

Non Collider Collaboration

MuCol Scope

D. Schulte

Study Meeting 12. April 2022

European Accelerator R&D Roadmap

The Accelerator R&D Roadmap has been scrutinised by the LDG and presented to Council "In" December

Council requested Implementation Plan

The Roadmap report identifies different R&D scenarios and details the workpackages and deliverables

Three main deliverables are foreseen:

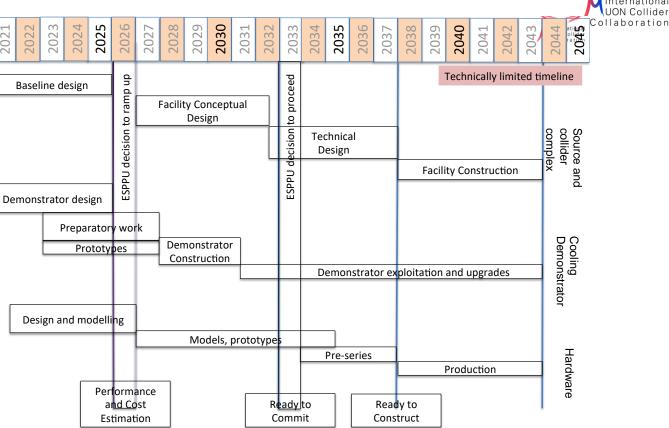
- a Project Evaluation Report that assesses the muon collider potential as input to the next ESPPU;
- an **R&D Plan** that describes a path towards the collider;
- an **Interim Report** by the end of 2023 that documents progress and allows the wider community to update their view of the concept and to give feedback to the collaboration.

Project Evaluation Report

The project evaluation report will contain an assessment of whether the 10 TeV muon collider is a promising option and identify the required compromises to realise a 3 TeV option by 2045. In particular the questions below would be addressed.

- What is a realistic luminosity target?
- What are the background conditions in the detector?
- Can one consider implementing such a collider at CERN or other sites, and can it have one or two detectors?
- What are the key performance specifications of the components and what is the maturity of the technologies?
- What are the cost drivers and what is the cost scale of such a collider?
- What are the power drivers and what is the power consumption scale of the collider?
- What are the key risks of the project?

Collider Timeline


Goal is to know by next ESPPU if muon collider is credible option

2021

Timeline depends on strategies and technical progress

Prudently explore if MuC can be option as next project (i.e. operation mid 2040s) in case Europe does not build higgs factory

strong ramp-up required after 2026

D. Schulte

Roadmap Scenarios

Roadmap identifies muon collider challenges and two R&D scenarios to address them

- An full scenario
 - full achievement of objectives, about 5 years
- A reduced scenario
 - only a subset of objectives can be achieved, 4 years

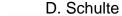
Scenario	FTEy	M MCHF
Aspirational	445.9	11.9
Minimal	193	2.45

http://arxiv.org/abs/2201.07895

Label	Begin	End	Description	Aspira	ational	Min	imal
				[FTEy]	[kCHF]	[FTEy]	[kCHF]
MC.SITE	2021	2025	Site and layout	15.5	300	13.5	300
MC.NF	2022	2026	Neutrino flux miti-	22.5	250	0	0
			gation system				
MC.MDI	2021	2025	Machine-detector interface	15	0	15	0
MC.ACC.CR	2022	2025	Collider ring	10	0	10	0
MC.ACC.HE	2022	2025	High-energy com- plex	11	0	7.5	0
MC.ACC.MC	2021	2025	Muon cooling sys- tems	47	0	22	0
MC.ACC.P	2022	2026	Proton complex	26	0	3.5	0
MC.ACC.COLL	2022	2025	Collective effects across complex	18.2	0	18.2	0
MC.ACC.ALT	2022	2025	High-energy alter-	11.7	0	0	0
			natives				
MC.HFM.HE	2022	2025	High-field magnets	6.5	0	6.5	0
MC.HFM.SOL	2022	2026	High-field solenoids	76	2700	29	0
MC.FR	2021	2026	Fast-ramping mag- net system	27.5	1020	22.5	520
MC.RF.HE	2021	2026	High Energy com- plex RF	10.6	0	7.6	0
MC.RF.MC	2022	2026	Muon cooling RF	13.6	0	7	0
MC.RF.TS	2024	2026	RF test stand + test cavities	10	3300	0	0
MC.MOD	2022	2026	Muon cooling test module	17.7	400	4.9	100
MC.DEM	2022	2026	Cooling demon- strator design	34.1	1250	3.8	250
MC.TAR	2022	2026	Target system	60	1405	9	25
MC.INT	2022	2026	Coordination and integration	13	1250	13	1250
			Sum	445.9	11875	193	2445

