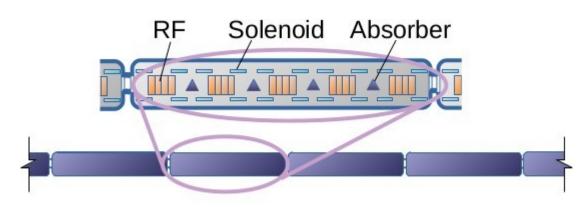
# Work Package 4 – Target and Cooling



MInternational UON Collider Collaboration

#### C. Rogers, C. Densham




Science & Technology Facilities Council

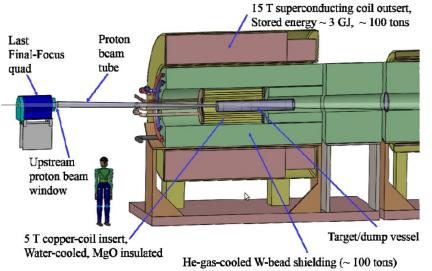
### MInternational WON Collider Collaboration

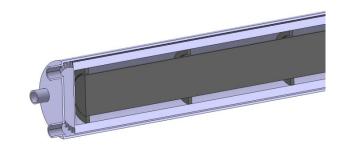
## Tasks

- Task 4.1 Coordination and Communication
- Task 4.2 Cooling system (RAL, Imperial)
  - Design and optimisation of the 6D beam cooling system
  - Interface to related accelerator systems
  - Assessment of experimental infrastructure
  - Final cooling system is out-of-scope
- Task 4.3 Target system (CERN, RAL, Warwick, ENEA)
  - Design of target concept
    - Including graphite, liquid metal and fluidised Tungsten
  - Studies of target systems, such as heat load and pion yield
  - Assessment of shielding requirements and radiation load on surrounding systems (esp magnets)
  - Liaison with proton driver work package
- Task 4.4 Software development (Imperial, RHUL)
  - Support for cooling channel design in BDSIM



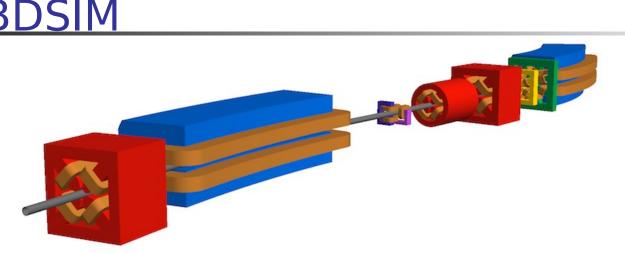



- 6D cooling system requires very compact lattice
  - Absorber, solenoid, RF


Cooling

- Baseline design conservative in some technology choices e.g. solenoid
- Integration issues not fully explored
- Aim is to optimise the design
  - Consider existing and likely technology limitations established in WP6, WP7
  - Consider also constraints from integration in liaison with WP8




# Target





- Target incorporates challenging combination of magnet and materials
  - Stress on target
  - Heat load on target
  - Radiation load on magnet
- Thick shielding required to protect the magnet
  - Tension between magnet forces and radiation load
  - Close collaboration with WP7





- Existing cooling simulations are done with G4Beamline and ICOOL
  - Both developed in US
  - Excellent to develop the capability in Europe
- BDSIM has been used by FCC, CLIC and ILC
  - Incorporates Geant4 physics models
  - Support for simulation of long beamlines and rings
  - Python API



- Milestones
  - Baseline muon cooling cell design (12 months)
    - Input to WP8, WP6, WP7
  - Initial assessment of target radiation load on magnet systems (12 months)
    - Input to WP7
- Deliverables
  - Development of BDSIM simulation 24 months
  - Advisory report on key subsystems 36 months
    - For input to European Strategy
  - Consolidated report on key subsystems 48 months

# Resources



|                    |                                      | Matching |              |         |           |        |                 | EU DEV   |       |              |              |               |
|--------------------|--------------------------------------|----------|--------------|---------|-----------|--------|-----------------|----------|-------|--------------|--------------|---------------|
|                    | Deliverable                          | Staff    |              | Postdoc |           | Studen | ıt              | Material | Staff | Postdoc      | Student      | Cost (Approx) |
|                    |                                      | FTEy     | Name         | FTEy    | Institute | FTEy   | Institute       | MEUR     | FTEy  | FTEy Name    | [FTEy]       | [kEUR]        |
| Coordination       | Coordination and Communication       |          | 0.4 UKRI*    |         |           |        |                 |          |       |              |              |               |
| Ionisation Cooling | 6D cooling                           |          | 1.6 UKRI*    |         |           |        |                 |          |       |              |              |               |
|                    |                                      |          | 0.4 Imperial |         |           | 3.5    | 5 UKRI/Imperial |          |       | 1 Imperial** |              | 103           |
|                    | BDSIM                                |          | 0.4 RHUL     |         |           |        |                 |          |       | 1 Imperial** |              | 103           |
| Target             | Heat load and shock on target        |          | 1.5 CERN     |         |           |        |                 |          |       |              |              |               |
|                    | Preliminary target complex design    |          |              |         |           |        |                 |          |       | 1.2 UKRI*    |              | 87.7          |
|                    | Radiation calculation and pion yield |          | 0.8 Warwick  |         |           | 1.75   | 5 UKRI          |          |       |              | 1.75 Warwick | 50            |
|                    | Tungsten Powder Jet                  |          |              |         |           |        |                 |          |       | 1.2 UKRI*    |              | 87.7          |
|                    | Heavy Liquid Metal                   |          | CERN/ENE     | A       |           |        |                 |          |       |              |              |               |
| Sum                |                                      |          | 4.7          |         | 0         | 5.25   | 5               |          |       | 4.4          | 1.75         | 431.4         |

\*UKRI is UK Research and Innovation (AKA STFC AKA Rutherford Appleton Laboratory)

\*\*1 FTEy of this post-doc is in WP8

Assume start is January 2023

Assume grant period is 4 years