

Testing the Standard Model in boosted top quark production with the ATLAS experiment at the LHC

Kevin Sedlaczek on behalf of the ATLAS Collaboration kevin.sedlaczek@tu-dortmund.de

BOOST 2022 Hamburg | August 15, 2022

Boosted top quarks and the SM

Testing the SM

- Peculiar features of the top quark
 - \blacksquare Large Yukawa coupling \rightarrow connection to EWSB
 - **Tests of QCD at multiple scales** $(p_T(top), m(top), m(b))$
- Large number of precise observables with current amount of data

Looking beyond the SM

- Test for potential UV physics
- Large sensitivity to several EFT operators

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_1 + \dots, \qquad \underbrace{\mathcal{L}_i = \sum_j \frac{1}{\Lambda^i} C_j O_j}_{j}$$

EFT terms of mass-dimension 4+i

Measurements in this Presentation

$t\bar{t}$ charge asymmetry

Energy asymmetry in $t\bar{t}j$ (Eur.Phys.J.C82(2022)374)

$t\bar{t}$ differential cross-section

- Boosted all-hadronic final states [2205.02817]
- Boosted lepton+jets final states (JHEP06(2022)063)

Energy asymmetry in $t\bar{t}j$ production at 13 TeV (full Run 2)

$$A_E(\theta_j) \equiv \frac{\sigma^{\mathsf{opt}}(\theta_j | \Delta E^{t\bar{t}} > 0) - \sigma^{\mathsf{opt}}(\theta_j | \Delta E^{t\bar{t}} < 0)}{\sigma^{\mathsf{opt}}(\theta_j | \Delta E^{t\bar{t}} > 0) + \sigma^{\mathsf{opt}}(\theta_j | \Delta E^{t\bar{t}} < 0)}$$

$$\sigma^{\mathsf{opt}}(\theta_j) = \sigma^{\mathsf{opt}}(\theta_j | y_{t\bar{t}j} > 0) + \sigma^{\mathsf{opt}}(\pi - \theta_j | y_{t\bar{t}j} < 0)$$

 \rightarrow Reduce gg contributions

- Single lepton
- 1 R=1.0 jet (based on Pflow jets): top candidate (DNN tagging)
- Boost: $p_{\rm T}^t > 350 \,{\rm GeV}$

Motivation:

- Increase of asymmetry in boosted regime
- Expand previous $t\bar{t}$ asymmetry in rapidity observable to different phase space
- Sensitivity to BSM effects
- Asymmetry measured as function of θ_j
- Unfolding to particle level using fully Bayesian unfolding
- Interpretation in EFT framework

 $t\bar{t}j$ energy asymmetry (Eur.Phys.J.C82(2022)374)

Measurement Results

Scenario	$0 \le \theta_j < \frac{\pi}{4}$	$\frac{\Delta A_E}{\frac{\pi}{4}} \begin{bmatrix} 10^{-2} \end{bmatrix}$ $\frac{\pi}{4} < \theta_j \le \frac{3\pi}{5}$	$\frac{3\pi}{5} \le \theta_j \le \pi$
Data statistical uncertainty	1.60	1.40	1.40
$t\bar{t}$ modelling	0.08	0.87	0.34
$t\bar{t}$ response MC statistics	0.51	0.42	0.42
W+jets modelling and PDF	0.29	0.49	0.42
Single-top modelling	0.28	0.60	0.29
$t\bar{t}$ and single-top PDF	0.08	0.10	0.07
Multijet	0.53	0.54	0.51
Jet energy resolution	0.98	0.40	0.36
Other detector uncertainties	0.42	0.43	0.30
Total	2.10	2.00	1.80

- Measured asymmetry in agreement with SM
- Data stat. unc. dominated
- Leading uncertainties:
 - $t\bar{t}$ FSR and tW modelling (central θ_j bin)
 - **JER** and $t\bar{t}$ modelling

EFT interpretation

- Limits on several 4-quark Wilson coefficients
- Excellent disentanglement of effects in certain regions

$t\bar{t}j$ energy asymmetry (Eur.Phys.J.C82(2022)374)

EFT interpretation

- Limits on several 4-quark Wilson coefficients
- Excellent disentanglement of effects in certain regions

