

Recent jet substructure measurements in heavy-ion collisions with the CMS experiment

Jussi Viinikainen

Vanderbilt University

for the CMS collaboration

BOOST 2022

Integrated observables

Nuclear modification factor R_{AA}

• Traditional measure of jet energy loss

$$R_{\mathrm{AA}} = rac{1}{\langle \textit{N}_{\mathrm{coll}}
angle} rac{\mathrm{d}\textit{N}^{\mathrm{AA}}/\mathrm{d}\textit{p}_{\mathrm{T}}}{\mathrm{d}\textit{N}^{\mathrm{pp}}/\mathrm{d}\textit{p}_{\mathrm{T}}}$$

R-dependence of the jet energy loss

- Effects decreasing the energy loss (larger R_{AA}) with R
 - Recovery of wide angle radiation
 - Medium response adds energy to jet cone
- $\bullet\,$ Effects increasing the energy loss (smaller ${\it R}_{\rm AA})$ with R
 - More incoherent energy loss sources compared to coherent ones
 - Increase of gluon jet fraction

R-dependence of $R_{\rm AA}$ – JHEP 05 (2021) 284

Central Collision 0-10%

 No significant R-dependence for high-p_T jets observed

¹EPJC 45 (2006) 211, ²EPJC 74 (2014) 2762

CMS heavy ion jets

R-dependence of $R_{\rm AA}$ – JHEP 05 (2021) 284

• No significant R-dependence for high- $p_{\rm T}$ jets observed

- Results are compared to PYQUEN¹ and JEWEL² event generators
- The observable has discriminating power between models

¹EPJC 45 (2006) 211, ²EPJC 74 (2014) 2762

Jussi Viinikainen (Vanderbilt)

CMS heavy ion jets

J/Ψ in jets – PLB 825 (2021) 136842

• Add heavy flavor to R_{AA} measurements

• Select jets containing $J/\Psi~(c\bar{c})$

$$z = rac{p_{\mathrm{T}}^{J/\Psi}}{p_{\mathrm{T}}^{\mathrm{jet}}}$$

- Low $z \Rightarrow J/\Psi$ produced later in parton shower than at high z
 - More interaction with QGP
- Jet quenching important for modeling of J/Ψ suppression

Observables tailored for parton energy loss

Jet shapes introduction

- Jet shape = radial momentum density profile of the jet
- Study the momentum flow in and around jets

$$\rho(\Delta r) = \frac{1}{\delta r} \frac{1}{N_{\text{jets}}} \sum_{\text{jets}} \frac{\sum_{\text{track} \in (r_a, r_b)} p_{\text{T}}^{\text{track}}}{p_{\text{T}}^{\text{jets}}}$$
$$\Delta r = \sqrt{(\varphi_{\text{jet}} - \varphi_{\text{track}})^2 + (\eta_{\text{jet}} - \eta_{\text{track}})^2}$$

Jet shapes introduction

- Jet shape = radial momentum density profile of the jet
- Study the momentum flow in and around jets

$$\rho(\Delta r) = \frac{1}{\delta r} \frac{1}{N_{\text{jets}}} \sum_{\text{jets}} \frac{\sum_{\text{track} \in (r_a, r_b)} p_{\text{T}}^{\text{track}}}{p_{\text{T}}^{\text{jets}}}$$
$$\Delta r = \sqrt{(\varphi_{\text{jet}} - \varphi_{\text{track}})^2 + (\eta_{\text{jet}} - \eta_{\text{track}})^2}$$

Unbalanced dijet, low x_j Balanced dijet, high x_j

Jet shape ratios in dijet events – JHEP 05 (2021) 116

Leading jets

Subleading jets

• Largest modifications in balanced events

• Largest modifications in unbalanced events

Jet shape ratios in dijet events - JHEP 05 (2021) 116

Leading jets

Subleading jets

• Largest modifications in balanced events

• Largest modifications in unbalanced events

• Dip in subleading unbalanced ratio due to 3-jet events in pp reference

Jet shape ratios in dijet events – JHEP 05 (2021) 116

Leading jets

Subleading jets

• Largest modifications in balanced events

• Largest modifications in unbalanced events

- Dip in subleading unbalanced ratio due to 3-jet events in pp reference
- With x_j integrated pp reference, the unbalanced ratio will stay high

Jet shapes for b-jets - CMS-HIN-20-003

- Sensitive to b-quark production processes
- Sensitive to parton fragmentation and mass effects
 - Dead cone effect, b-hadron formation, ...

