GBT Project Status

Paulo Moreira November 2010 CERN

Outline

GBT Project Status:

- GBT project overview
 - Radiation hard link
 - The GBT chipset
- The GBTIA
- The GBLD
- The GBT SCA
- The GBT Protocol on FPGAs
- The E Links:
 - SLVS data transmission tests
 - Driver/Receiver
- The GBT SerDes
 - The GBT SerDes Architecture
 - Serializer
 - De-serializer
 - Phase-Shifter
 - Logic
 - Power consumption

- The GBTX
 - GBTX block diagram
 - GBT link bandwidth
 - GBTX-to-Frontend communication
 - 8B/10B Transmitter mode
 - GBTX packaging
 - GBTX power consumption
- GBT Project Schedule
- GLIB overview

Radiation Hard Optical Link Architecture

Defined in the "DG White Paper"

- "Work Package 3-1"
 - Objective:
 - Development of an high speed bidirectional radiation hard optical link
 - Deliverable:
 - Tested and qualified radiation hard optical link
 - Duration:
 - 4 years (2008 2011)

Radiation Hard Optical Link:

- Versatile link project:
 - Opto-electronics components
 - Radiation hardness
 - Functionality testing
- GBT project:
 - ASIC design
 - Verification
 - Radiation hardness
 - Functionality testing

The GBT Chipset

- Radiation tolerant chipset:
 - GBTIA: Transimpedance optical receiver
 - GBLD: Laser driver
 - GBTX: Data and Timing Transceiver
 - GBT-SCA: Slow control ASIC
- Supports:
 - Bidirectional data transmission
 - Bandwidth:
 - Line rate: 4.8 Gb/s
 - Effective: 3.36 Gb/s

- The target applications are:
 - Data readout
 - TTC
 - Slow control and monitoring links.
- Radiation tolerance:
 - Total dose
 - Single Event Upsets

The GBTIA

Main specs:

- Bit rate 5 Gb/s (min)
- Sensitivity: 20 μA P-P (10⁻¹² BER)
- Total jitter: < 40 ps P-P
- Input overload: 1.6 mA (max)
- Dark current: 0 to 1 mA
- Supply voltage: 2.5 V
- Power consumption: 250 mW
- Die size: 0.75 mm × 1.25 mm

Engineers :

- Ping Gui SMU, USA
- Mohsine Menouni CPPM, France

Status:

- Chip fabricated and tested
- Chip fully meets specifications!
- Radiation tolerance proven!
- GBTIA + PIN-diode encapsulated in a TO Package (Versatile link project)

Future:

- Version 2 will address productivity
- Pad positions reworked to facilitate the wire bond operation between the package and ASIC
- Mean optical power monitoring to facilitate pin-diode/fiber alignment
- 2.5 V supply
- Migration from the LM to the DM technologies flavor

The GBLD

Main specs:

- Bit rate 5 Gb/s (min)
- Modulation:
 - current sink
 - Single-ended/differential
- Laser modulation current: 2 to 12 mA
- Laser bias: 2 to 43 mA
- "Equalization"
 - Pre-emphasis/de-emphasis
 - Independently programmable for rising/falling edges
- Supply voltage: 2.5 V
- Die size: 2 mm × 2 mm
- I2C programming interface

Engineers :

- Gianni Mazza INFN, Italy
- Angelo Rivetti INFN, Italy
- Ken Wyllie CERN
- Ping Gui SMU, USA

Status:

- Chip fabricated and tested
- Chip fully functional
- Performance according to specs (if corrected for the large input capacitance of the input protection diode)

Future:

Reduce the area of the input protection diode

GBT-SCA Main specs:

- Dedicated to slow control functions
- Interfaces with the GBTX using a dedicated Elink port
- Communicates with the control room using a protocol carried (transparently) by the GBT
- Implements multiple protocol busses and functions:
 - I2C, JTAG, Single-wire, parallel-port, etc...
- Implements environment monitoring functions:
 - Temperature sensing
 - Multi-channel ADC
 - Multi-channel DAC

Engineers:

- Alessandro Gabrielli INFN, Italy
- Kostas Kloukinas CERN, Switzerland
- Sandro Bonacini CERN, Switzerland
- Alessandro Marchioro CERN, Switzerland
- Filipe Sousa CERN, Switzerland

<u>Status</u>

- Specification work undergoing:
- 1st Draft already available
- RTL design undergoing
- Tape-out: 2011
- 10-bit ADC prototype submitted for fabrication in April 2010

The GBT Protocol on FPGAs

- GBT-SERDES successfully implemented in FPGAs:
 - Scrambler/ Descrambler + Encoder/ Decoder + Serializer/CDR
- FPGA Tested:
 - XILINX Virtex-5FXT and 6LXT
 - ALTERA Stratix II and IV GX
- Optimization studies:
 - Optimization of use of resources (2009)
 - Low and "deterministic" latency (2010)
- Firmware:
 - "Starter Kit" is available for download with various resources optimization schemes for
 - StratixIIGx and Virtex5FXT
 - Available soon for:
 - StratixIVGx and Virtex6LXT
 - Low latency
- Engineers:
 - Sophie Baron CERN, Switzerland
 - Jean-Pierre Cachemiche CPPM, France
 - Csaba Soos CERN, Switzerland
 - Steffen Muschter Stockholm University
- Users:
 - 30 registered users from all over the world (most users from collaborating institutes)
 - LHC experiments, but also CLIC, PANDA, GBT
 - Very active users are now part of the development team

Xilinx - 4.8 Gb/s

Altera + opto TRx - 4.8 Gb/s

SLVS Driver/Receiver

Receiver

- Power Supply: 1.2V to 1.5V
- Power Dissipation:
 - 150uW @ 320Mbs, 1.2V supply
 - <1uW @ power down

• Driver

- Power Supply: 1.2V to 1.5 V
- Power Dissipation:
 - 3.1mW @ 320Mbs, 1.2 V supply
 - <10uW @ power down

- Engineer
 - Sandro Bonacini CERN, Switzerland

Status:

Chip currently under testing

Electrical Specifications

Symbol	Parameter	Notes	Min	Тур	Max	Units
V _{IDH}	Differential input high			3.8	5.9	mV
V _{IDL}	Differential input low threshold		0	2.2		mV
V _{CM}	Common- mode voltage range		- 300		V _{DD} +300	mV

Electrical Specifications

Symbol	Parameter	Notes	Min	Тур	Max	Units
Vod	Differential output voltage		110	200	320	mV
ΔV_{OD}	Differential output voltage change	(fig.1)	0	14	20	mV
Vos	Driver offset voltage		100	200	350	mV
I _{sco}	Output short-circuit current	Vos=0,		-25	-60	mA
		V _{oD} =0				
I _{SCOD}	Differential output short-circuit	V _{oD} =0		-3	-5	mA
	current					
I _{DD}	Supply current			2.5	4.0	mA

Programmable Output Current

csel[3:0]	Output current [mA]	Driver power dissipation [mW]
8	2.0	3.0
4	1.3	2.1
2	0.8	1.4
1	0.5	1.0
(sleep) 0	0	<.01

Note: All values are given at 1.2V power supply voltage, typical conditions.

E – Links: SLVS Data Transmission Tests

- Scalable Low Voltage Standard (SLVS)
 - JEDEC standard: JESD8-13
 - Main features:
 - 2 mA Differential max
 - Line impedance: 100 Ohm
 - Signal: +- 200 mV
 - Common mode ref voltage: 0.2V

- Tests on SLVS-RT chip
 - 1 driver
 - 1 receiver
- Various types of transmission media tested:
 - Kapton
 - PCB
 - Ethernet cable
 - Test equipment
 - Bidirectional link
 - FPGAs perform pseudo-random data generation and checking

at 320Mbps		140 mV	200 mV		400 mV	
		min swing		half swing		nominal
20cm kapton	<	1.00E-13	<	1.00E-13	<	1.00E-13
3cm UTP	<	1.00E-13			<	1.00E-13
1m PCB microstrip	<	1.00E-13	<	1.00E-13	<	1.00E-13
2m PCB microstrip		3.20E-12		9.00E-13		8.00E-13
2m PCB stripline		1.05E-08		1.00E-12		8.00E-13
5m ethernet	*	2.37E-12	*	1.60E-12		
(*) PRELIMINARY						