 $t\bar{t}j$ energy asymmetry (Eur.Phys.J.C82(2022)374)

$tar{t}$ Production in the Boosted All-Hadronic Channel at 13 TeV (full Run 2)

- $p_{\rm T}^{t_1} > 350 \,{\rm GeV}, \, p_{\rm T}^{t_2} > 500 \,{\rm GeV}$
- 2 large-R jets (topo-cluster based)
- DNN top-tagger

Motivation:

Precision Measurement

- Measure highly energetic top quarks
- Modelling of top quark system

BSM via EFT

- Potential UV physics effects
- Kin. variables for 1D, 2D and 3D diff. measurements
- Unfold to particle- and parton-level
 - \blacksquare Before and after t decay
- Comparison to NNLO rw. and MATRIX NNLO pred.

Measurement Results

Normalized differential rates

Better agreement with increased IFSR

Observed rates below predictions

Boosted all-hadronic $t\bar{t}$ [2205.02817]

Measurement Results

Fiducial cross-section

- Prediction overshooting data
- Better agreement with NNLO rew.
- Parton-level NNLO predictions with MATRIX show excellent agreement

Boosted all-hadronic $t\bar{t}$ [2205.02817]

EFT Interpretation

- Leading top-quark p_T at parton-level used (MATRIX NNLO prediction)
- Limits on several 4-quark Wilson coefficients
- Excellent disentanglement of effects

Boosted all-hadronic $t\bar{t}$ [2205.02817]

$tar{t}$ Production in the Boosted Lepton+Jets Channel at 13 TeV (full Run 2)

JSF Methodology

- Mass of reclustered top-tagged jet depends on the energy-scale of its small-R sub-jets
- Assume data and MC differ in small-R jet energy-scale by multiplicative factor: Jet Scale Factor (JSF)

$$\begin{split} E^{\text{corrected}}_{\text{jet,data}} &= E^{\text{nominal}}_{\text{jet,data}} \times \frac{1}{\text{JSF}_{\text{data}}} \\ E^{\text{corrected}}_{\text{jet,MC}} &= E^{\text{nominal}}_{\text{jet,MC}} \times \frac{1}{\text{JSF}_{\text{MC}}} \end{split}$$

JSF Methodology

- Value derived from linear parametrisation between m_{top-jet} and JSF
- Scale energy of all small-R jets in signal+background MC and systematic variations, and data
- JSF can absorb an overall systematic difference between data and MC in jet energies

Results using JSF method

- JES uncertainties are not gone, but reduced (from 4.0% to 0.4% for σ_{tot})
- \blacksquare Significant smaller JES uncertainties across e.g. $m^{t\bar{t}}$
- \bullet $\sigma_{\rm tot}^{\rm fid} = 1.267 \pm 0.005 \, ({\rm stat}) \pm 0.053 \, ({\rm syst}) \, {\rm pb}$
- \blacksquare Relative precision at $4.2\,\%$
- → Precision competitive with recent ATLAS resolved measurement Phys.Lett.B810(2020)135797

Measurement Results

- Prediction overshooting data by approx. 10 %
- Improved agreement when re-weighting NLO MC to NNLO

EFT Interpretation

- Limits on two Wilson coefficients C_{tG} and C⁽⁸⁾_{tq}
- Excellent disentanglement of effects
- High-*p*_T tails of boosted regime essential
- Limits on 4-fermion operator competitive with global fits

Conclusions

- Boosted top quarks essential in multiple ATLAS measurements
- One recent top charge asymmetry measurement
- **\blacksquare** Two precision differential cross-section measurements of $t\bar{t}$
- Significant improvements also in the methodology (e.g. JSF)
- Hints that full NNLO prediction significantly improves modelling
- Great sensitivity to BSM physics through EFT
- Very stringent limits on thus far little constrained 4-quark operators

Backup

Boosted *tt* lepton+jets Boosted *tt* all hadronic (*tt*) charge asymmetry

EFT recipe - describing new physics with effective field theories

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_1 + \mathcal{L}_2 + \ldots,$$

$$\mathcal{L}_i = \sum_j \frac{1}{\Lambda^i} C_j O_j$$

EFT terms of mass-dimension 4+i

 EFT terms: gauge-invariant, higher dimensional terms built from SM fields.