Jet shapes for b-jets - CMS-HIN-20-003

- Sensitive to b-quark production processes
- Sensitive to parton fragmentation and mass effects
 - Dead cone effect, b-hadron formation, ...
- b-jets are more modified compared to inclusive jets

CMS Preliminary $\sqrt{s_{NN}} = 5.02 \text{ TeV}$, PbPb 1.7 nb⁻¹, pp 27.4 pb⁻¹, anti-k_T jet (R = 0.4): $p_T^{jet} > 120 \text{ GeV}$, $m_{iet} = 1.6$

Jet azimuthal anisotropies

- The collision region for non-central heavy ion collisions is almond-like
- Path length within medium for partons shorter along short axis
 - \Rightarrow Less energy loss in average
 - $\Rightarrow\,$ Produces azimuthal anisotropies of jet yields w.r.t. event plane Ψ_2

Jet azimuthal anisotropies

- The collision region for non-central heavy ion collisions is almond-like
- Path length within medium for partons shorter along short axis
 - \Rightarrow Less energy loss in average
 - $\Rightarrow\,$ Produces azimuthal anisotropies of jet yields w.r.t. event plane Ψ_2

• Fourier expansion:

$$1+2\sum_n v_n \cos(n(\varphi-\Psi_n))$$

Dijet v_n as a function of centrality – CMS-HIN-21-002

• Fourier expansion coefficients v_n measured for dijet system

Dijet v_n as a function of centrality – CMS-HIN-21-002

- Fourier expansion coefficients v_n measured for dijet system
- Positive dijet v₂, increasing towards more peripheral events
 More different path-lengths for more almond-like initial geometry

Dijet v_n as a function of centrality – CMS-HIN-21-002

- Fourier expansion coefficients v_n measured for dijet system
- Positive dijet v_2 , increasing towards more peripheral events
 - $\Rightarrow\,$ More different path-lengths for more almond-like initial geometry
- Dijet v_3 and v_4 consistent with zero

 $\Rightarrow\,$ No measurable impact from medium density fluctuations

Observables tailored for medium response

Full 2π angular scan with Z-hadron correlations

- Study particles associated with Z-bosons
 - Note: no jet reconstruction in this analysis
- Goal: study medium response to a jet in large angles

Particle correlations with a Z-boson - PRL 128 (2022) 122301

- Almost constant excess in $\Delta \varphi$ in HI collisions
 - Hint of medium excitation

¹JHEP 10 (2014) 019, ²PLB 810 (2020) 135783

CMS heavy ion jets

Particle correlations with a Z-boson - PRL 128 (2022) 122301

- Results compared to Hybrid¹ and CoLBT² models
- Models predictions with different medium response vary significantly

¹JHEP 10 (2014) 019, ²PLB 810 (2020) 135783

Jussi Viinikainen (Vanderbilt)

CMS heavy ion jets

• CMS has several new and exciting results on jet substructure in heavy ion collisions!

