R}} \sim 10^{-2} \implies \frac{\Omega_{\mathrm{PBH}}}{\Omega_{\mathrm{DM}}} \sim 1$$

Is the Gaussian approximation reliable?

$$\delta(\vec{x},t) = -\frac{4(1+\omega)}{5+3\omega} \left(\frac{1}{aH}\right)^2 e^{-5\mathcal{R}(\vec{x})/2} \triangle e^{\mathcal{R}(\vec{x})/2}$$

Intrinsic non-Gaussianities in \mathcal{R}

 ${
m NG} \sim {\cal O}(1) {
m change in} \; {\cal P}_{\cal R}$ Taoso, Urbano 2021



How do the tails of the PDF of \mathcal{R} look like?

There are several indications that they are not Gaussian, specifically if slow-roll is broken or if interactions are important

$$q \dot{\mathcal{R}}^4 \implies P(\mathcal{R}) \sim \exp\left(-\frac{\mathcal{R}^{3/2}}{q^{1/4}}\right)$$
 for large \mathcal{R}

Celoria, Creminelli, Tambalo, Yingcharoenrat 2021

How do the tails of the PDF of \mathcal{R} look like?

There are several indications that they are not Gaussian, specifically if slow-roll is broken or if interactions are important

Quantum diffusion

classical roll:
$$\frac{\phi}{H}\gg \frac{H}{2\pi}$$
 \longrightarrow $\mathcal{P}_{\mathcal{R}}\ll 1$

Stochastic inflation Starobinsky

USR
$$\Longrightarrow P(\mathcal{R}) \sim \exp(-\kappa R)$$
 for large \mathcal{R}

Ezquiaga, García-Bellido, Vennin 2019

Figueroa, Raatikainen, Rasanen, Tomberg 2020

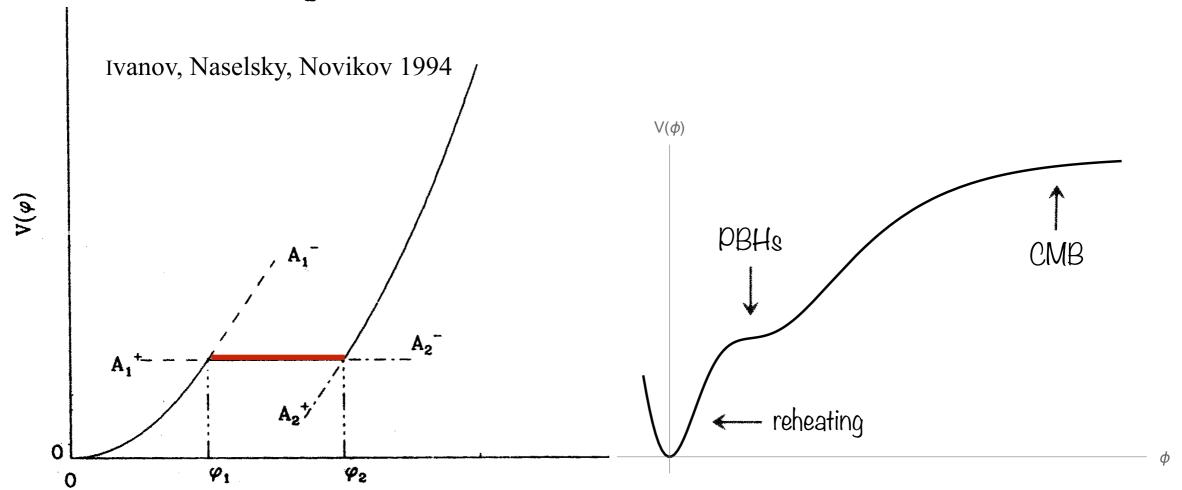
Pattison, Vennin, Wands, Assadullahi 2021

