plans for luminosity levelling in 2022 and outlook for 2023

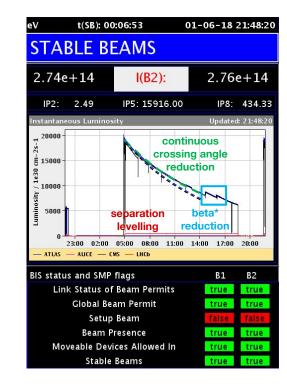
(with emphasis on MP aspects)

M. Hostettler, A. Calia, S. Fartoukh, D. Jacquet, S. Kostoglou, D. Mirarchi, M. Solfaroli, J. Wenninger, D. Wollmann

recap: what was done in run 2

- separation levelling in IP 2 / 8
- as of 2017: crossing angle reduction with intensity
 - \circ 160urad \rightarrow 130urad
 - TCT centres following crossing angle, open limits (discrete)

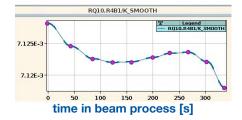
• as of 2018: operational beta* levelling @ end-of-fill


- \circ 30cm → 27cm → 25cm (ATS), triggered by OP
- collimators fixed

• levelling mechanics & procedures well established

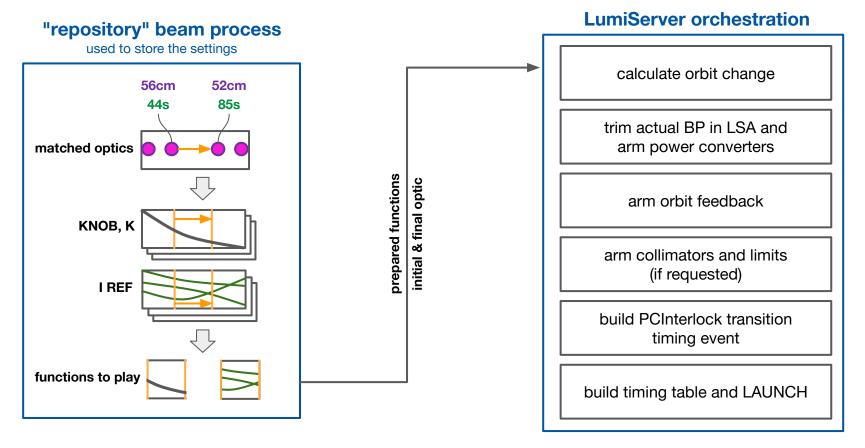
- levelling orchestrated by LHC Luminosity Server
- settings & corrections fine-tuned to minimize transients

run 3 beta* levelling is nothing fundamentally new


• larger levelling range - some additional requirements

beta* levelling: settings management

- settings are stored in a "repository BP" that spans the full levelling range
 - \circ e.g. 60cm → 30cm for 2022
- optics match points in BP = possible levelling targets
 - identified by position (seconds) in the BP


 $60 \text{cm} \rightarrow 30 \text{cm}$ repository BP

<u> </u>									
0.600	0.560	0.520	0.485	0.450	0.415	0.385	0.355	0.325	0.300
0s	44s	85s	123s	161s	199s	233s	268s	304s	337s

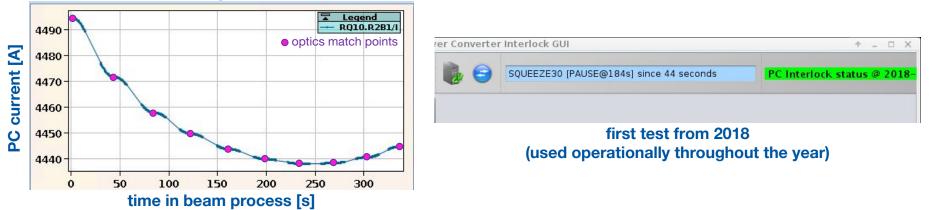
- high-level levelling logic or OP decides to execute a step to a particular target
- lumi server identifies start and end point (seconds in BP)
- functions to play are sliced by lumi server
 - similar to the squeeze in steps
 - start point of the functions are required to match actual settings (except corrections)