BSM energy scale Λ (1 TeV hereafter)

- measure for strength of operator: Wilson coefficients C_i
- only even-dimensional operators O_j can conserve lepton and baryon number

Dimension-6 operators in physics observables

$$\sigma = \sigma_{\rm SM} + \frac{1}{\Lambda^2} \sum_i C_i \sigma_i^{\rm SM-EFT-interference} + \frac{1}{\Lambda^4} \sum_{i,j} C_i C_j \sigma_{i,j}^{\rm EFT}$$

 $\mathcal{O}(\frac{1}{\Lambda^2})$ SM-dim6-interference terms $\mathcal{O}(\frac{1}{\Lambda^4})$ pure dim6 contributions

Boosted $t\bar{t}$ lepton+jets

EFT analysis overview using EFTfitter.jl¹

¹https://tudo-physik-e4.github.io/EFTfitter.jl/stable/, arXiv:1605.05585

Boosted $t\bar{t}$ lepton+jets

Cut	Detector-level		Particle-level	
leptons	Exactly 1 lepton in event		Exactly 1 lepton in event	
	$\begin{array}{l} \hline p_T > 27 {\rm GeV} \\ \eta < 1.37 \mbox{ or } 1.52 < \eta < 2.47 \end{array}$	$\frac{p_T > 27 \text{GeV}}{ \eta < 2.5}$	$\begin{array}{l} p_T > 27 {\rm GeV} \\ \eta < 2.5 \end{array}$	
b-tagging	DL1r tagger at 77% working point		Ghost-matched b-hadron	
Small-R jets (R=0.4) (EMPFlow)	$\begin{array}{l} p_T > 26 {\rm GeV} \\ \eta < 2.5 \end{array}$		Same as detector-level	
<i>b</i> -tagged jets (R=1.0) (EMPFlow)	$ \begin{array}{l} \geq 1 \ b\text{-tagged jet is constituent of top-jet} \\ \geq 1 \ b\text{-tagged jet near lepton:} \\ \Delta R(\text{lepton,lep-}b\text{-jet}) < 2.0 \\ \Delta R(\text{top-jet,lep-}b\text{-jet}) > 1.0 \end{array} $		Same as detector-level	
Hadronic top-jet (R=1.0) (EMPFlow subjets)	$ \geq 1 \text{ top-tag RC-jet candidate} \\ p_T > 355 \text{GeV} \\ \eta < 2.0 \\ 120 \text{GeV} < M < 220 \text{GeV} \\ \geq 1 \text{ b-tagged sub-jet} $		Same as detector-level	
MET & m ^W _T	$\begin{array}{l} \text{MET} > 20 \text{GeV} \\ \text{MET} + m_{\text{T}}^{\text{W}} > 60 \text{GeV} \end{array}$		Same as detector-level	
Electron Isolation	$\Delta {\rm R}({\rm electron,top-jet}) > 1.0$		None	
mlb	$m_{\ell,b} < 180 \mathrm{GeV}$		Same as detector-level	

Uncertainties

Source	Uncertainty [%]	Uncertainty [%] (no JSF)	
Statistical (data)	± 0.4	± 0.4	
JSF statistical (data)	± 0.4	—	
Statistical (MC)	± 0.2	± 0.1	
Hard scatter	± 0.5	± 0.8	
Hadronisation	± 2.0	± 1.8	
Radiation (IFSR + h_{damp})	$^{+1.0}_{-1.6}$	$^{+1.4}_{-2.3}$	
PDF	± 0.1	± 0.1	
Top-quark mass	$^{+0.8}_{-1.1}$	± 0.1	
Jets	± 0.7	± 4.2	
b-tagging	± 2.4	± 2.4	
Leptons	± 0.8	± 0.8	
$E_{\mathrm{T}}^{\mathrm{miss}}$	± 0.1	± 0.1	
Pileup	± 0.4	± 0.0	
Luminosity	± 1.8	± 1.8	
Backgrounds	± 0.7	± 0.6	
Total systematics	$^{+4.1}_{-4.3}$	$\substack{+5.8\\-6.0}$	
Total	$^{+4.1}_{-4.3}$	$^{+5.8}_{-6.0}$	