Modelling PBH formation from inflation

Requirements for PBH DM from inflation

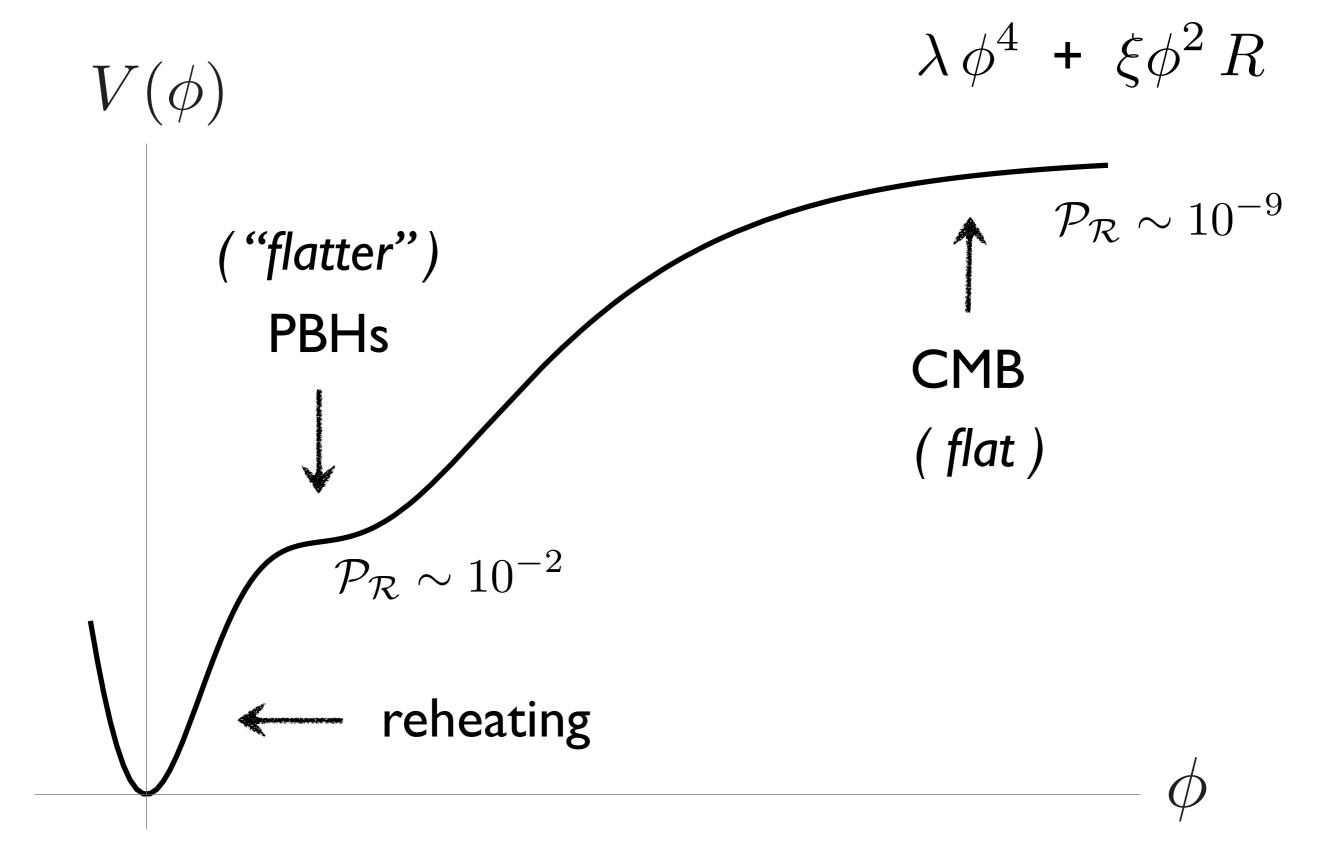
- Enough inflation
- Agreement with the CMB and LSS
- Successful reheating
- $rac{\Omega_{
 m PBH}}{\Omega_{
 m DM}} \sim 1$ (implies a large primordial spectrum...)
- $10^{-16} M_{\odot} \leftrightarrow 10^{-12} M_{\odot} \quad (... \text{at a specific scales})$

Inflation and primordial black holes as dark matter



$$V(\phi) = \begin{cases} V_0 + A_+(\phi - \phi_0) & \text{for } \phi > \phi_0 \\ V_0 + A_-(\phi - \phi_0) & \text{for } \phi < \phi_0 \end{cases}$$
 Starobinsky 1994

$$\mathcal{P}_{\mathcal{R}} \sim \left(\frac{H}{m_P}\right)^2 \left(\frac{H}{\dot{\phi}}\right)^2 \sim \frac{1}{m_P^2} \left(\frac{V}{V'}\right)^2 \frac{V}{m_P^4}$$



$$V(\phi) = a_2\phi^2 + a_3\phi^3 + a_4\phi^4$$

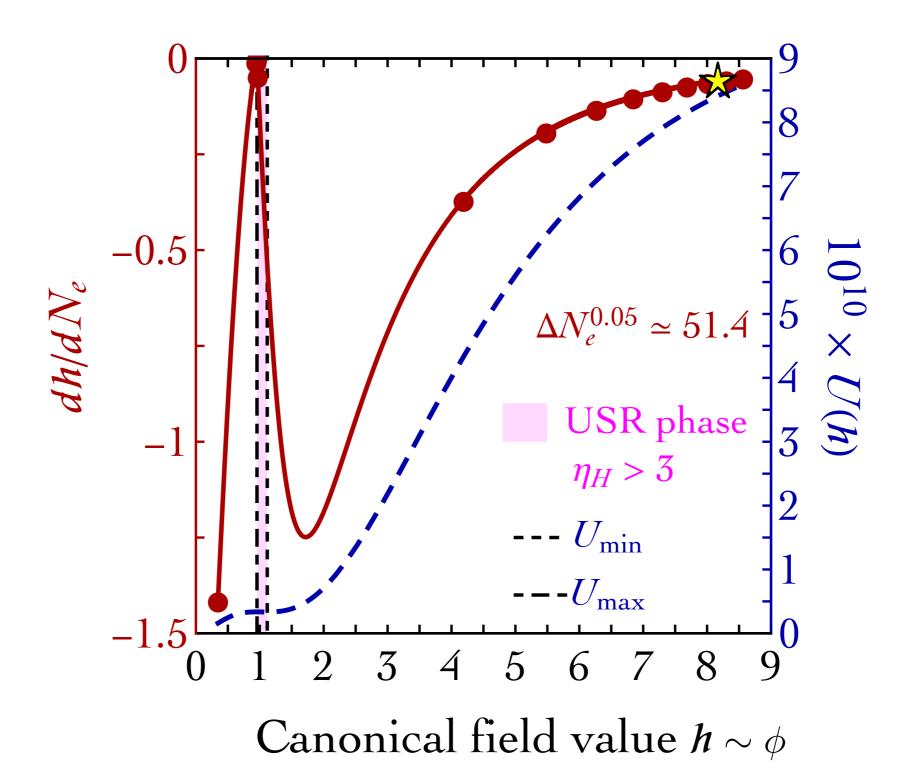
$$V = \lambda(\phi) \, \phi^4$$

$$\lambda(\phi) = \lambda(\phi_0) + \frac{1}{2}\beta_{\lambda}(\phi_0)\log\frac{\phi^2}{\phi_0^2} + \frac{1}{8}\beta'_{\lambda}(\phi_0)\left(\log\frac{\phi^2}{\phi_0^2}\right)^2 + \cdots$$

