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• We use taggers and regressions for low mass boosted dijet searches


• Rely on smoothly falling backgrounds to estimate QCD passing N2


• We need to cut tight


• DDT method: define new variable N2DDT  for which passing and 
failing regions have the QCD jet mass shape

Tagger correlations

https://arxiv.org/abs/1603.00027
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QCD jet mass for 
consecutive cuts

N2

https://arxiv.org/abs/1603.00027


• Sensitivity can be improved by fitting regressed mass


• Recovers energy from e.g. neutrinos, jet grooming


• Peakless Z’ helps us to be sensitive across large phase space

Another application: mass reconstruction

https://arxiv.org/abs/1912.06046https://cds.cern.ch/record/2777006?ln=en
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SVFit

https://cds.cern.ch/record/2777006?ln=en


• Correlations grow stronger with ML 


• Mass is quickly learned!


• Generic problem

ML

https://cds.cern.ch/record/2707946/files/DP2020_002.pdf 

https://github.com/violatingcp/ContraDecorr/blob/main/Jets_v2.ipynb
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https://cds.cern.ch/record/2707946/files/DP2020_002.pdf
https://github.com/violatingcp/ContraDecorr/blob/main/Jets_v2.ipynb


The landscape

https://arxiv.org/abs/1603.00027 

https://cds.cern.ch/record/2707946/files/DP2020_002.pdf

https://arxiv.org/abs/2010.09745

https://cds.cern.ch/record/2630973/files/ATL-PHYS-PUB-2018-014.pdf

• Typically use DDT method


• Many approaches have been applied to mitigate this, e.g. DisCo, MoDe, KL-
divergence, multi-mass-point training sample (CMS particleNetMD), 
adversaries, …


• Many emphasize architectures/losses


• We take a more “old school” approach
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*Plots overlapped*

https://arxiv.org/abs/1603.00027
https://cds.cern.ch/record/2707946/files/DP2020_002.pdf
https://arxiv.org/abs/2010.09745
https://cds.cern.ch/record/2630973/files/ATL-PHYS-PUB-2018-014.pdf


• Idea: use Madgraph LO bias weighting to generate a training sample with a 
“flat” mass profile, but otherwise identical to desired signal

Method
‣ Start from  sample w/large 

width

‣ GeV, 

‣  cut for boosted events


‣ Fit mass shape:  (e.g. Crystal 
Ball)


‣ Reweight sample using Madgraph bias 
weighting: 

‣ Can also reweight  etc.

Z′￼(qq) + γ

m ∼ 175 Γ ∼ 100 %
HT

f(m)

w(m) = 1/f(m)
pT

Initial sample w/large Γ Fit mass distribution

Flat sample

Flat mass sample generation
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https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/LOEventGenerationBias


Using flat samples 
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• We flatten further by sampling events such that signal and QCD 
match


• Residual differences are applied as weights


• We find the 1D approach to be more robust

2D approach: flattening in (mass,pT)
1D approach: flatten in mass only
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Application 1: regression

Softdrop mass Regressed mass

Better

• Training network to predict true mass from 
particle constituents

• Recover losses from grooming/invisible


• Flat samples gives large improvement vs. 
soft drop


• Flat Z’ sample helps us to be sensitive 
across large mass range 
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• In analysis we apply truth-level 
correction to the softdrop jet (mass,pT) 


• Limited statistics from resonance/
bumpy approaches 


• Flat sample has large statistics 
across entire mass range of interest

Application 2: calibration
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Application 3: tagging

Residual correlations present 
- Also seen in N2. Depends on flavour, pT, … 
Can we go further with a different space?

Improvement 
from flat

Fully Supervised (Flat)

AUC=87%
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Fully supervised (peaky)

AUC=87%
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Model

Model
W 

jet 2

W 
jet 1

Contrastive 
space 

Minimize the difference in 
representation between 
two distorted objects of 
the same origin11

The Contrastive Space

Unsupervised
“Attractive” “Repulsive” “Decorrelation”

*Note: we don’t explicitly 
give mass to the loss!
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https://arxiv.org/abs/2103.03230


Probability 
QCD
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• This idea is the basis of contrastive learning


• Notion of constructing a “self-supervised” space 


• Contrastive learning is currently leading to top ML Perf Algos


• Most well known contrastive method is SimCLR


• We focus on VICReg and BarlowTwins

Supervised

The Contrastive Space

ImageNet tagging

Model

Model
W 

jet 2

W 
jet 1

Contrastive 
space 

Unsupervised

https://arxiv.org/abs/2103.03230


Naively run a training 
our space magically 
becomes separated!

13

100x Increase 

Decorrelation

100x Increase 

Attractive 

100x Increase 

Variance 

The 2D space

MSE Variance to 1 Diagonalize Latent space
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A Toy Dataset

3D space embedded 
in 2D
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Contrastive only

• Contrastive training on peaky sample already decorrelates 
nicely
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• Best decorrelation scheme is flat Z’ sample + contrastive loss


• 4D latent space


• Tagging similar to MoDe[0]


• Contrastive alone is insufficient


• With respect to supervised training, contrastive space appears to:


• Relies less on on mass for separation  


• increase performance


• Still working to understand the properties of the contrastive space

Flat+Contrastive

AUC=81% AUC=85%
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Contrastive

Improvement

Flat samples (supervised) Flat samples (contrastive)
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• As a check, we train flat samples with MoDe[0] loss


• AUC 86% MoDe[0], 85% contrastive


• Cutting less than 5% is important
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MoDe[0] vs contrastive on flat
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λ mode0 = 10 Contrastive



x1 x1 x5
+ No other Terms

Bonus: Fitting open data
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• Some residual correlation

• Again, mass is not given to the loss

Fit



Summary

We generate flat samples 
through bias weights in 

madgraph  
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A naive supervised training on 
the flat sample is less 
correlated with mass



Summary
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AUC=81% AUC=85%We introduce semi-
supervised contrastive 

space which further 
removes correlation 

with jet mass

Flat samples also 
show exciting 
potential in  
regression and 
calibration



Backup
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Tagging ROCs summary
Flat sample
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Peaky sample



N2 performance vs mass on flat 
sample
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• Lets compare semi-supervised with supervised 
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Supervised

Loss + 


Explicit  Mass

Decorrelation

Supervised

Loss

Normal Training Contrastive Training
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Contrastive Learning
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Augmented
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Repulsive Data Augmentation


W jets

QCD jets
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