X-ray Irradiation Results

H 2.00 ns/div

3.180 ns

▲ 0 ▶ **1** -36 mV

Output

More (1of 2)

Clear All Pre-rad cycle-to-cycle jitter measured using a PRBS sequence generator (Agilent 81133A) is about 17 ps (rms)

- All chips show a peak in the SLVS receiver supply current and then a decrease to a value smaller than the pre-rad.
- SLVS transmitter supply current doesn't change significantly with irradiation.
- Chips show a worse jitter performance after irradiation
 - Sequence-dependence, most likely due to the receiver becoming slower for the decrease in supply current
 - PMOS threshold increase responsible for bias current degradation.

New chip submitted July 2010 with a resized bias circuit

Input from Xilinx S3E

The GBT - SerDes

The GBT – SerDes is a demonstrator for:

- The Serializer/De-serializer critical circuits:
 - Phase-Locked Loops
 - Frequency dividres
 - Line driver/receiver
 - Constant-latency barrel shifter
 - Phase shifter
- The circuit operates at 4.8 Gb/s
- The chip was packaged in a custom flip-chip BGA package

Engineers:

- Ozgur Cobanoglu CERN, Switzerland
- Federico Faccio CERN, Switzerland
- Rui Francisco CERN, Switzerland
- Ping Gui SMU, USA
- Alessandro Marchioro CERN, Switzerland
- Paulo Moreira CERN, Switzerland
- Christian Paillard CERN, Switzerland
- Ken Wyllie CERN, Switzerland

Status:

Chip is currently under testing

Serializer

Serializer:

- 4.8 Gb/s
- 120-bit shift register
 - 3 × 40-bit shift register (f=1.6 GHz)
 - 3-to-1 fast multiplexer (f=4.8 GHz)
- Data path:
 - No SEU protection
 - SEUs handled by the Reed-Solc CODEC
- Clock divider:
 - Divide by 120
 - f = 4.8 GHz
 - Triple voted for SEU robustness
- PLL:
 - SEU hardened VCO

Engineers:

- Ozgur Cobanoglu CERN, Swit;
- Federico Faccio CERN, Switze
- Paulo Moreira CERN, Switzerk

Status:

Fully functional

Serializer Measurements: 4.8 Gb/s

• Tx Jitter:

- Total jitter (1e⁻¹²): 53 ps
- Random jitter: 2.4 ps (rms)
- Deterministic jitter: 19 ps
 - Data dependent: 4.8 ps
 - Periodic:
 - RMS: 4.6 ps
 - PP: 19.6 ps
 - Duty-cycle-distortion: 0.6 ps
 - Inter-symbol interference: 4.8 ps

Serializer Measurements: 6 Gb/s

http://cern.ch/proj-gbt

Paulo.Moreira@cern.ch

De-serializer

De-Serializer:

- Dual PLL CDR Loop:
 - 1st Loop: Frequency centering PLL
 - 2nd Loop: CDR
 - Allows to reduce the CDR VCO gain for lower
- Half-Rate:
 - Phase-detector
 - Frequency-detector
- Constant latency frame alignment circi
- As for the serializer:
 - Unprotected data path
 - TMR clock divider
 - SEU hardened VCO

Engineers:

- Ozgur Cobanoglu CERN, Switzerland
- Federico Faccio CERN, Switzerland
- Rui Francisco CERN, Switzerland
- Paulo Moreira CERN, Switzerland

Status:

- The receiver is fully functional
- Clock recovery operates up to 6 Gb/s
- However it only operates error free up 3.0 Gb/s
 - This seems to be caused by the (so an unexplained) bad quality of the eyediagram at the input of the receiver (see later in this presentation)

CDR: Measurements

- Total jitter (1e⁻¹²): 63 ps
- Random jitter: 4.9 ps (rms)
- Deterministic jitter: 24 ps (pp)
 - Periodic:
 - RMS: 2 ps
 - PP: 5 ps

De-serializer: Input eye-diagram

Signal generator eye-diagram (straight to the scope)

Empty board with a connector and a 100 Ω termination (differential active probe)

