Operation of the new synchrotron radiation extraction

E. Bravin
MPP 1 April 2022
New BSRTM motivations

• For the HL-LHC era the synchrotron radiation based diagnostics need to be extended
• Need a second SR extraction point
• Identified location requires a new tank design
 • Taking advantage to improve functionalities
Scope of present installation

- Verify with beam that the RF heating is under control
- Study the properties of the new SR source
- Validate the design in general
- One device (B1 in 4L) is sufficient for this
- ECR document
 https://edms.cern.ch/document/2610870/1.0
New SR source(s) location

BSRTR
BSRT
MU

~25 m
420 mm

~60 m
~44 m

194 mm

Q6 Q5 D4

New BSR

B2

B1
New BSRTM
New source timeline

• Design and install new extraction tank
 ✓
• Validate RF impedance
 ✓
 • Simulations, stretched wire, beam tests
• Enlarge beam pipe between D4 and new BSRTM
 <LS3
• Install shielding, optics and instruments
 LS3
Aperture restriction

- Mirror can be moved IN/OUT
 - Max IN ~11mm from beam axis
 - Max OUT ~35mm from beam axis
- Mirror can become an aperture restriction
- Need to control and interlock the actuator that controls the position of the mirror
- Mirror will be always placed in safe position
Beam aperture at injection

- **Aperture limits calculated by APB**
 - $\text{emittance}_{\text{norm}} = 2.5 \times 10^{-6} \text{ um}$
 - σ error = 5%
 - dispersion error = 14%
 - orbit error = 0.002
 - energy = 450 GeV
 - energy error = 0.00086
 - $N_1 = 13 \text{ sigma}$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aperture [mm]</td>
<td>22.9</td>
<td>22.9</td>
</tr>
<tr>
<td>Beta x [m]</td>
<td>381.2</td>
<td>381.2</td>
</tr>
<tr>
<td>Beta y [m]</td>
<td>263.4</td>
<td>243.1</td>
</tr>
<tr>
<td>σx [mm]</td>
<td>1.409 (16.2 sigma aperture)</td>
<td>1.409 (16.2 sigma aperture)</td>
</tr>
<tr>
<td>σy [mm]</td>
<td>1.172</td>
<td>1.1255</td>
</tr>
</tbody>
</table>
Beam aperture at FLATTOP

- **Aperture limits calculated by APB**
 - \(\text{emittance}_{\text{norm}} = 2.5 \times 10^{-6} \text{ um} \)
 - \(\text{sigma error} = 10\% \)
 - \(\text{dispersion error} = 10\% \)
 - \(\text{orbit_error} = 0.002 \)
 - \(\text{energy} = 6500 \text{ GeV} \)
 - \(\text{energy_error} = 0.0002 \)
 - \(N1 = 20 \text{ sigma} \)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aperture [mm]</td>
<td>11.2</td>
<td>11.2</td>
</tr>
<tr>
<td>Beta x [m]</td>
<td>381.2</td>
<td>381.2</td>
</tr>
<tr>
<td>Beta y [m]</td>
<td>263.4</td>
<td>243.1</td>
</tr>
<tr>
<td>Sigma x [mm]</td>
<td>0.371</td>
<td>0.371</td>
</tr>
<tr>
<td>(30.2 sigma aperture)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sigma y [mm]</td>
<td>0.308</td>
<td>0.296</td>
</tr>
</tbody>
</table>
Actuator

- Actuator controlled by stepping motor
 - Resolver on motor axis
 - Two limit switches to limit the stroke and indicate the fully retracted/inserted position
 - Two linear potentiometers that monitor real position of mirror support
 - Mechanical stop limits insertion to ~10 mm (can be adjusted)
Control

- Motor, resolver and potentiometers controlled by two PXI (Motion and potentiometer) systems from BE-CEM
- StepperAxis FESA class
- Mirror position controlled by sequencer tasks
- Position vs. energy limits stored in LSA as MCS
- Mirror temperature monitor by SY-BI FESA class and logged in NXCALS
 - One probe inside mirror itself
 - One probe on mirror support (both inside vacuum)
Interlock

- The interlock is based on the potentiometer readings
 - Two redundant sources (two FESA devices)
- If the position read is outside of limits a maskable BIS channel is triggered
 - Limits are functions of beam energy
 - For now we only need one value < FT and one value >= FT
 - MCS role allowed to change the settings?
Operation

- Before injection mirror sent to injection position: 23mm + δ
- At FLATTOP (after end of ramp) mirror sent to FT position: 11.2mm + δ
- δ to be determined based on readout noise of potentiometers (avoid spurious dumps)
Conclusions

- A new BSRTM device has been installed for validation
- New design can pose aperture restriction danger
- Actuator position precisely monitored and connected to BIS
- Safe position values calculated by ABP vs. energy
- System fully installed
- Software configuration ongoing (LSA, sequencer etc.).
- MP document being prepared.