$$\lambda (\mu_0) \sim |\beta_\lambda (\mu_0)| \sim \beta'_\lambda (\mu_0)$$

$$\xi(\phi) = \xi_0 \left(1 + b_3 \log \frac{\phi^2}{\phi_0^2} \right)$$

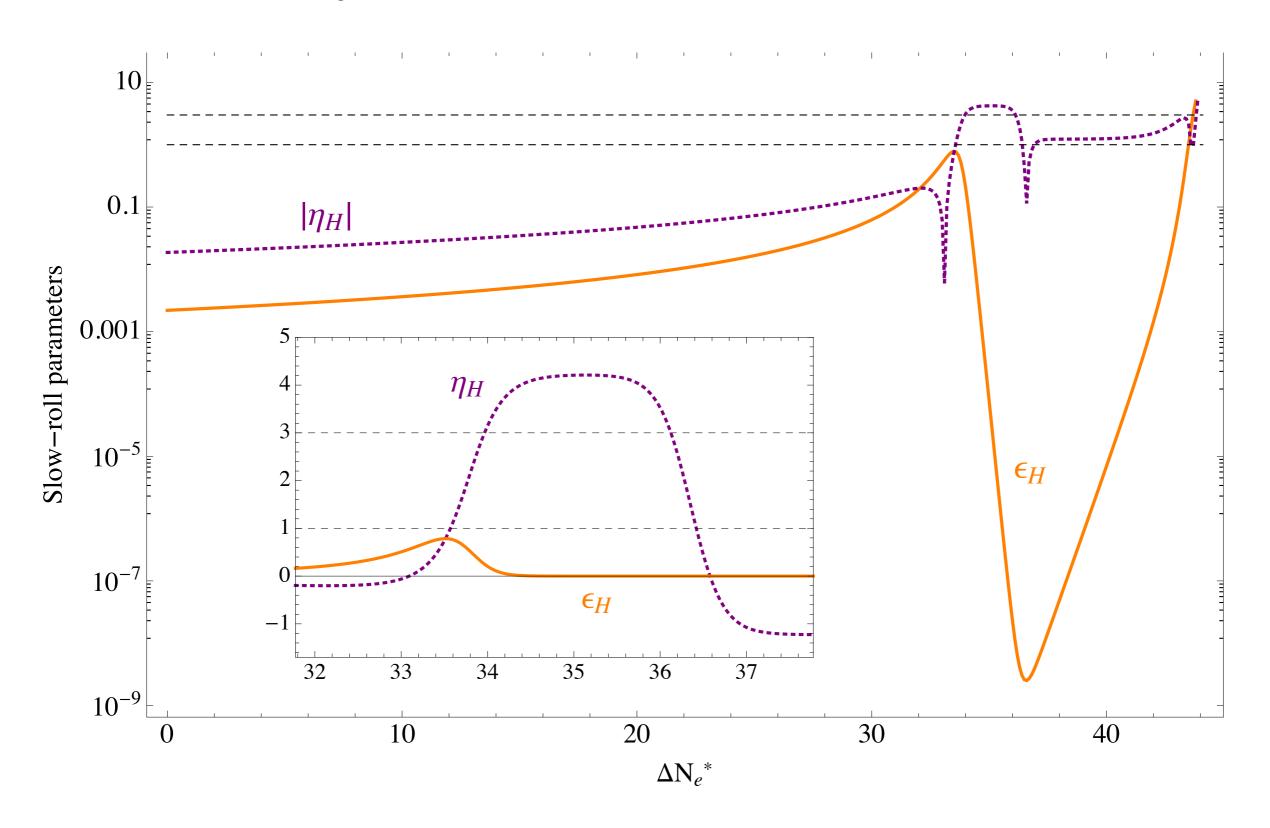
GB, Taoso, 1709.05565



 $V(\phi) = a_2\phi^2 + a_3\phi^3 + a_4\phi^4$

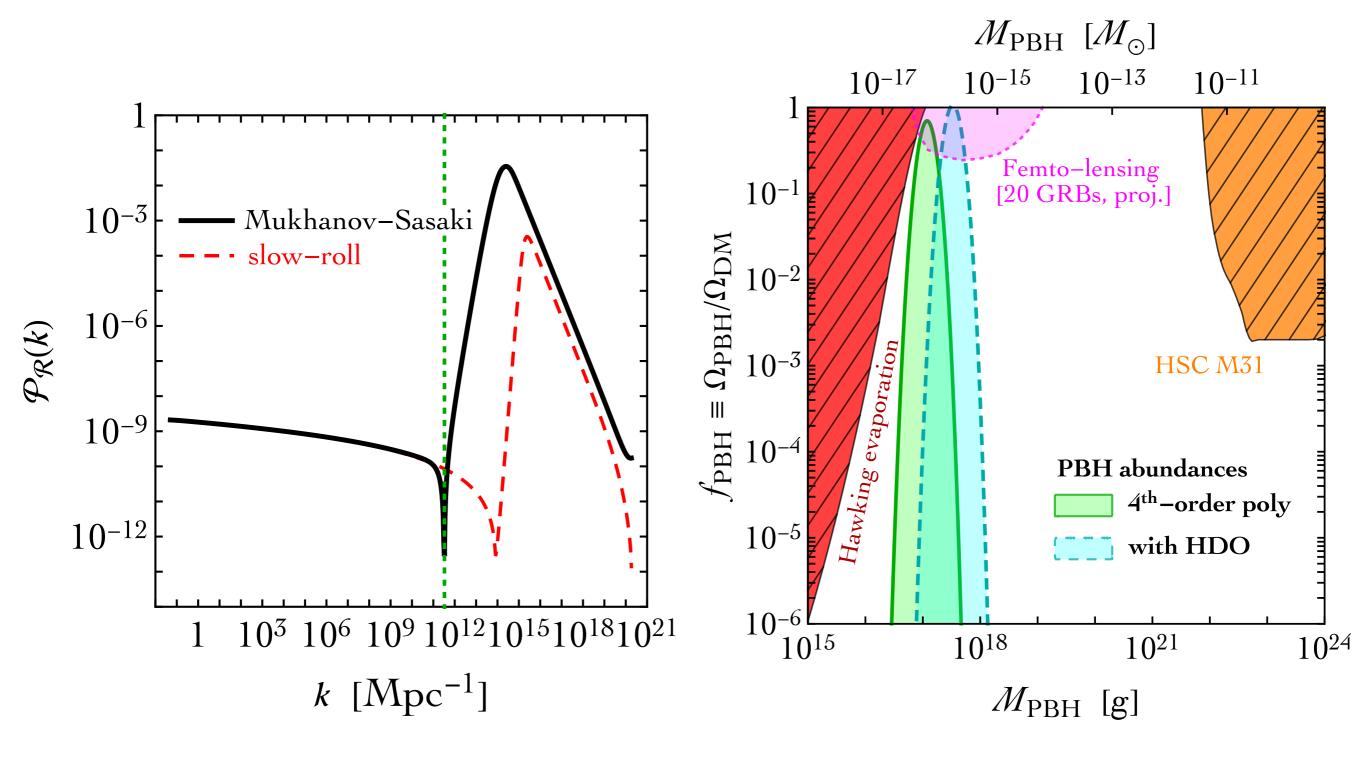
GB, Rey, Taoso, Urbano, 2020

$$\frac{d^2 \mathcal{R}_{\mathbf{k}}}{dN_e^2} + (3 + \epsilon_H - 2\eta_H) \frac{d\mathcal{R}_{\mathbf{k}}}{dN_e} + \frac{k^2}{a^2 H^2} \mathcal{R}_{\mathbf{k}} = 0$$



GB, Taoso, 1709.05565

$$V(\phi) = a_2\phi^2 + a_3\phi^3 + a_4\phi^4$$



GB, Rey, Taoso, Urbano, 2020