beta* levelling: mechanics

beta* levelling: machine protection aspects

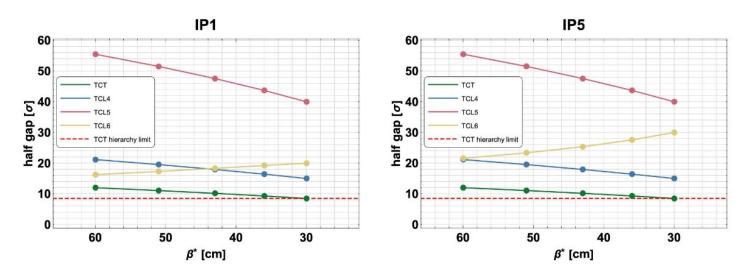
• beta* levelling is more dynamic than a "standard squeeze"

- the situation in SB is less static than the cycle before: knobs, corrections
- tight requirements on orbit control in collisions: few um @ IPs
- OFB reference, collimator centres calculated from orbit response
- magnet kick & PC current functions automatically "incorporated" for corrections
 - orbit, tune, chroma, coupling = relative corrections
- in general, the "orchestration" steps are equivalent to the sequencer squeeze


• principle: lumi server shall NOT become critical for machine protection

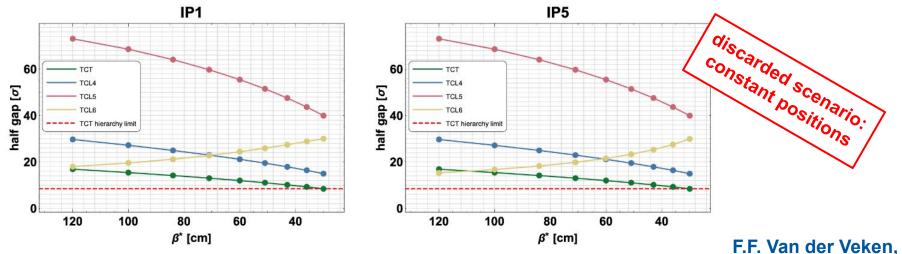
- safe envelope guarded by external systems:
 - collimators: pre-programmed limits checked by the PRS
 - magnets: PCInterlock (orbit, quads including optics)
- within these safe envelopes, lumi server can calculate settings
- → moving the limits during levelling needs to be carefully considered

PCInterlock limits


- moved during beta* levelling since 2018
- dedicated PCInterlock reference BP
 - clone of beta* repository BP, functions for full levelling range
- lumi server sends timing event to advance PCInterlock in steps
 - PCInterlock held in "PAUSE" state during the step plateau

2022 60cm \rightarrow 30cm squeeze PC interlock ref

outcome from the Collimation WG - 2022

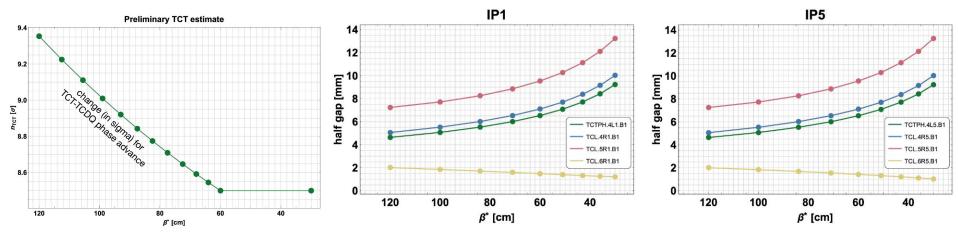

- strategy for levelling discussed at collimaton WGs <u>#256</u>, <u>#260</u>
- 2022: 60cm \rightarrow 30cm beta*, no crossing angle change
 - → TCT/TCL positions & limits can be kept constant (in mm)

F.F. Van der Veken, CollWG #256

outcome from the Collimation WG - 2023

- strategy for levelling discussed at collimaton WGs <u>#256</u>, <u>#260</u>
- 2023: 1.2m \rightarrow 30cm beta*, crossing angle 130 urad \rightarrow 160 urad
 - → TCT/TCLs need to move to preserve hierarchy & allow XRP insertion

F.F. Van der Veken, CollWG #256


outcome from the Collimation WG - 2023

• scenario for 2023+ with changing TCT/TCL gaps

• centre will also move due to crossing angle change

• changes of several mm: discrete limits can not ensure protection

- e.g. run 2 crossing angle levelling: discrete limits opened by ~300 um
- → need to play limit functions around expected displacements