Populated board

PCB – Package Modelling (2¹/₂ D)

Package (one interconnect layer)

PCB: SFP to GBT transmission lines

Package S-Parameters

Phase-Shifter:

- Main features:
- 8 channels (3 in the GBT-SERDES prototype)
- 1 PLL + Counter generates the three frequencies: 40 / 80 and 160 MHz
- 1 DLL per channel
- Mixed digital/analogue phase shifting technique:
- Coarse de-skewing Digital
- Fine de-skewing Analogue
- Power consumption:
 - PLL: 42 mW (measured)
 - Channel: 16 mW/channel (measured)
- Differential non-linearity: <6.7% LSB
- Integral non-linearity: INL<6.5% LSB

Engineers:

- Ping Gui SMU, USA
- Tim Fedorov SMU, USA –
- Paul Hartin SMU, USA
- Nataly Pico SMU, USA
- Bryan Yu SMU, USA

Status:

- Fully functional
- Fully meets the specs
 - One channel with timing clearly identified with tri

#	specification	min	typ	max	unit	note
	Number of outputs					
	Frequencies		80 and	i 160	MHz	individually programmable per output, set by control word Freq[1:0]
	Phase resolution	50			ps	Set by Delay[8:0]
	DNL			20%	LSB (50ps)	
	INL			30%	LSB (50ps)	
	Jitter RMS			5	ps	
	Jitter P-P			30	ps	
	Temperature coefficient			5	ps/deg	
	Supply coefficient			50	ps/V	
	Logic levels					Programmable: CMOS/LVDS
	Synchronized with the 40Mhz main clock					

- **Resolution:** $\Delta t = 48.83 \text{ ps}$
- Differential Non-Linearity:
 - $\sigma = 4.7 \text{ ps} (9.6\% \text{ of } \Delta t)$
 - pp = 21.5 ps (44% of ∆t)

- **Period Jitter:** $\sigma = 4.8 \text{ ps} (\text{pp} = 29 \text{ ps})$
- Integral Non-Linearity:
 - $\sigma = 4.3 \text{ ps} (8.7\% \text{ of } \Delta t)$
 - pp = 21.9 ps (48.7% of Δt)

Phase – Shifter: Measurements

Clock	Period	Clock TIE		
Mean	25.000ns	Mean	0.00s	
Max	25.013ns	Max	13.771ps	
Min	24.984ns	Min	-12.916ps	
Pk-Pk	28.760ps	Pk-Pk	26.687ps	
Std Dev	4.7967ps	Std Dev	3.2663ps	
Population	656	Population	959	
		Est Freq	39.999MHz	

Digital Functions

Digital Functions:

- Parallel I/O interface MUX
- Scrambler De-Scrambler
- Encoder decoder
- Frame aligner logic
- Frequency calibration logic
- I2C interface

Engineers:

- Alessandro Marchioro CERN, Switzerland
- Paulo Moreira CERN, Switzerland
- Christian Paillard CERN, Switzerland
- Ken Wyllie CERN, Switzerland

Status:

• Fully functional

GBT – SerDes Power Consumption

Circuit	Power [mW]
CDR	456
Serializer	330
3 ch Phase-Shifter (+ 2 diff. drivers = 10 mW)	94 (≈ 16 mW/Ch + PLL: 42 mW)
I/O	75
Digital Core	27
Total	980

GBTX Block Diagram

http://cern.ch/proj-gbt

GBT Link Bandwidth

- Bandwidth:
 - User: 3.36 Gb/s
 - Line: 4.8 Gb/s
- Generic data field:
 - 3.2 Gb/s (80-bits)
- Dedicated channels:
 - Link control: 80 Mb/s (2-bits)
 - Slow control channel: 80 Mb/s (2-bits)
- DC balance:
 - Scrambler
 - No bandwidth penalty
- Link is bidirectional
- Link is symmetrical
- Down-link highly flexible:
 - Can convey unique data to each frontend device that it is serving
 - "Soft" architecture managed at the control room level