Background subtraction algorithm for jet reconstruction¹

- Particle flow candidate: a lepton, photon or a charged or neutral hadron reconstructed using various elements of the CMS detector
- Calculate mean $\langle E_{\rm PF} \rangle$ and dispersion $\sigma(E_{\rm PF})$ of PF candidate transverse energies in η slices² $\Rightarrow \rho(\eta) = \langle E_{\rm PF}(\eta) \rangle + \sigma(E_{\rm PF}(\eta))$
- Determine event plane angles Ψ_2 and Ψ_3 from hadronic forward calorimeters (3 $<|\eta|<5)$
- Fit the charged-hadron PF candidates with $0.3 < p_T < 3 \text{ GeV}$ and $|\eta| < 1$ to find event-by-event underlying event flow modulation:

$$N(\varphi) = N_0(1 + 2v_2\cos(2[\varphi - \Psi_2]) + 2v_3\cos(3[\varphi - \Psi_3]))$$

 Subtract underlying event contribution using constituent subtraction method³ with local average underlying event density as

$$\rho(\eta,\varphi) = \rho(\eta) \left(1 + 2v_2 \cos(2[\varphi - \Psi_2]) + 2v_3 \cos(3[\varphi - \Psi_3])\right)\right)$$

¹JHEP 05 (2021) 284, ²EPJC 50 (2007) 117, ³JHEP 06 (2014) 092

Jet $p_{\rm T}$ unfolding for $R_{\rm AA}$ analysis – JHEP 05 (2021) 284

• Jet $p_{\rm T}$ is unfolded using d'Agostini method with early stopping¹

¹NIMA 362 (1995) 487

Jussi Viinikainen (Vanderbilt)

• No significant R-dependence for high- $p_{\rm T}$ jets observed

- Jets with all R lose energy in PbPb with respect to pp collisions
- Small R results show some $p_{\rm T}$ dependence

- JEWEL (EPJC 74 (2014) 2762): recoil = scattered medium particles on/off
- PYQUEN (EPJC 45 (2006) 211): medium-induced wide angle radiation on/off
- Different parameter tunes have big impact on predictions
 - The observable has discriminating power between models

R-dependent R_{AA} , theory comparisons 2 – JHEP 05 (2021) 284

- Hybrid: combines weak (pQCD) and strong (gauge/gravity) coupling regimes. Wake includes medium response. (JHEP 10 (2014) 019)
- MARTINI event generator: (EPJC 45 (2006) 211)
- LBT: 3+1D viscous relativistic hydrodynamics (PRC 99 (2019) 054911)
- CCNU: Jet-coupled fluid model (PRC 95 (2017) 044909, PRC 94 (2016) 024902, PLB 801 (2020) 135181)

Jussi Viinikainen (Vanderbilt)

25 / 18

- Factorization: phenomenological jet cross sections (PRL 122 (2019) 252301)
- BDMPS: Analytical resum of multiple emissions (PLB 345 (1995) 277)
- SCET: Glauber gluons in soft-collinear effective theory (JHEP 05 (2016) 023)
- Li and Vitev: SCET with collisional energy loss (JHEP 07 (2019) 148, PLB 795 (2019) 502)

Identifying J/Ψ mesons – PLB 825 (2021) 136842

 J/Ψ candidates are identified by a two-dimensional fit to invariant mass and pseudo-proper decay length distribution

- Response matrices are constructed using
 - PYTHIA8 for pp
 - PYTHIA8+HYDJET for PbPb
- Jet $p_{\rm T}$ is unfolded using iterative d'Agostini method¹

¹NIMA 362 (1995) 487

Jussi Viinikainen (Vanderbilt)

- Non-prompt: J/Ψ produced in b-hadron decay
- Prompt: J/Ψ from all other sources
- PYTHIA8 doesn't do a good job in describing the data

• Select jets containing J/Ψ ($c\bar{c}$)

$$z = rac{p_{\mathrm{T}}^{J/\Psi}}{p_{\mathrm{T}}^{\mathrm{jet}}}$$

- Low $z \Rightarrow J/\Psi$ produced later in parton shower than at high z
 - More interaction with QGP
- More suppression in central events

Jet-hadron correlation ($\Delta \varphi$, $\Delta \eta$) distribution

- Select dijet events with back-to-back leading and subleading jets
- Correlate charged particle tracks with leading and subleading jet axes
- Limited detector acceptance in beam direction ($\Delta\eta$)
 - \Rightarrow More likely to see pairs with small $\Delta\eta$
- Mixed event: take jet from one event and particles from another
 - No correlations, only acceptance effects
- Divide same event with mixed event to correct for acceptance

