





# MuCol WP5 High energy complex

Antoine CHANCE (CEA) With the great help of Christian CARLI, Anton LECHNER, Elias METRAL (CERN)



## **Description of the Workpackage**

#### Design of the acceleration complex

- Pulsed synchrotrons
- Alternative based on FFA
- **Design of the collider** to get the target luminosity
  - Interaction region + shielding design
  - Limitations due to collective effects
  - Machine detector interface
  - Background to experiment

#### How to handle the radiation due to muon decay and other beam losses



## Description of the task 5.1 Coordination and Communication

- Overall coordination of the activity
- Communication of its results
- Monitoring of work progress
- Management of the WP budget and use of resources and prepare internal and deliverable reports
- Organization of and/or support to activity workshops or specialized working sessions, implying the attendance of invited participants from inside and outside the consortium



## Description of the task 5.2 Collider design (CERN)

#### • Feasibility and optimization of the muon collider

- **Consistent lattice** for a 3 TeV and 10 TeV com collider comprising:
  - Interaction region
  - Straights to house necessary equipment (RF, injection, possibly extraction...)
  - Arcs
- Cost estimate

#### • Particular challenges:

- Chromatic effects due to the small  $\beta^*$  and large momentum spread and their correction
- Control of linear and non-linear **momentum compaction** to keep small bunch length
- Acceptable beam induced background levels
- Control of the neutrino radiation issue
- Beam operation with moving beam lines and, possibly, non-linear effects



### Description of the task 5.3 Pulsed synchrotron and FFA design (CEA, CERN, STFC, BNL)

- Feasibility and optimization of the muon acceleration complex with
  - Cost estimate
  - Upgrade path
  - Reasonable requirements on accelerator elements (RF cavities and magnets)
- Very fast acceleration. Power consumption and acceleration inefficiency
- Two explored solutions:
  - Pulsed synchrotrons
  - FFA
- Objectives:
  - Beamline in a parameter table
  - Full set of lattices with critical technologies identified
  - **Start-2-end tracking** to demonstrate luminosity performance and to validate the bunch compression and emittance preservation during the acceleration process



## Description of the task 5.4 Beam dynamics (CERN)

- Transverse collective effects all along the muon accelerator chain
  - Impedance effects
  - To check the feasibility of the very quick acceleration phase due to high intensity
- Detailed proposed work plan:
  - Compute and store the resistive-wall impedance and wakefield
  - Perform PyHEADTAIL simulations of transverse beam stability with single bunch
  - Scan the relevant parameters to set limits on the performance reach
  - Choose and include **RF cavity impedance models**
  - Extend the previous parameters scan to set new limits to RF impedances
  - Re-do the same analysis with the RF cavities distributed along the machines
  - Re-do the same analysis with the 2 counter-rotating bunches
  - **Propose possible mitigation measures** and study in particular if pulsed synchrotrons need sextupoles



### Description of the task 5.5 MDI design and background to experiment (CERN, INFN, STFC)

- Goal: Develop a conceptual interaction region design with:
  - A detector shielding together with the detector envelope
  - Final focus system
  - Other requirements (e.g. neutrino, shielding of magnets etc.)
- It will explore:
  - Quantification of **particle fluxes** and **time dependence w**ith respect to the bunch passage:
    - Muon decay in the collider ring
    - Incoherent electron-positron pair production at the IP
    - Beam halo losses
  - Shielding design with respect to different contributions
  - Other possible **background mitigation techniques** on the machine side
  - The need of a halo-removal system for background reduction
  - Close collaboration with WP2 to assess and mitigate the impact of background on the physics performance
  - The benefits of **asymmetric and smart nozzles** (instrumented nozzles)
  - Estimates of the long-term radiation damage in the detector



