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History of Boosted object tagging

1. Using cuts on multiple High-Level (HL) features
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History of Boosted object tagging

2. Using a set of high-level features as inputs to BDT or DNN
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History of Boosted object tagging

3. Use low-level features directly as inputs to neural networks

State of the art Neural Networks
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Exaggerated: N-subjettiness Taggers Take On

Network for Jet Tagging: arXiv:2201.08187v5
Jet Images: arXiv:1807.04769

ParticleNet: Jet Tagging via Particle Clouds:

An Efficient Lorentz Equivariant Graph Neural
arXiv:1902.08570v3

Human-Readable Space arXiv:2010.11998
A complete linear basis for jet substructure:
arXiv:1712.07124

The Machine Learning Landscape of Top
Mapping Machine-Learned Physics into a

Taggers: arXiv:1902.09914v3
Particle Transformer for Jet Tagging

arXiv:2202.03772
How Much Information is in a Jet?:

Reports of My Demise Are Greatly
arXiv:1704.08249v2

HL feature taggers haven’t been able to keep up with low-level feature taggers
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Why should we go back to high-level (HL) features?

Can build a more efficient model with less parameters

- * High-level features are
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Feature Selection

is the process of selecting a subset of useful features to use in model construction/training.

How to do Feature Selection?

* Know which features are useful!
* Use a feature selection algorithm.

Feature selection Algorithm

* Given a large number of features, a feature selection algorithm can select a few useful
features based on a score assigned to each feature. We use our score as a measure of
correlation between each of our features and truth labels.

* The score ranks features which are more useful than the others !



Overview of a feature selection algorithm which
relies only on truth labels
Step 2: Find subset

Start with an tep1: Train a neural
data points X, where

initial set of ATl
known features and the classifier is most
known features

obtain a classifier. confused

Repeat until the Step 4: Add the Step 3: Rank the
chosen feature with the features based on the
performance hlghest score to the value of a score,
. initial set of known , on that
metric saturates

features subset X,




Application of the algorithm to top tagging

» Data set: The Machine Learning Landscape of Top Taggers
(arXiv:1902.09914v3). (10.5281/zen0do0.2603255)

« 2M jets: Signal and Background, with only Energy-momentum
four vectors.

* Training set (1.2 M), validation set (400k), and test set (400k)

» The algorithm Is applied to the combined training and
validation set, and the metric is evaluated on the test
set.



https://arxiv.org/abs/1902.09914v3

Application of the algorithm to top tagging

» Metric used: R3y (Rejection factor at 30% true positive rate) Is
evaluated on a test set (400k events)
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Features: Energy Flow Polynomials (EFPs)

withd < 7, with k = [—1, O,%, 1, 2] and f = E, 1, 2] , 7350 features
Large set of features, which are functions of:

* 7z, : The momentum fraction of in a calorimeter cell a
* 6,,. Angular separation between calorimeter cells a and b

9 = (Pra) B) = (An? 2 \5
a prTb 0 — (A Nap T A¢ab)

Energy flow polynomials: A complete linear basis for jet substructure

ADO method: Mapping Machine-Learned Physics into a Human-Readable Space


https://arxiv.org/abs/1712.07124
https://arxiv.org/abs/2010.11998

Features: Energy Flow Polynomials (EFPs)
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* Each k-fold edge: 85,

Energy flow polynomials: A complete linear basis for jet substructure


https://arxiv.org/abs/1712.07124

 We train a Neural network with an initial set of features:
m]: pT] » My —candidate

e We select data points with a specific window around classifier
output value 0.5, as points where the classifier is most
confused.
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e On X, we evaluate:
DisCo(yt™" [known variables,new feature]) for each

feature in the feature subspace.

Score to rank EFPs: Distance Correlation (DisCo)

e DisCois used to find value of non-linear correlations of the EFPs with

the truth labels
* Very powerful since we can quantify correlations between truth labels

and multiple features.

DisCo Fever: Robust Networks Through Distance Correlation:
Brownian distance covariance:



https://arxiv.org/abs/2001.05310
https://arxiv.org/abs/1010.0297

Score to rank EFPs: Distance Correlation (DisCo)

Pearson Correlation DisCo

Images from Wikipedia 16




e The feature with the highest DisCo value is
added to the list of known features, and a
new Neural Network is trained using the
new set of features.




* Variance for each method is obtained by training each network
10 times.
* Our method can obtain an R3, of 1263 + 50, after 11 features.
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A feature selection algorithm should perform better than
randomly selecting features.