PRELIMINARY ESTIMATES

F.F. Van der Veken, CollWG #256 & #260

moving TCT/TCL jaws

• TCTs/TCLs moved during crossing angle levelling in run 2

• centres calculated from expected bump changes

beta* levelling reusing the same logic

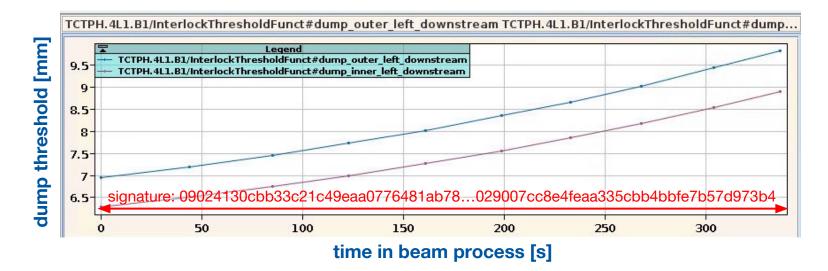
- centres calculated from orbit changes
 - same approach (and largely the same code) now also used for TCT settings generation throughout the cycle
- gaps from pre-programmed functions

• "best effort" pre-flight check of interlock limits

- not 100% reliable due to LVDT offsets
- not for protection avoid dumps due to mistakes

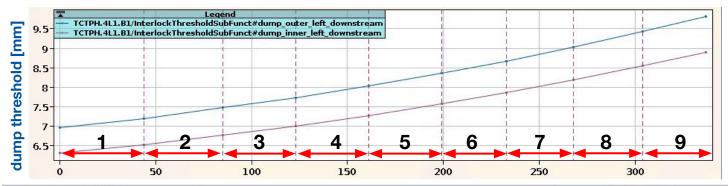
• tested in 2018 MDs (MD 2427 and MD 3349)

java.lang.IllegalArgumentException: The
set value violates the limits on Collimator
[element=TCL.SR5.B1, beam=BEAM1, plane=H]:
...
---- TIME PTIMIS ---Motor [DOWNSTREAM, RIGHT]:
 InnerLimit = -6.3763
 OLD Position = -6.77
 NEW Position = -6.3556
 OuterLimit = -25.407


. . .

moving TCT/TCL limits: MCS

• unlike jaw positions, collimator limits are Machine Critical Settings (MCS)


- can only be changed by experts (MCS-Collimation role)
- digitally signed on creation
- after creation, can not be altered but only loaded & played as a whole

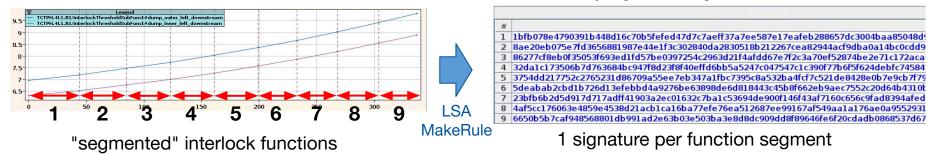
moving TCT/TCL limits: run 3 proposal


• proposed approach for run 3:

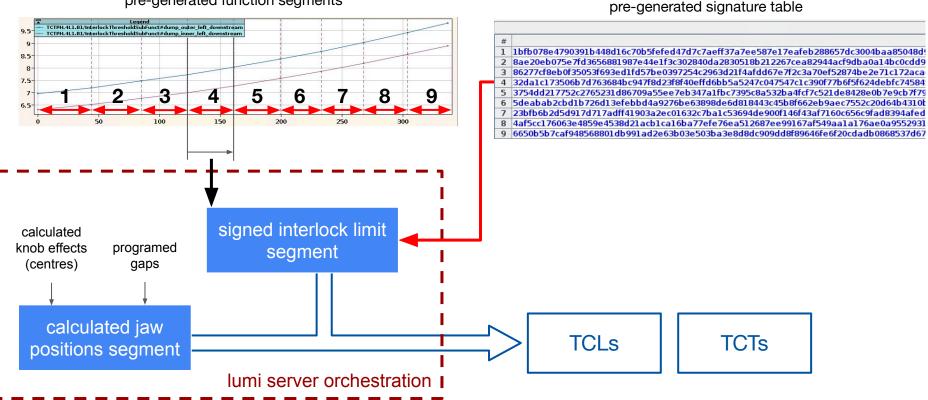
- at generation time, split the TCT/TCL limt functions at the optics match point
- generate MCS signature for every segment
- store segments & signatures in LSA
- Iumi server retrieves segment (by BP time) & signature and sends it to the HW