EFT model function

$$\sigma^{j}\left(C_{tG}, C_{tq}^{(8)}\right) = p_{0}^{j} + p_{1}^{j} \cdot C_{tG} + p_{2}^{j} \cdot C_{tq}^{(8)} + p_{3}^{j} \cdot (C_{tG})^{2} + p_{4}^{j} \cdot \left(C_{tq}^{(8)}\right)^{2} + p_{5}^{j} \cdot C_{tG} \cdot C_{tq}^{(8)}$$

Quadratic model introduces degeneracy

Elimits will be skewed towards negative values or have a second island in Λ^{-4} model

Expected EFT limits

The expected asymmetry due to the degeneracy of the quadratic model is seen in the posterior

EFT in Data

EFT in Data

Unfolding

- Unfolding stress test performed for linear and quadratic model
- In linear case: create EFT samples at Wilson coefficient = 0.25 by scaling MC distributions
- In quadratic case: requested additional stat. independent sample at $(C_{tG}, C_{tq}^{(8)}) = (0.2, 0.2)$

JSF method

 ${\sf JSF}_{\sf data} = 0.99965\,\pm\,0.00087$

Boosted $t\bar{t}$ all-hadronic

Differential distributions

Differential distributions

Unfolding

Boosted $t\bar{t}$ all-hadronic

Fractional uncertainties

Uncertainties

Source	Relative Uncertainty [%]
Top-tagging	7.8
$ m JES \oplus m JER$	4.2
$ m JMS \oplus m JMR$	1.1
Flavor tagging	2.9
Alternative hard-scattering model	5.3
Alternative parton-shower model	2.8
ISR/FSR + scale	5.9
PDF	0.9
Luminosity	1.7
Monte Carlo sample statistics	0.4
Systematics	12.9
Statistics	1.0
Total Uncertainty	13.0

EFT

$C({\rm TeV}/\Lambda)^2$	$O(\Lambda^{-4})$		$O(\Lambda^{-2})$	
	68% CL	95% CL	68% CL	95% CL
$C_{O_{a}}^{3,8}$	[-0.31, 0.10]	[-0.46, 0.25]	[-0.93, 0.10]	[-1.42, 0.61]
$C_{Qq}^{1,8}$	[-0.39, 0.04]	[-0.55, 0.19]	[-0.47, 0.08]	[-0.74, 0.34]
C_{Qu}^8	[-0.42 , 0.05]	[-0.59, 0.22]	[-0.58, 0.08]	[-0.90 , 0.41]
C_{Qd}^8	[-0.58, 0.18]	[-0.88, 0.48]	[-1.55, 0.26]	[-2.43, 1.13]
C_{tq}^8	[-0.38, 0.03]	[-0.54, 0.18]	[-0.46, 0.07]	[-0.71, 0.32]
C_{tu}^8	[-0.40, 0.04]	[-0.57, 0.21]	[-0.57, 0.07]	[-0.88, 0.38]
C_{td}^8	$[-0.55 \ , \ 0.18]$	$[-0.83 \ , \ 0.46]$	[-1.53 , 0.25]	[-2.39, 1.12]

$t\bar{t}j$ charge asymmetry: energy

Charge asymmetry regions

Charge asymmetry uncertainties

Scenario	$0 \leq \theta_i < \frac{\pi}{4}$	$\Delta A_E \left[10^{-2} \right]$ $\frac{\pi}{4} < \theta_i \le \frac{3\pi}{5}$	$\frac{3\pi}{5} \le \theta_i \le \pi$
Data statistical uncertainty	1.60	1.40	1.40
$t\bar{t}$ modelling	0.08	0.87	0.34
$t\bar{t}$ response MC statistics	0.51	0.42	0.42
W+jets modelling and PDF	0.29	0.49	0.42
Single-top modelling	0.28	0.60	0.29
$t\bar{t}$ and single-top PDF	0.08	0.10	0.07
Multijet	0.53	0.54	0.51
Jet energy resolution	0.98	0.40	0.36
Other detector uncertainties	0.42	0.43	0.30
Total	2.10	2.00	1.80

Charge asymmetry impacts

 $t\bar{t}j$ charge asymmetry: energy

2D EFT Limits

2D EFT Limits