1300 DisCo feature selection
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e A previous feature selection method, which relies on
Decision ordering (DO) for finding subset of data where a
classifier orders signal/background differently from the
truth labels.

e Use Average Decision Ordering (ADO) between EFPs and
the truth, as the score

1300 | "1 DisCo feature selection
1200 — ADO with truth

COm pa riSOn to a i(l)gg random efp selection
previous feature 0

R3o

selection algorithm

0 2 4 6 8 10 12 14 16 18
Features added

ADO method: Mapping Machine-Learned Physics into a Human-Readable Space arXiv:2010.11998

*The ADO plot was made using my implementation of the ADO algorithm 20


https://arxiv.org/abs/2010.11998
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Exaggerated: N-subjettiness Taggers Take On

An Efficient Lorentz Equivariant Graph Neural
Jet Images: arXiv:1807.04769

Network for Jet Tagging: arXiv:2201.08187v5
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ParticleNet: Jet Tagging via Particle Clouds:
Mapping Machine-Learned Physics into a
Human-Readable Space arXiv:2010.11998

A complete linear basis for jet substructure:
arXiv:1712.07124

The Machine Learning Landscape of Top
arXiv:1902.08570v3

Taggers: arXiv:1902.09914v3
Particle Transformer for Jet Tagging:

arXiv:2202.03772
How Much Information is in a Jet?:

Reports of My Demise Are Greatly
arXiv:1704.08249v2
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Sample Efficiency

Our feature selected model, outperforms the ParticleNet, and
matches the LorentzNet, when trained on less training data.

1200 1 ® LlorentzNet 7T
® Disco-FS on EFPs
1000 4 0 Pall’ticIeNet ____________________________________________ ;

O

600 -

R3o
s
-

400 F---t------- T
- @ |
200 - B
0.5 1.0 5.0

training fraction (% of 1.2M data)

*We use the features, which were selected using the larger dataset.

An Efficient Lorentz Equivariant Graph Neural Network for Jet Tagging: arXiv:2201.08187v5
ParticleNet: Jet Tagging via Particle Clouds: arXiv:1902.08570v3
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https://arxiv.org/abs/2201.08187v5
https://arxiv.org/abs/1902.08570v3

Selected EFPs

EFPs with chromatic number
c, probes the deviation from
(c-1) prong substructure of a
jet. The presence of 7 c=3
EFPs, of the 11 EFPs selected,
emphasizes the importance of
these EFPs for top-tagging.

We also see the presence c=2,
and c=4 EFPs, which shows
that deviations from 1-prong
and 3-prong substructure
information can also be useful.
EFPs with k # 1 are IRC
unsafe, which shows that IRC-
unsafe information can also be
useful.

0.5

0.5




Conclusion

* Using a Disco based feature selection for the case of top tagging, we were
able to obtain a handful of input features, which gave a very competitive
performance, given the number of parameters.

Possible reasons for not getting a better performance:

e The feature space considered could be insufficient for top tagging, which
could explain our inability to close the gap with higher performing black
box models.

* Need a better feature selection algorithm

Paper coming soon.
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Random Selection
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DO-ADO

DO(f(x),g(x)) =0((f(xs) — f(xp) (glxs) — g(xp)), where s refers to signal, and b refers
to background.

DO is a measure of relative ordering f(x) with respect to g(x), for a single signal-background
pair .

Same ordering gives DO=1, whereas different ordering leads to DO=1. Eg: DO = 1, if f(xs) >

f(xp) and g(xs) > g(x), whereas DO = 0, if f(x5) > f(xp) and g(x5) > g(xp)

Average Decision Ordering (ADO) is the average value of DO over a sample of signal-
background pairs.




Affine Invariant Distance Correlation (DisCo)

It has some nice properties:

Zero iff X, Y are independent, positive otherwise.

Can quantify non-linear correlations between 2 unequal sets of features
XandY.

Is invariant under linear rescaling of features in each set Xand Y



https://arxiv.org/abs/0803.4101

Step 2: Find a subset X, with data points
where the classifier is most confused

Our method using

e We select data points with a specific window around classifier
output value 0.5, as points where the classifier is most
confused.

Distance
Correlation (DisCo)

* Selects a subsample of signal-background pairs with DO (y,
ytruth/blackboxy — () j.e, signal-background pairs for which the
classifier output, which is different relative to the truth labels
(yt"“th) or a blackbox classifier output (y?'ackbox) with a high-
performance score.

DO-ADO method




Step 3: Use a score to rank the features
over the subset X,

OILTEl=plele TSI o On X, we evaluate, DisCo (yt™h, [initial/
Distance known variables,new feature]) for each

Correlation (DiSCO) feature in the feature subspace.

e On X, evaluate,
ADO (ytruth/background’ new feature)

DO-ADO method




Taggers R Parameters
CNN 914+14 610k
ResNeXt 1122447 1.46M
TopoDNN 29515 59k
Multi-body N-subjettiness 6 792+18 57k
Multi-body N-subjettiness 8 867+15 58k
TreeNiN 102511 34k
P-CNN 732124 348k
LBN 836117 705k
LolLa 722117 127k
LDA 151+0.4 184k
EFPs 384 1k
EFN 63331 82k
PFN 891+18 82k
ParticleNet 1615 +93 366k
ParticleNet-Lite 1262 + 49 26k

The Machine Learning Landscape of Top Taggers: arxXiv:1902.09914v3

An Efficient Lorentz Equivariant Graph Neural Network for Jet Tagging: arXiv:2201.08187v5

ParticleNet: Jet Tagging via Particle Clouds: arxiv:1902.08570v3
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