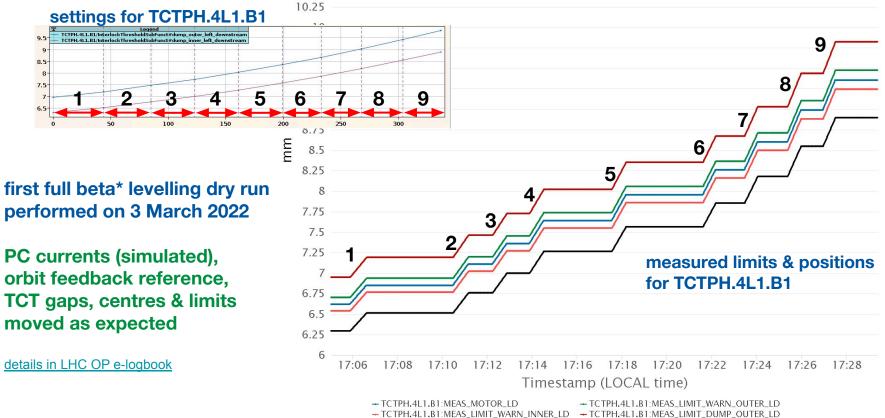
PARAMETER	
TCTPH.4L1.B1/InterlockThresholdSubFunct#sub_signatures	# 1 1bf078e4790391b448d16c70b5fefed47d7c7aeff37a7ee587e17eafeb288657dc3004baa85048d946cb683490f0ce4b72dbe7f296a48b8947e9ae1768acc6e 8ae20eb075e7fd3656881987e44e1f3c302840da2830518b212267cea82944acf9dba0a14bc0cdd9f5ded02b19d3bce21910cbc70a980d661335e572723a2d36 3 86277cf8eb0f35053f693ed1fd57be0397254c2963d21f4afdd67e7f2c3a70ef5287dbe2e71c172acaccdfb82b60fd7ccc0c82eb4ec0f8e9e9f00e2b92ed220 4 242da1c173506b77676364bc947f8d23f8f40effd6b5a5247c047547c12309f77b6f5f62d4ebfc74585433fd6b0cee38f8820e6fc7b096f45e06d420cfc12 5 3754dd217752c2765231d86709a55ee7eb347a1fbc3958a532ba4fcf7c521de8428e0b7e9cb7f79828ab9af1c5ab5b62a1e2881c407fe225e63c660ffca5e 6 5deabab2cbd1b72cd11sefebbd4a9276be63898de6d818443c45b8f62c2b9c4554431db8ae86357538f348Ea2738abc1e268fc6dbc1b27099f00c 7 23bfb62d5d917d717adff41903a2ec01632c7ba1c53694de900f146f43af7160c55ce7ad8394afed2d5ffc4e0286c72a9af4884d6d40b53d4e331193aecaa 8 4af5cc176063a49594f3ad2a1adc63ba4c990df146f43af7160c55ce7ad8394afed25ffc4e0286c72a9af4884d5d40b53d4e371670a89860 9 6550552c77294887af06a538925033ba4fc7c521823c 8 4af5cc176063a495945801db921ad2c61032c7ba1c53694de900f146f43af7160c55ce7ad3894afe205fc6c7239678f0540457bf3922c723058870538862 9 6550552c772947878f06405543427867088904b924342787088860 9 6550552c772947878f066fa52255723058657522305887512823c