### Description of the task 5.6 Radiation studies for the accelerators (CERN)

- Simulation and mitigation of radiation-related effects including the neutrino hazard
- To quantify the heat load distribution and long-term radiation damage in SC magnets due to muon decay and beam halo losses
- To develop a shielding design for arc magnets in order to:
  - Avoid quenches
  - Sustain the thermal load to the cryogenic system
  - Prevent magnet failures due to long-term radiation damage
- To quantify the **radiation environment** in the tunnel and caverns
  - To assess the need of machine protection systems to avoid beam induced-damage/quenches
  - Design of a beam extraction system (if needed)
  - Input for the design of a beam loss monitoring system
- Effect and optimization of the lattice design on the neutrino distribution
- To refine the dose kernel for assessing the surface dose arising from neutrinoinduced particle showers, considering the different neutrino flavours



## Table 3.1b

| Work package number            | 5                   | Lea | Lead beneficiary CE |      | CEA |  |
|--------------------------------|---------------------|-----|---------------------|------|-----|--|
| Work package title             | High energy Complex |     |                     |      |     |  |
| Participant number             | 1                   | 2   | 7                   | 11   |     |  |
| Short name of participant      | CERN                | CEA | INFN                | STFC |     |  |
| Person months per participant: | 216                 | 34  | 34                  | 128  |     |  |
| Start month                    | 1                   |     | End<br>month        | 48   |     |  |





## Table 3.1c: List of Deliverables

| Deliverable<br>(number) | Deliverable<br>name                                                  | Work<br>package<br>number | Short name<br>of lead<br>participant | Туре | Dissemination<br>level | Delivery<br>date (in<br>months) |
|-------------------------|----------------------------------------------------------------------|---------------------------|--------------------------------------|------|------------------------|---------------------------------|
| 5.1                     | Report on the collider ring design                                   | 5.2, 5.4, 5.5,<br>5.6     | CERN                                 | R    | PU                     | 36                              |
| 5.2                     | Report on the<br>design of high<br>energy<br>acceleration<br>complex | 5.3, 5.4, 5.6             | CEA                                  | R    | PU                     | 36                              |





## Table 3.1d List of Milestones

| Milestone | Milestone name                     | Related work | Due date (in | Means of verification   |
|-----------|------------------------------------|--------------|--------------|-------------------------|
| number    |                                    | package(s)   | month)       |                         |
| 5.1       | Mini-Workshop with pulsed          | 5.1, 5.3     | 12           | Minutes of the workshop |
|           | magnets                            |              |              |                         |
| 5.2       | Preliminary design of the          | 5.2          | 18           | Optics files            |
|           | interaction region                 |              |              |                         |
| 5.3       | Preliminary design of the collider | 5.2          | 18           | Optics files            |
| 5.4       | Preliminary design of the pulsed   | 5.3          | 18           | Optics files            |
|           | synchrotrons                       |              |              |                         |
| 5.5       | Preliminary design of the FFA      | 5.3          | 24           | Optics files            |
| 5.6       | Impedance budget in the collider   | 5.4          | 24           | Dataset                 |
|           | and pulsed synchrotron             |              |              |                         |



· · · · ·



## Table 3.1e: Critical risks for implementation

| Description of risk (indicate level of (i)<br>likelihood, and (ii) severity:<br>Low/Medium/High) | Work package(s) involved | Proposed risk-mitigation measures                                                                                                                                |
|--------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hiring difficulty<br>Likely/Medium                                                               | All                      | To promote the open positions on different<br>professional networks to be the most attractive                                                                    |
| Accelerator parameters are not feasible<br>Likely/High severity                                  | 5                        | <ol> <li>To discuss with WP6 and WP7 to find a set of<br/>more realistic parameters</li> <li>To reduce a bit the target luminosity to get<br/>margins</li> </ol> |
| Neutrino hazard is not manageable<br>Likely/ High severity                                       | 5                        | 1) Develop a strategy based on beam line movers,<br>specific optics and civil engineering to reduce the<br>impact.                                               |
|                                                                                                  |                          |                                                                                                                                                                  |

- ----



MInternational UON Collider Collaboration



# Thank you for attention