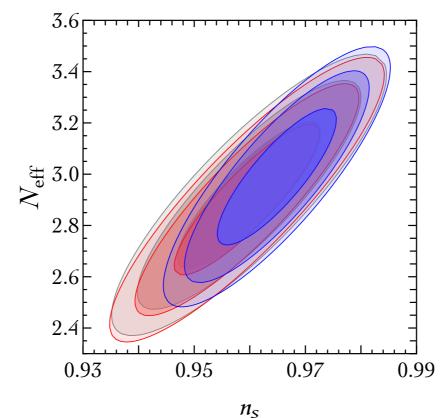
The scalar spectral index

Base
$$\Lambda \text{CDM}: n_s = 0.9649 \pm 0.0042$$

[68% CL, Planck TT, TE, EE + lowE + lensing]

'simple' models tend to predict $n_s \simeq 0.95$

$$V(\phi) = a_2 \phi^2 + a_3 \phi^3 + a_4 \phi^4 + \sum_{n \ge 5} a_n \phi^n$$



GB, Rey, Taoso, Urbano, 2020

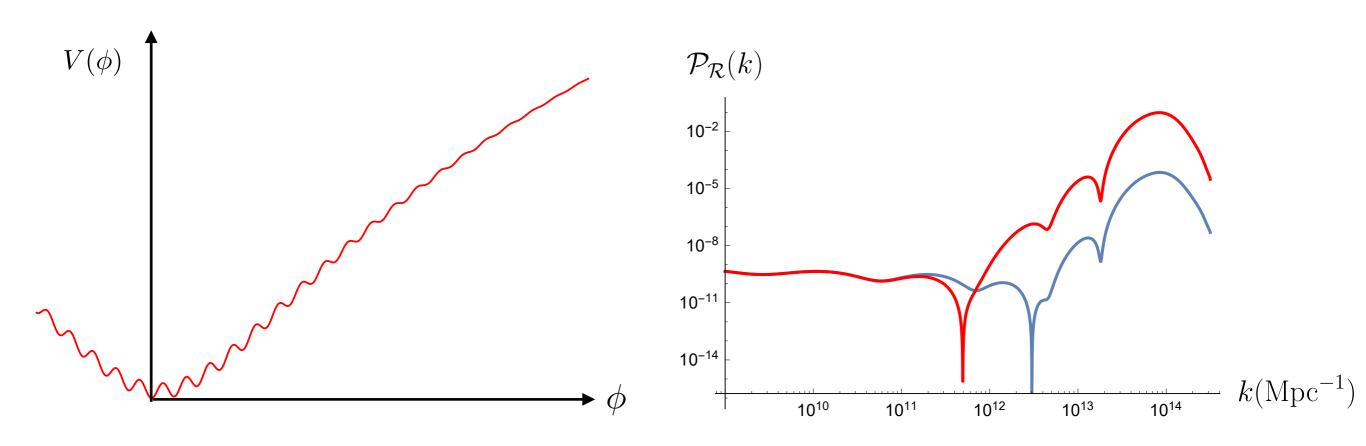
Exponential sensitivity of the abundance to the size of the primordial fluctuations

$$\beta(M) = \frac{1}{\sqrt{2\pi\sigma^2(M)}} \int_{\delta_c}^{\infty} d\delta \exp\left(\frac{-\delta^2}{2\sigma^2(M)}\right)$$