- Frame Synchronization:
 - Redundant header
 - Forward Error Correction:
 - Interleaved Reed-Solomon double error correction
 - 4-bit symbols (RS(15,11))
 - Interleaving: 2
 - Error correction capability:
 - $2_{\text{Interleaving}} \times 2_{\text{RS}} = 4 \text{ symbols} \cong 16 \text{-bits}$
 - Code efficiency: 88/120 = 73%
- Transmission protocol easily implemented in modern FPGAs

GBTX – to – Frontend Communication

Mode	Туре	Data Rate	Notes
OFF	Power off	-	
P-Bus	parallel	80 MW/s	One 40-bit word (DDR)
B-Bus	parallel	80 MB/s	Up to 5 Bytes (DDR)
N-Bus	parallel	160 MN/s	Up to 5 Nibbles (DDR)
2 ×	serial	80 Mb/s	Up to 40 serial links
4 ×	serial	160 Mb/s	Up to 20 serial links
8 ×	serial	320 Mb/s	Up to 10 serial links
8 ×	lanes	> 320 Mb/s	See "Lanes"

JEDEC standard, JESD8-13 Scalable Low-Voltage Signalling for 400 mV (SLVS-400) http://www.jedec.org/download/search/JESD8-13.pdf

- GBTX to Frontend interface:
 - Electrical links (e-link)
 - Bidirectional
 - Operate in:
 - Serial and Parallel Modes
 - Up to 40 active links
- E-Link:
 - Three pairs:
 - D_{OUT}: GBTX -to Frontend
 - D_{IN} : Frontend to GBTX
 - CLK: GBTX -to Frontend
- Programmable data rate:
 - Independently for up/down links
 - Independently in five groups (of up to 8 links each)
 - 80, 160 and 320 Mb/s
- Lanes:
 - To achieve > 320 Mb/s
 - Two or more e-links can be grouped forming a "lane"
 - Slow data rate channel:
 - Fixed data rate: 80 Mb/s
 - General purpose data transmission
 - Compatible with GBT SCA
- Electrical standard:
 - SLVS electrical levels:
 - 100 Ω termination
 - 400 mV differential
 - 200 mV common mode
 - $I_{LOAD} = \pm 2 \text{ mA}$

GBTX 8B/10B Transmitter Mode

- In this mode:
 - 8B/10B encoding is used
 - No SEU protection
 - Only available in the simplex transmitter mode
- Motivation:
 - Simplicity of the FPGA receiver
 - Significant reduction of the resources used by the GBT receiver in the FPGAs
- Implementation:
 - A first special word is required for frame synchronization:
 - Comma character will be used
 - Idle/data frames:
 - Data frame (txDataValid = 1): One comma character followed by 11 8B/10B words
 - Idle frame (txDataValid = 0): To be specified!
 - The 12-word 8B/10B encoder will very likely require additional GBTX latency!
 - To reduce the package cost and the pin count some of the (normally) GBTX output ports will work as
 inputs
- Bandwidth:
 - User bits: 88 (82 in the GBT protocol)
 - User data rate: 3.52 Gb/s (3.28 Gb/s in the GBT protocol)
 - 3.52 Gb/s vs 3.28 Gb/s \rightarrow 7.4% increase only!

(No commas allowed in the other positions)

GBTX Chip and Package Size

- Total pin count: 434 •
- Chip size: $5.5 \times 5.5 = 30.25 \text{ mm}^2$
- Fits a 21 × 21 pin Package •
- Approximate package size: •
 - 1 mm pitch: $22 \times 22 \text{ mm}^2$ •
 - 0.8 mm pitch: $18 \times 18 \text{ mm}^2$ ٠

E-Ports (DIFF: IN/OUT/CLK)	264
E-Port SC (DIFF: IN/OUT/CLK)	6
Transmitter	12
Receiver	12
VCXO PLL	10
Phase-Shifter	16
I2C Slave	2
I2C Master	3
JTAG	5
E-Fuse Programming	4
Chip control	12
I/O Power	34
I/O Ground	34
Core Power	10
Core Ground	10
Total	434