"segmented" limits: generation time



standard interlock functions

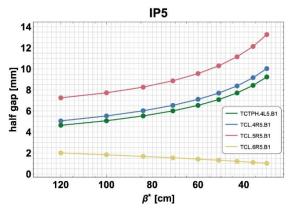

trim/generation with MCS-Collimation role


"segmented" limits: use time

pre-generated function segments

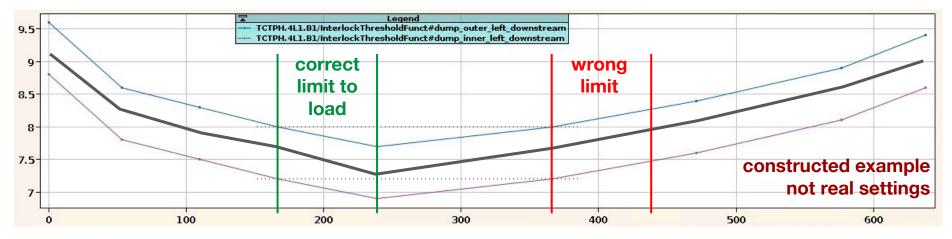
CÉRN)

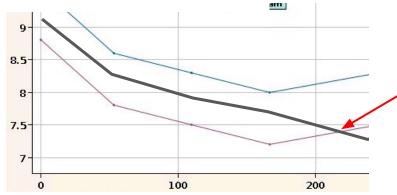
dry run results


+ TCTPH.4L1.B1:MEAS_LIMIT_DUMP_INNER_LD

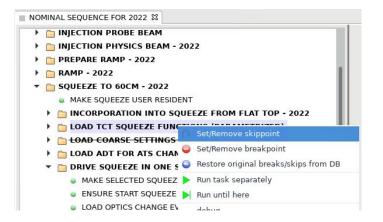
failure case: wrong limit function loaded

- in principle, lumi server can load any collimator limit function segment
 - what if the wrong segment is picked, e.g. due to bug?
- collimator PRS checks continuity
 - \circ start point mismatches actual limits \rightarrow exception


• driven jaw positions & limits must match


- "best effort" pre-flight check should trigger if not
- \circ failing that \rightarrow dump on limits
- problem only if segments start exactly at the same point and driven jaw positions are consistent with wrong limits
 - preliminary 2023 limits are monotonous
 - 2 segments starting at the same point could be prevented in the LSA MakeRule

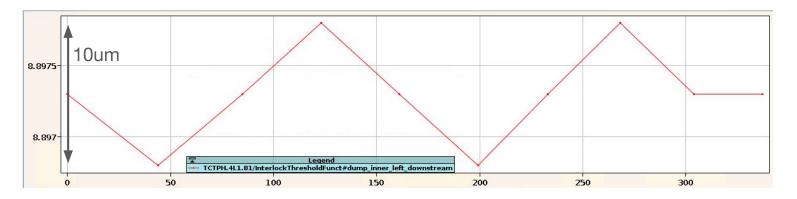
failure case: wrong limit function loaded


dump since jaw position outside of limit

(should be detected by best-effort pre-flight check)

failure case: collimators not driven

- moving collimators & limits can be deselected in the LumiServer GUI
 - not much different from sequencer: task can be skipped
- collimator jaw positions & limits will be consistently wrong
- guarded by collimator beta* interlock \rightarrow will dump when out of tolerance
- should the option in the GUI be (soft) protected to avoid mistakes?


Levelling Parameters	r				
Target [Hz/ub]:	20000.0				
Tolerance [%]:	2.5 60				
Integration Time [s]:					
Trim options					
🗹 No. of Eigenvalues	: H: 200 V: 200				
🗹 Feedback gain:	3.0				
Move Collimators	Move Intlk Limits				
Use meas. orbit as	s ref				

commissioning of TCT/TCL movements

- TCTs/TCLs need to move in 2023 (positions & limits)
- proposal: commission & validate the mechanics in 2022
 - drive collimator positions & limits like needed for 2023
 - jaw positions: program flat gap, centre from orbit response (almost flat)
 - limits: program almost flat (~10-20um changes)
 - validate logged data in NXCALS

conclusions

• crossing angle & beta* levelling not fundamentally new

• moving PCs, feedback, TCT/TCL positions, PCInterlock reference done in run 2

• new for run 3: moving TCT/TCL limits

- not required for 2022
- \circ required for 2023 (1.2m \rightarrow 30cm with crossing angle change)
- based on pre-sliced limit functions, MCS signature per segment
 - Iumi server picks function segment & corresponding signature
- first dry run successful

• proposal: commission & validate full procedure in 2022

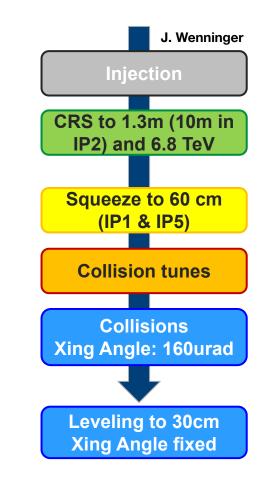
- move collimators & limits already, with almost flat functions
- validate behavior based on logged data

thanks for your attention!