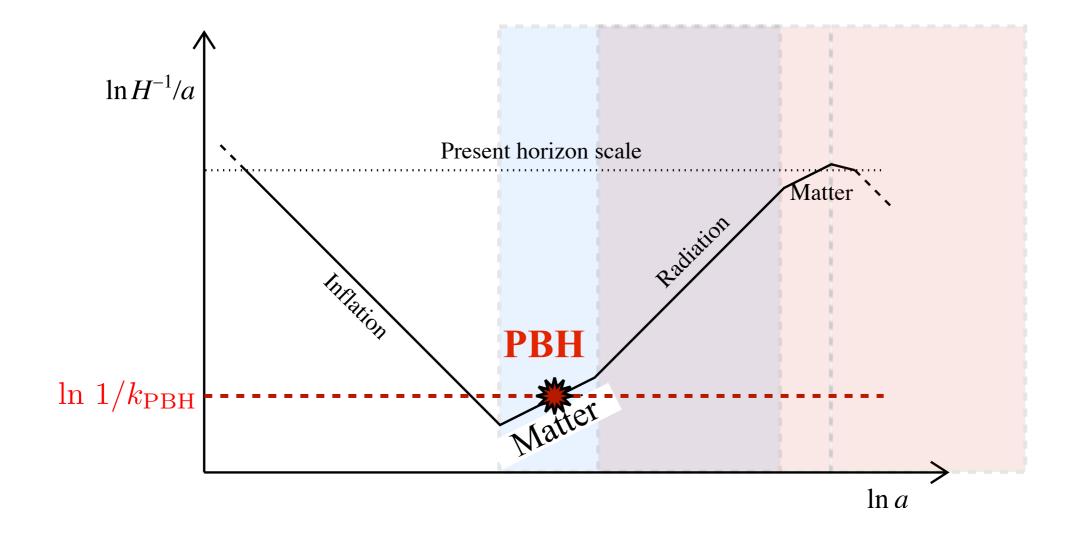
$$\sigma^2 \sim \mathcal{P}_{\mathcal{R}}$$

