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Overview
The reconstruction and calibration of hadronic
final states in the ATLAS detector present com-
plex experimental challenges. One important as-
pect of the reconstruction chain is the identi-
fication and calibration of energy deposited in
the calorimeters by charged and neutral pions,
to account for the calorimeter systems’ different
responses to electromagnetic (EM) and hadronic
showers. Building on previous work with neu-
ral networks [1], we present results from us-
ing point cloud-based methods – specifically
Graph Neural Networks (GNNs), Deep Sets and
Transformer methods – to identify and calibrate
energy deposits, as alternatives to the existing
Local Cell Weighting (LCW) method [2]. These
point cloud methods are also presented in a cor-
responding note [3].

Inputs & Point Clouds
These methods use topo-clusters and tracks as
inputs. Topo-clusters are clusters of calorime-
ter cells seeded and built using signal signifi-
cance thresholds, and tracks are reconstructed
from hits recorded in the silicon tracker.
EM and hadronic
showers typically
differ in shape, and
may produce multiple
such clusters. These
methods, which oper-
ate on cell-level data,
may exploit such
differences for identi-
fying and calibrating
the showers.

Building topological clusters
1 Measure calorimeter

noise (arXiv:1510.03823)

2 Build a seeded
nearest-neighbor
cluster using the noise
estimates (including
pile-up) to define a
significance (E/�)

3 Obtain a set of 3D
topo-clusters
(potentially also
calibrated to the
hadronic scale)

4 Use as input to
calorimeter-based jet
reconstruction

Of course, can also use
tracks, truth particles!

1. Calorimeter noise (�)
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2. Build seeded
cluster (# of E/�)
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3. Obtain 3D topo-clusters 4. Use as input for calo-jet
reconstruction (fig from arXiv:1510.05821)
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Network Designs
GNN: Each topo-cluster is represented as a
graph whose nodes correspond to its calorime-
ter cells. Multi-layer perceptrons act separately
on edge, node, and global features to update the
graph from one layer to the next.

Cluster Graphs
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Deep Sets: An implementation of the Deep
Sets framework [4], the Particle Flow Networks
(PFNs) [5] can generalize any permutation-
invariant observable as

O ({𝑝1, . . . 𝑝𝑀 }) = 𝐹

(
𝑀∑︁
𝑖=1

Φ (𝑝𝑖 )
)
,

with Φ and 𝐹 parametrized by neural networks.
Transformer: The transformer acts on graphs
of topo-cluster cells that are updated via
the self-attention mechanism [6], allowing
the model to learn the mutual importance
of calorimeter cells for predicting calibrated
topo-cluster energy.

The GNN and PFN studied here are used for si-
multaneous cluster classification and energy cal-
ibration, whereas the transformer is only used
for energy calibration.

Classification Performance
Here, we show charged vs. neutral pion classification performance, using only cluster (calorimeter)
information. The CNN shown in the left figure corresponds to results from Ref. [1].
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All of the point-cloud methods significantly outperform the baseline PEM
clus in classification strength.

Calibration Performance
Here, we show energy calibration performance, for charged and neutral pions – a separate instance
of each network is trained for each of the two types – for networks using only cluster information, as
well as those using both clusters and tracks as input.

1) Cluster-only
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2) Cluster & Tracks

All the point cloud methods outperform LCW in reconstructing the median cluster (or pion) energy,
as well as achieving a smaller spread in energy response, showing that deep learning techniques are
promising tools for low-level hadronic reconstruction.
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