222nd MPP Meeting - Luminosity Levelling in Run 3

Michi Hostettler

2022: a simplified scenario


• "run 2 like" scenario to ease commissioning

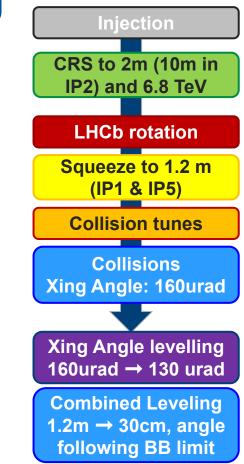
• IP 1 / 5

- constant crossing angle: 160urad
- beta* levelling: $60cm \rightarrow 30cm$
- roman pots fixed during levelling
- TCT and TCL positions, gaps & limits can stay constant
- if we exceed 2 \cdot 10³⁴ cm⁻² s⁻¹ @ 60cm apply separation
 - cryo limitation has ~15 min of inertia: not a hard limit

• IP 2 / 8

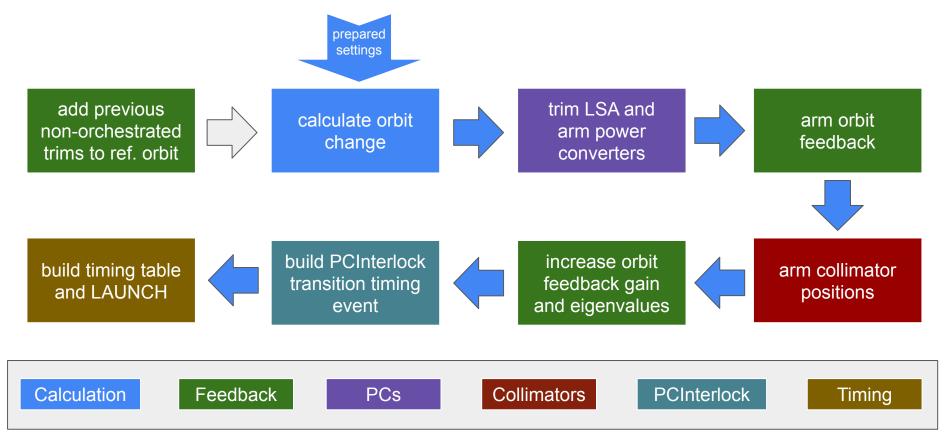
- crossing angle: 200urad
- separation levelling
- LHCb not rotated (ext. H crossing)

2023 and beyond: full-range levelling


• IP 1 / 5

- crossing angle levelling to beam-beam limit:
 160urad → 130urad
- combined beta* + crossing angle levelling:
 1.2m → 30cm, 130urad → 160urad (beam-beam limit)
- TCTs and TCLs moving during levelling
 - centres following crossing angle
 - gaps following squeeze
 - limits following expected movements

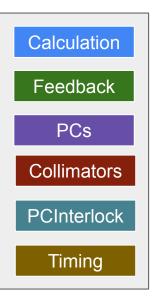
• IP 2 / 8


- crossing angle 200urad
- separation levelling
- LHCb rotated (ext. V crossing)