Tuning of parameters in the potential

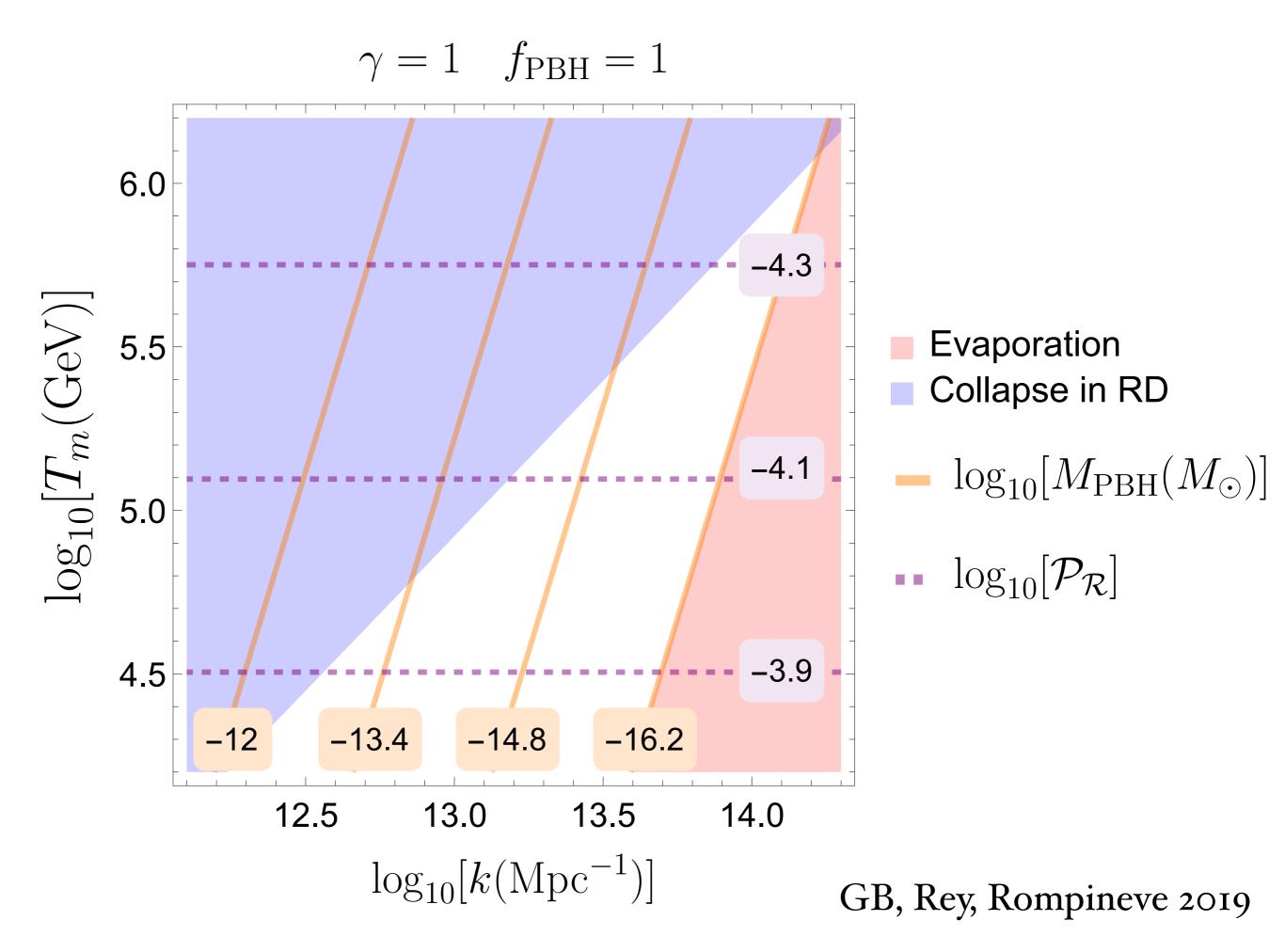
Modulation + Matter domination



Axion monodromy inspired



$$\Omega_{\mathrm{PBH}} \propto \left\{ egin{array}{l} \dfrac{e^{-\delta_c^2/\mathcal{P}_{\mathcal{R}}}}{\sqrt{\mathcal{P}_{\mathcal{R}}}} & & & & & & \\ \Omega_{\mathrm{PBH}} \propto \left\{ \dfrac{e^{-\delta_c^2/\mathcal{P}_{\mathcal{R}}}}{\sqrt{\mathcal{P}_{\mathcal{R}}}} & & & & & & \\ \mathcal{P}_{\mathcal{R}}^{5/2} & & & & & & & \\ \end{array}
ight.$$
 (Radiation)



A stochastic background of GWs	
induced at second order in cosmological perturbation theory	ry

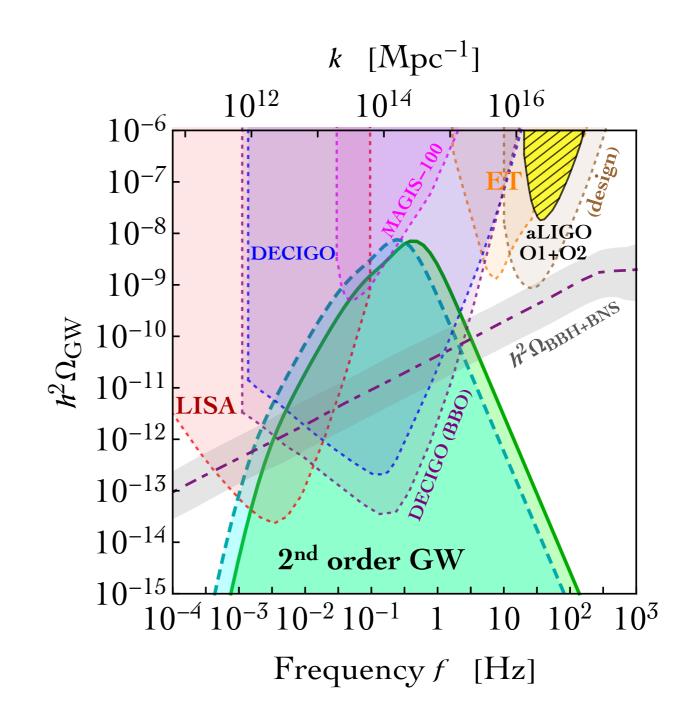
A stochastic background of GWs induced at second order in cosmological perturbation theory

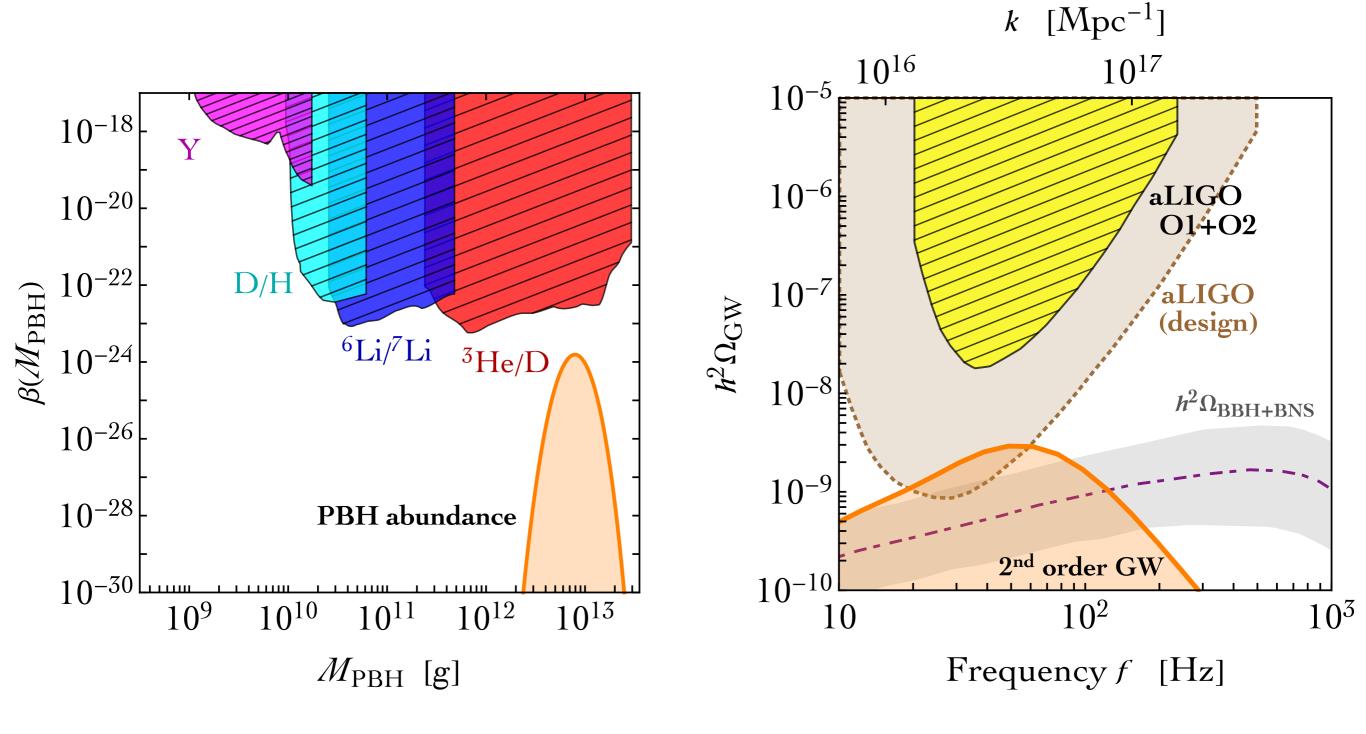
GWs:
$$\left(\frac{M_{\rm PBH}}{10^{17}\,{\rm g}}\right)^{-1/2} \simeq \frac{k}{2 \cdot 10^{14}\,{\rm Mpc}^{-1}} \simeq \frac{f}{0.3\,{\rm Hz}}$$