Table 5.5: The resource requirements for the two scenarios. The personnel estimate is given in full-time equivalent years and the material in KCHF. It should be noted that the personnel contains a significant number of PhD students. Material budgets do not include budget for travel, personal IT equipment and similar costs. Colours are included for comparison with the resource profile Fig. 5.7.

Roadmap Implementation



We understand that LDG will oversee the implementation of the Roadmap

• but LDG will not be responsible to provide resources etc.

Need to find our own resources

- Submitted five white papers to the US Snowmass process (physics/detector/facility)
 - more than 200 signatures, more to come
- Will submit a Design Study proposal to the EU for co-funding now
 - and a technology proposal in one or two years
- Requests in several countries to find resources
 - for the moment used as matching funds for the EU proposal
- Request an increase in the MTP

EU Design Study

Initially planned to study design of demonstrator But does not fit programme description CDR is not mandatory

decided to go for muon collider design

At this moment, do not have matching funds for TECH call,

- but interest expressed by collaborators
- need time to secure matching funds
- will try to go for the next call in 2024 (maybe special call in 2023)

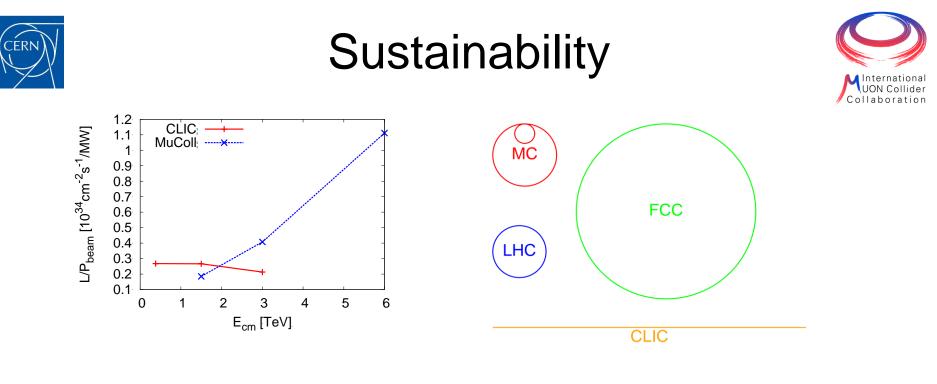
HORIZON-INFRA-2022-DEV-01-01: Research infrastructure concept development Expected EU contribution: 1-3 MEUR, Total budget 21.8 MEUR Type of Action: Research and Innovation Actions

Develop a conceptual design for the collider

HORIZON-INFRA-2022-TECH-01-01: Expected EU contribution: 5-10 MEUR Total budget 110 MEUR Type of Action: Research and Innovation Actions

Develop technologies for at least three infrastructures of European interest.