Jet-hadron correlation ($\Delta \varphi$, $\Delta \eta$) distribution

- Select dijet events with back-to-back leading and subleading jets
- Correlate charged particle tracks with leading and subleading jet axes
- Jet correlations are small-angle correlations
 - Estimate long-range correlations from $1.5 < |\Delta \eta| < 2.5$ "side band"
 - Avoid prolonged away-side peak
- Combine leading and subleading side bands to fill long-range correlation distribution in whole $(\Delta \eta, \Delta \varphi)$ region
- Subtract long-range correlation distribution from acceptance-corrected distribution to extract jet signal

Jussi Viinikainen (Vanderbilt)

CMS heavy ion jets

32 / 18

Jet shapes in dijet events - JHEP 05 (2021) 116

Leading jets

Subleading jets

Jet shapes in dijet events - JHEP 05 (2021) 116

Leading jets

Subleading jets

• PbPb shape wider than pp, subleading wider than leading

Jet shapes in dijet events - JHEP 05 (2021) 116

Leading jets

Subleading jets

- PbPb shape wider than pp, subleading wider than leading
- \bullet Large momentum imbalance in pp \rightarrow third jet in the event

Extra studies for third jet in pp

- Make a cut based on the third highest jet p_{T} in the event
 - Three jet event = Third jet $p_{\rm T} > \frac{\text{Subleading jet } p_{\rm T}}{2}$
 - Two jet event = Third jet $p_{\rm T} < \frac{\text{Subleading jet } p_{\rm T}}{2}$
- The table below shows the numbers of dijets following this categorization in the used x_j bins for pp data

Event type	$0 < x_j < 0.6$	$0.6 < x_j < 0.8$	$0.8 < x_j < 1$
Three jet event Two jet event	1391651 (52 %) 1298405 (48 %)	582004 (15 %) 3331967 (85 %)	131811 (3 %) 4259981 (97 %)
All events	2690056	3913971	4391792

• From the table it can be seen that unbalanced events are likely to have high $p_{\rm T}$ third jet, but balanced very unlikely

Jet shape in Pythia8 for $0 < x_j < 0.6$ bin for subleading jet

- Similar enhancement of high- p_{T} particles as in data
- Three jet events enhance the effect
- No effect visible in two jet events

Factorizing dijet v_n

• Fit $\Delta \varphi$ -projection of the long-range distribution with a Fourier fit:

$$f_{\text{Fourier}}(\Delta \varphi) = A \cdot \left(1 + \sum_{n=1}^{4} 2V_{n\Delta} \cos(n\Delta \varphi)\right)$$

• Here coefficients V_n are mixture of $v_{n, hadron}$ and $v_{n, dijet}$

• Based on [1], dijet v_n can be factorized: $V_n = v_{n,\mathrm{dijet}} \times v_{n,\mathrm{hadron}}$

Jussi Viinikainen (Vanderbilt)

¹Eur. Phys. C 72 (2012) 10052

Factorizing dijet v_n

Jussi Viinikainen (Vanderbilt)

BOOST 2022 36 / 18

Dijet v_n as a function of hadron p_T

- Jet-hadron correlations are free from away-side jet bias
- $\bullet\,$ To mitigate the bias for dihadron correlations, analysis limited to region 0.7 $< p_{\rm T} < 3\,{\rm GeV}$
- Dijet v_n values factorized from different hadron p_T bins shown below \Rightarrow No significant p_T dependence, can extract one value

CMS *Preliminary* $\sqrt{s_{NN}} = 5.02 \text{ TeV}$, PbPb 1.7 nb⁻¹, pp 27.4 pb⁻¹, anti-k_T jet (R = 0.4): $p_T^{\text{jet}} > 120 \text{ GeV}$, $|\eta_{\text{iet}}| < 1.6$