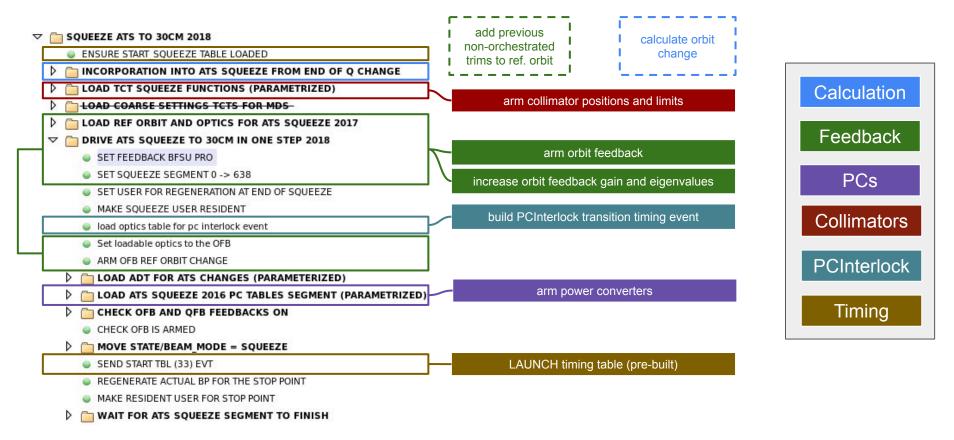
preliminary: to be confirmed based on 2022 experience

beta* levelling orchestration sequence

comparison: squeeze by the sequencer


▽ È SQUEEZE ATS TO 30CM 2018

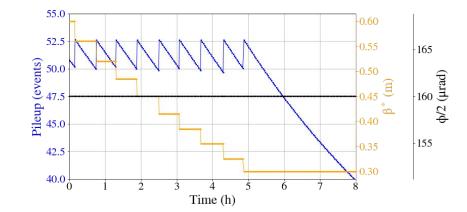
- ENSURE START_SQUEEZE TABLE LOADED
- Incorporation into ats squeeze from end of Q change
- LOAD TCT SQUEEZE FUNCTIONS (PARAMETRIZED)
- CONTRACTOR COARSE SETTINGS TO FOR MDS
- CONTRACTOR CONTRACT CONTRACT
- DRIVE ATS SQUEEZE TO 30CM IN ONE STEP 2018
 - SET FEEDBACK BFSU PRO
 - SET SQUEEZE SEGMENT 0 -> 638
 - SET USER FOR REGENERATION AT END OF SQUEEZE
 - MAKE SQUEEZE USER RESIDENT
 - load optics table for pc interlock event
 - Set loadable optics to the OFB
 - ARM OFB REF ORBIT CHANGE
 - LOAD ADT FOR ATS CHANGES (PARAMETERIZED)
 - IOAD ATS SQUEEZE 2016 PC TABLES SEGMENT (PARAMETRIZED)
 - CHECK OFB AND QFB FEEDBACKS ON
 - CHECK OFB IS ARMED
 - MOVE STATE/BEAM_MODE = SQUEEZE
 - SEND START TBL (33) EVT
 - REGENERATE ACTUAL BP FOR THE STOP POINT
 - MAKE RESIDENT USER FOR STOP POINT
 - WAIT FOR ATS SQUEEZE SEGMENT TO FINISH


comparison: squeeze by the sequencer

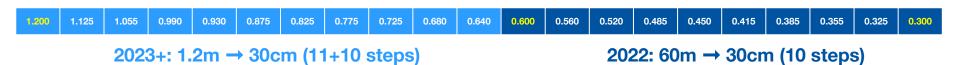
☑ SQUEEZE ATS TO 30CM 2018

0	ENSURE START_SQUEEZE TABLE LOADED
	INCORPORATION INTO ATS SQUEEZE FROM END OF Q CHANGE
	LOAD TCT SQUEEZE FUNCTIONS (PARAMETRIZED)
	LOAD COARSE SETTINGS TCTS FOR MDS-
	LOAD REF ORBIT AND OPTICS FOR ATS SQUEEZE 2017
▽ 🗋	DRIVE ATS SQUEEZE TO 30CM IN ONE STEP 2018
	SET FEEDBACK BFSU PRO
	SET SQUEEZE SEGMENT 0 -> 638
	SET USER FOR REGENERATION AT END OF SQUEEZE
	MAKE SQUEEZE USER RESIDENT
	load optics table for pc interlock event
	Set loadable optics to the OFB
	ARM OFB REF ORBIT CHANGE
⊳	LOAD ADT FOR ATS CHANGES (PARAMETERIZED)
Þ	LOAD ATS SQUEEZE 2016 PC TABLES SEGMENT (PARAMETRIZED)
⊳	CHECK OFB AND QFB FEEDBACKS ON
	CHECK OFB IS ARMED
⊳	MOVE STATE/BEAM_MODE = SQUEEZE
	SEND START TBL (33) EVT
	REGENERATE ACTUAL BP FOR THE STOP POINT
	MAKE RESIDENT USER FOR STOP POINT
Þ	The wait for ats squeeze segment to finish