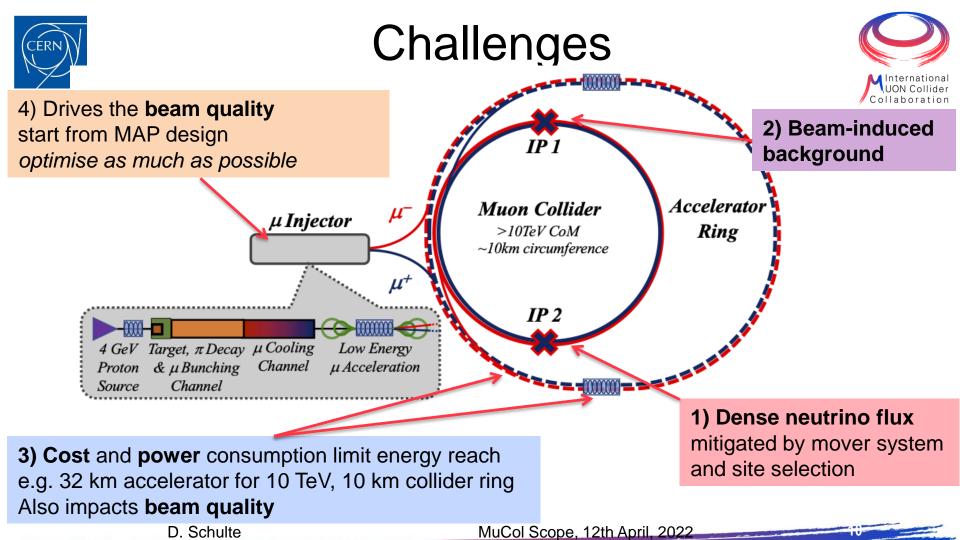
Workpackages and Funding


Workpackages

- 1. Coordination and Communication
- 2. Physics and Detector Performance Requirements
- 3. Proton Complex
- 4. Muon Production and Cooling
- 5. High-energy Complex
- 6. RF Systems
- 7. Magnetic Systems
- 8. Muon Cooling Cell

D. Schulte

Funding

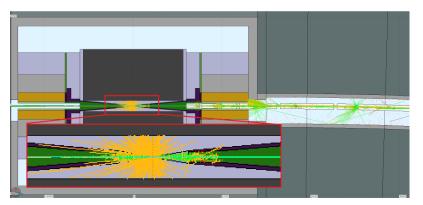

- Total EU request 2.4(+0.6) MEUR
- Matching funds from non-CERN collaborators are ~ 3 MEUR
 - had to squeeze
- CERN is contributing about the same as EU but not requesting
 - except for some administrative cost

Specific advantages are

- Luminosity to power ratio
- Compact size

D. Schulte

Challenge/Workpackage Interfaces



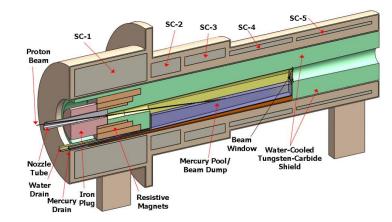
Physics and Detector Requirements

- Provide link to physics community
- Question: Can we realise the physics potential?
- At 10 TeV, O(50,000) muons decay per m and bunch passage
- Mitigate background to not compromise physics
 potential

- Provide simple detector performance specification (DELPHES card) (WP 2)
- Provide background description (WP 2+5)
- Provide detector simulation infrastructure (WP 2)

Proton Driver

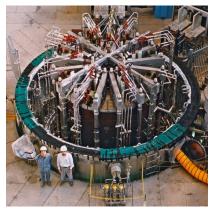
SC Linac


٠

Front End

Chanr

Proton Beam and Muon Production


O(15 T) aperture LTS solenoid resistive insert or O(20 T) aperture HTS solenoids

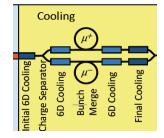
- Shock wave and heating of target (WP 4)
- Radiation mitigation in solenoid (WP 4)
- Large aperture solenoid design (WP 7)

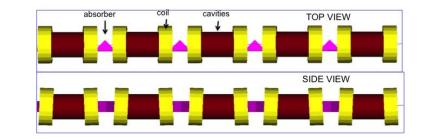
ITER Central Solenoid Model Coil 13 T in 1.7 m (LTS)

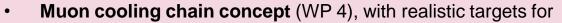
Buncher

Accumulato

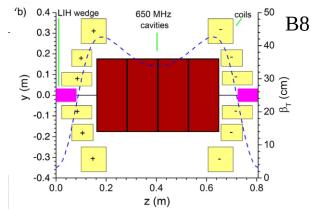
2 MW Proton beam power


Combination into 400 kJ

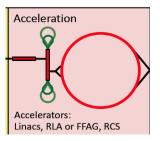

pulses at 5 Hz (WP 3)

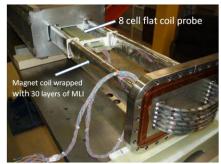

Combiner

Muon Cooling



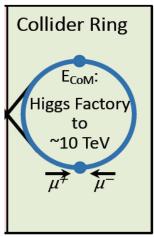
- RF (WP 6)
- magnets (WP 7)
- integration into cell (WP 8)