$$\Omega_{\rm GW} \sim \mathcal{P}_h \sim (\mathcal{P}_{\mathcal{R}})^2$$

e.g. LISA (if PBHs are DM)

NANOGRAV Sept 2020: 10^{-8} Hz Other PTA experiments as well





GB, Rey, Taoso, Urbano, 2020

The EFT approach

$$\mathcal{S} = \int dt d^3x M^2 \frac{a^3 \epsilon}{c_s^2} \left[\dot{\mathcal{R}}^2 - \frac{c_s^2}{a^2} |\vec{\nabla} \mathcal{R}|^2 - m^2 \mathcal{R}^2 \right]$$

$$\mathrm{d}\tilde{\tau} = c_{\mathrm{S}}\,\mathrm{d}\tau = \frac{c_{\mathrm{S}}}{a}\,\mathrm{d}t. \qquad z^2 \equiv \frac{2M^2a^2\epsilon}{c_{\mathrm{S}}}\,, \qquad m = 0$$

$$S = \frac{1}{2} \int d\tilde{\tau} d^3x z^2 \left[(\mathcal{R}')^2 - |\vec{\nabla}\mathcal{R}|^2 \right] \qquad \mathcal{R}''_k + 2\frac{z'}{z} \mathcal{R}'_k + k^2 \mathcal{R} = 0.$$

$$\mathcal{P}_{\mathcal{R}} \propto \frac{H^2}{\epsilon c_s M^2}$$
 $\mathcal{R} \simeq C_{1,k} + C_{2,k} \int \frac{c_s^2}{a^3 M^2 \epsilon H} dN$

$$\frac{d\mathcal{R}}{dN_e} = C_{2,k} \exp\left[-\int (3 + \epsilon_H - 2\eta_H - 2s + \mu)\right] dN_e$$

Example: The EFT of inflation (slow-roll)

$$m=0, \quad M=M_P$$

Unitarity:
$$\Lambda^4 \sim 16\pi^2 M_P^2 H^2 \epsilon \frac{c_{\rm s}^5}{1-c_{\rm s}^2} \gg H^4$$

Cheung et al 2007

$$c_s^4 \gg \mathcal{P}_{\mathcal{R}} \implies \epsilon_{\text{PBH}} \ll \Delta_{\zeta \text{ CMB}}^2 c_{s \text{ CMB}} \left(\frac{r_{\text{CMB}}}{0.07}\right) \left(\frac{\Delta_{\zeta \text{ PBH}}^2}{0.01}\right)^{-5/4}$$

GB, Beltran-Jimenez, Pieroni 2018

Ghost condensate:

$$\mathcal{P}_{\mathcal{R}} \sim 0.01 \left(\frac{H}{M}\right)^{5/2}$$

Arkani-Hamed, et al 2003

$$\omega^2 = c_s^2 k^2 + \alpha \frac{k^4}{a^2 H^2}$$

Example: The EFT of inflation (slow-roll)

$$S_{\mathcal{R}}^{(2)} = \int d^4x \, A \, a^3 \left[\dot{\mathcal{R}}^2 - c_s^2 \frac{(\nabla \mathcal{R})^2}{a^2} - \alpha \, \frac{(\nabla^2 \mathcal{R})^2}{H^2 a^4} \right] \,,$$

$$\Lambda_3 \sim \varepsilon^{1/6} (M_{\rm Pl} H^2)^{1/3}$$

Enhancement with respect to CMB scales:

$$c_s^2 \to 0 : (\Lambda_3/H)^{3/2}$$

$$c_s^2 < 0 \quad : \quad e^{2|c_s|^2 \Lambda_3/H}$$

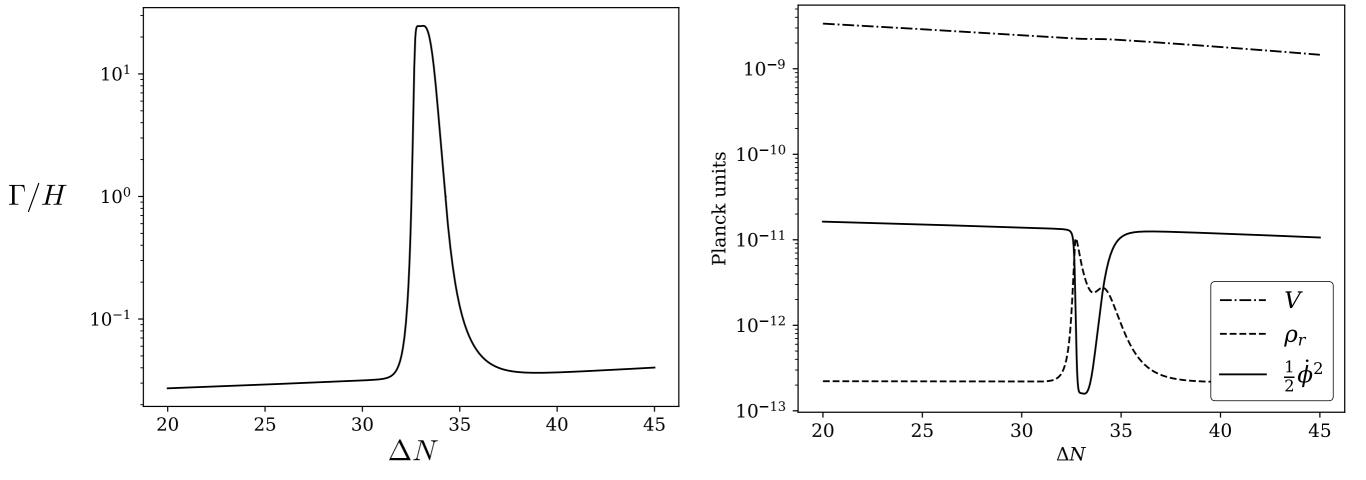
Weakly broken galilean symmetry

PBHs from dissipation during inflation

PBHs from dissipation during inflation

$$\ddot{\phi} + (3H + \Gamma)\dot{\phi} + \partial_{\phi}V = 0 \qquad \dot{\rho}_r + 4H\rho_r = \Gamma\dot{\phi}^2$$

$$\delta \ddot{\phi}_k + (3H + \Gamma)\delta \dot{\phi}_k + \left(\frac{k^2}{a^2} + \dot{\Gamma}\right)\delta \phi_k = \sqrt{\frac{2\Gamma T}{a^3}}\xi(t)$$



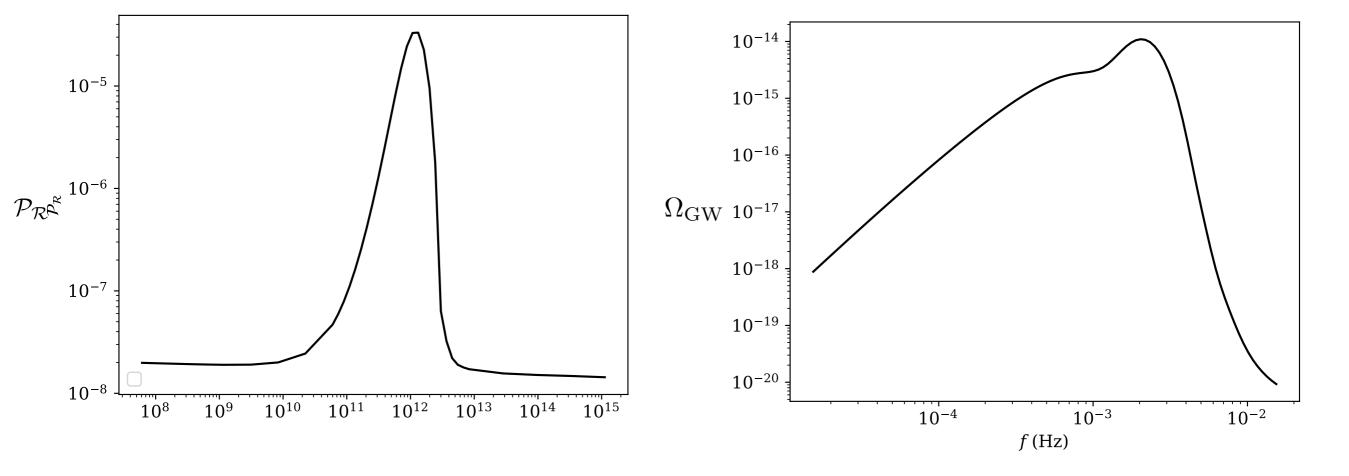
GB, García, Pérez Rodríguez, Pierre, Rey

Credit: A. Pérez Rodríguez

PBHs from dissipation during inflation

$$\ddot{\phi} + (3H + \Gamma)\dot{\phi} + \partial_{\phi}V = 0 \qquad \dot{\rho}_r + 4H\rho_r = \Gamma\dot{\phi}^2$$

$$\delta \ddot{\phi}_k + (3H + \Gamma)\delta \dot{\phi}_k + \left(\frac{k^2}{a^2} + \dot{\Gamma}\right)\delta \phi_k = \sqrt{\frac{2\Gamma T}{a^3}}\xi(t)$$



GB, García, Pérez Rodríguez, Pierre, Rey

Credit: A. Pérez Rodríguez

Summary

Summary

Bounds have evolved during the last 5 years

PBH DM:

$$10^{-16} M_{\odot} \leftrightarrow 10^{-12} M_{\odot}$$

Rich phenomenology of inflationary and early universe cosmology: validity of perturbation theory, non-Gaussianities, quantum diffusion, dissipation, early matter domination, etc

And very interesting perspectives for GW experiments