comparison: squeeze by the sequencer

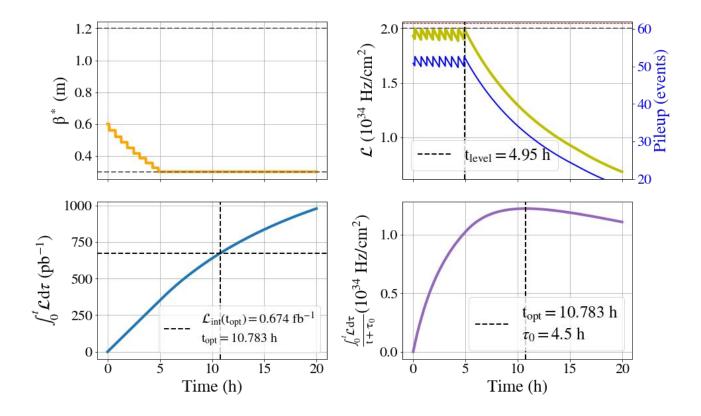

beta* levelling: step granularity

• pre-matched optics


- ➔ fixed steps
- → IP 1 / 5 fully coupled

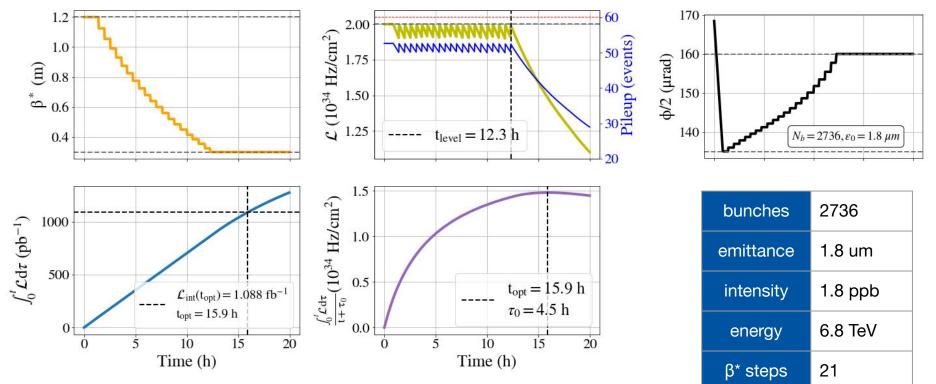
• number of steps is a compromise

- experiments
 - small, regular steps
 - max. ~5% lumi / pile-up jump
- operation & commissioning
 - max. 1 step every ~30 min
 - 2022: max. 10 optics (OMC foreseen at 60cm & 30cm)
 - 2023: re-use 60cm \rightarrow 30cm part



S. Kostoglou, S. Fartoukh & Run 3 WG

2022 levelling scenario



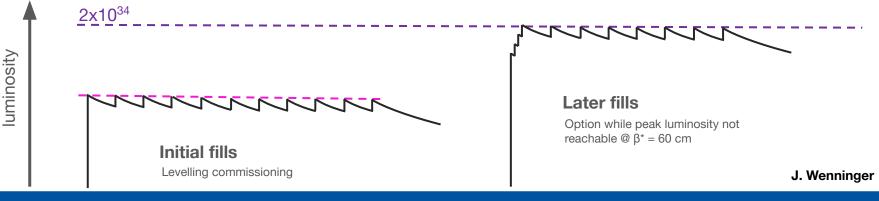
2736		
2.0 um		
1.4 ppb		
6.8 TeV		
160 urad		
10		

S. Kostoglou & Run 3 WG

CERN

2023+ levelling scenario

S. Kostoglou & Run 3 WG


commissioning beta* levelling with beam

• first commissioning with beam

- execute all steps with manual trigger, check mechanics
- \circ commission the 60cm \rightarrow 30cm squeeze in collisions
- move collimators with (almost) flat functions?

• fine-tuning & automation: during intensity ramp-up

- test automatic triggering manual as fall-back
- tune feed-forward corrections & feedback gains
- run through the full squeeze to 30cm in all fills level at initial luminosity first