D. Schulte



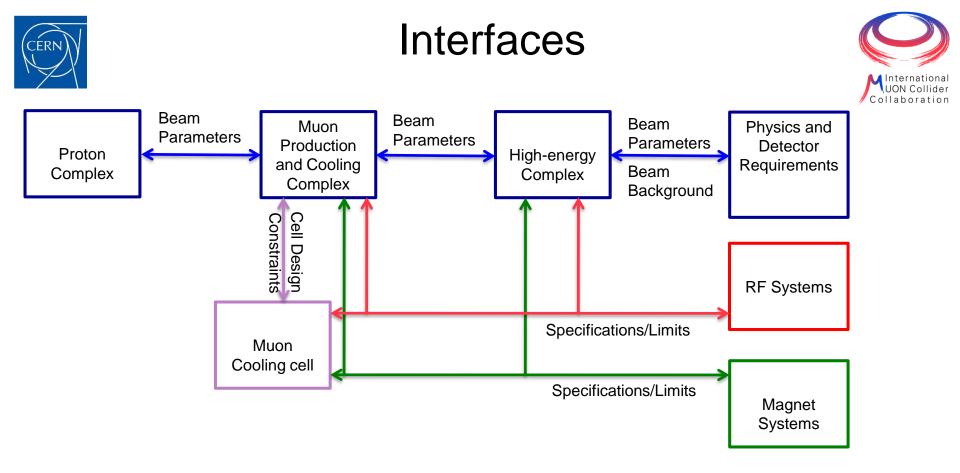
Muon Acceleration

- Cost and power efficient acceleration
 - Lattice design (WP 5)
 - Fast-ramping magnets and power recovery (WP 7)
 - Longitudinal beam dynamics and RF design (WP 6)



Test of **fast-ramping normal**conducting magnet design

٠



Muon Collisions

- Collider ring design (WP 5), considering
 - Losses leading to background (WP 5+2)
 - Mitigation of losses (WP 5+7)
 - Magnet design (WP 7)
 - Neutrino flux (outside of study)

D. Schulte

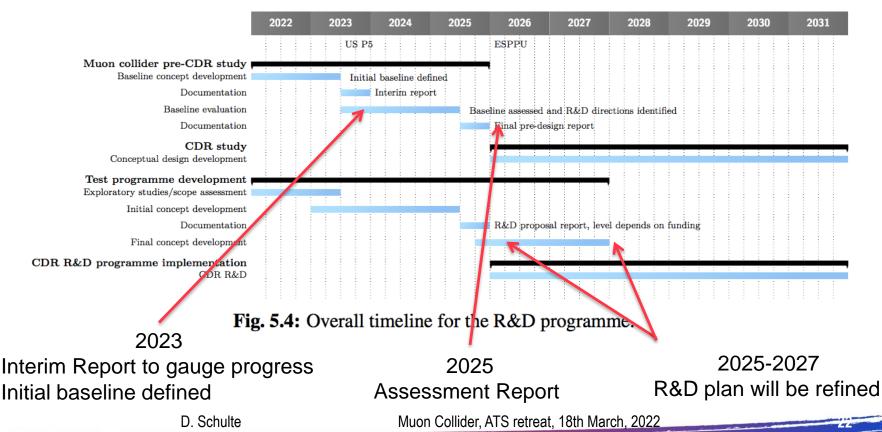
Organisation

D. Schulte

Conclusion

- European Accelerator R&D Roadmap is the basis for our Design Study
 - Work programme
 - Deliverables
- One main deliverable for Design Study
 - Assessment report
 - Challenge: could be end of 2025 or later

NFNeutrino flux mitigationMDIMachine detector interface studiesACCAccelerator designHFMHigh-field magnetsFRFast-ramping magnet systemRFRF systemsTARTarget and target areaMODMuon cooling module design	SITE	Site studies, radiation, civil engineering, neutrino flux mitigation strategy
ACCAccelerator designHFMHigh-field magnetsFRFast-ramping magnet systemRFRF systemsTARTarget and target area	NF	Neutrino flux mitigation
HFMHigh-field magnetsFRFast-ramping magnet systemRFRF systemsTARTarget and target area	MDI	Machine detector interface studies
FRFast-ramping magnet systemRFRF systemsTARTarget and target area	ACC	Accelerator design
RF RF systems TAR Target and target area	HFM	High-field magnets
TAR Target and target area	FR	Fast-ramping magnet system
	RF	RF systems
MOD Muon cooling module design	TAR	Target and target area
	MOD	Muon cooling module design
DEM Demonstrator	DEM	Demonstrator
INT Integration	INT	Integration


D. Schulte

Muon Collider, ATS retreat, 18th March, 2022

Schedule