• b-jets are wider compared to inclusive jets

• The difference is larger in PbPb compared to pp collisions

Z-boson reconstruction - PRL 128 (2022) 122301

• ~ 5000 events found in $Z \rightarrow \mu\mu$ and $Z \rightarrow ee$ channels

- Yield is composed of
 - Signal: hard scattering producing Z
 - Background: other sources
- Pair Z-boson with tracks from minimum bias events matched in forward energy to estimate background

Particle correlations with a Z-boson - PRL 128 (2022) 122301

Almost constant excess in Δφ for central heavy ion collisions
 Hint of medium excitation

• Depletion of high p_{T} particles, excess of low p_{T} ones

Z-hadron correlation model predictions - PRL 128 (2022) 122301

- Hybrid: combines weak (pQCD) and strong (gauge/gravity) coupling regimes. Wake includes medium response. (JHEP 10 (2014) 019)
- CoLBT: evolves quenched jet energy with hydro. (PLB 810 (2020) 135783)
- Need good description of medium response to agree with data

Jussi Viinikainen (Vanderbilt)

CMS heavy ion jets

Z-hadron correlation model predictions - PRL 128 (2022) 122301

- Hybrid: combines weak (pQCD) and strong (gauge/gravity) coupling regimes. Wake includes medium response. (JHEP 10 (2014) 019)
- SCET_G: includes Glauber gluons into soft-collinear effective theory. (PRD 93 074030 (2016), PRD 101 076020 (2020))
- CoLBT: feeds quenched jet energy into hydrodynamics evolution. (PLB 810 (2020) 135783)

Jussi Viinikainen (Vanderbilt)

• Jet charge:

$$Q^\kappa = rac{1}{(p_{\mathrm{T}}^{\mathrm{jet}})^\kappa}\sum_i q_i(p_{\mathrm{T}}^i)^\kappa$$

- κ controls sensitivity to low and high $p_{\rm T}$ particles
- Can be used to study color charge effects of jet quenching

- Results fully unfolded for detector effects
- PYTHIA-based templates describe the data well

- No significant modifications in widths between PbPb and pp measurements
- Widths well described by PYTHIA 6 Z2 tune (unquenched) (JHEP05 (2006) 026, arXiv:1010.3558)

Jet charge theory comparison – JHEP 07 (2020) 115

• PYTHIA 6 event generator (JHEPO5 (2006) 026) without any jet quenching effects describes the data much better than PYQUEN (EPJC 45 (2006) 211) which includes these effects

D^0 (cū) radial profile – PRL 125 (2020) 102001

 Using D⁰ allows to study production of charm in QGP and heavy-flavor energy loss

- No p_{T} weighting or centrality
- Hint of shape broadening
- More statistics needed for stronger conclusions

Geometry of heavy-ion collision

- $N_{\text{part}} = \text{Number of participants}$
- $N_{\rm coll}$ = Number of binary collisions

Geometry of heavy-ion collision

• $N_{\text{part}} = \text{Number of participants}$

- $N_{\rm coll}$ = Number of binary collisions
- Centrality = Degree of overlap of the nuclei
 - 0 % = central collision
 - 100 % = peripheral collision
- In CMS: energy sum from HF calorimeters

• Define a distance measure for particles and pseudojets

$$d_{ij} = \min\left(p_{T_i}^{-2}, p_{T_j}^{-2}\right) \frac{(y_i - y_j)^2 + (\varphi_i - \varphi_j)^2}{R^2}$$
$$d_{iB} = p_{T_i}^{-2}$$

- **2** Find the smallest distance d_{\min} of all the d_{ij} and d_{iB} .
- If $d_{\min} = d_{ij}$, merge particles/pseudojets *i* and *j* to new pseudojet *k*
- If $d_{\min} = d_{iB}$ we have found a jet. Remove d_{\min} from the list of pseudojets.
- Go back to step 1.
 - In the end, apply minimum p_{T} cut for the list of jets.