GBTX Power Consumption

GBTX Circuit	Vdd [V]	ldd [mA]	Power [mW]	Comments
CDR	1.5	304	456	Measurement
Serializer	1.5	220	330	Measurement
Phase-Shifter	1.5	167	251	Estimated for 8 channels based on a 3 channel measurement
E-link output data buffers (44)	1.5	88.0	132	Simulation (SLVS driver with maximum current settings)
E-link clock buffers (44)	1.5	88.0	132	Simulation (SLVS driver with maximum current settings)
Phase-Aligners (11)	1.5	27.7	42	Estimated
Digital core	1.5	23	35	Estimated based on current measurement and new functionality
Other I/O	1.5	10.0	15	Estimated
VXCO PLL	1.5	5	8	Estimated
E-Link input data buffers (44)	1.5	4.4	7	Simulation
E-link de-serializers (11)	1.5	2.5	4	Estimated
E-Link serializers (11)	1.5	2.5	4	Estimated
Clock Manager	1.5	1	2	Estimated
Total	1.5	943	1414	

CDR

- Serializer
- Phase-Shifter
- E-link output data buffers (44)
- E-link clock buffers (44)
- Phase-Aligners (11)
- Digital core
- Other I/O
- VXCO PLL
- E-Link input data buffers (44)
- E-link de-serializers (11)
- E-Link serializers (11)
- Clock Manager

Project Schedule & Manpower

Tasks remaining:

- GBT SerDes:
 - Understanding the receiver behaviour:
 - 3 Gb/s error free operation instead of 4.8 Gb/s
 - SEU tests
- GBTX:
 - Receiver rework (if needed)
 - Power down functions (SER/CDR)
 - TX 8B/10B mode
 - Clock Manager
 - VXCO based PLL
 - 8 channel Phase-Shifter (only 3 on GBT SerDes)
 - Implement the 8B/10B transmitter mode
 - E Links
 - Bi-directional C4 pad
 - Serializers
 - Phase-Aligners
 - E-Ports:
 - Implement a bidirectional C4 pad with switchable termination resistor
 - Control Logic:
 - Watchdog and start-up state machines
 - IC channel logic
 - I2C master
 - Configuration logic:
 - Fuse bank
 - Chip assembly and verification
 - From industry:
 - BGA package (flip-chip)
 - 80 MHz crystal
 - Testing:
 - Test setup (should we use the IC tester?)
 - Early behavioral model needed for test development
 - Software
 - Firmware
- GBLD:
 - Change the input protection diodes, change I/O to 1.5V
- GBTIA
 - Change pad ring, add average power detector and add squelch circuit
 - Migration from the LM to the DM technologies flavor
 - 2.5V Supply

Project Schedule 2011

- 1st Q:
 - SEU tests on GBT SerDes
 - GBLD submission
 - GBTIA submission
- 3/4th Q: GBTX submission

- GLIB concept:
 - Evaluation platform
 - Easy entry point for users of high speed optical links
- Intended use:
 - Optical link evaluation in the laboratory
 - Control, triggering and data acquisition of remote modules in beam or irradiation tests
- Each GLIB card:
 - Can process data to/from four SFP+ transceiver modules
 - Each operating at bi-directional data rates of up to 6.5 Gbps.
- Matches comfortably the specifications of the GBT/Versatile Link:
 - Target data rate of 4.8 Gbps.
- Basic configuration:
 - One GLIB board interfaces with up to four GBT channels
- Physical implementation:
 - Double width Advanced Mezzanine Card (AMC)
 - Based on the XC6VLX130T FPGA of the Virtex-6 family
- Long lifetime:
 - Distribution and support of a small set of variants over several years
- Engineering contacts:
 - Sophie Baron
 - Francois Vasey
 - Paschalis Vichoudis

AMC edge connector

GLIB Deliverables

- The GLIB team envisages to deliver and support:
 - Software
 - Firmware
 - Hardware
- 3 Basic setups:
 - Bench-top beam test setup
 - Bench-top front-end module test setup
 - Crate system test setup
- The required FMCs (TTC & E-Link) will also be delivered and supported.

Status:

- Specifications
 - V1.9 available.
- Design
 - Schematics: Ready.
 - Layout: Ready. Verification on-going
 - Fabrication: Prototype Feb 2011
- Testing:
 - Commercial solutions will be used
- Software/firmware:
 - Development will start in 2011

