Bridge between Classical & Quantum Machine Learning

Based on JHEP 08 (2021) 112; arXiv: 2106.08334 [hep-ph] & arXiv: 2202.10471 [quant-ph] with Michael Spannowsky

> BOOST 2022 @ Hamburg University August 15th, 2022

Sales pitch of the talk!

- We more or less know how to get a well-performing Neural Network to classify jets, LHC events, even cats and dogs...
- What we don't know is what this network learns.
- Can we use Quantum Mechanics to have more insight into the learning process?
 - What has a model learned?
 - What is learning?
 - How do we develop "insightful" algorithms?
 - How to perform this on a Quantum device?

All comes together with Tensor Networks!

Introduction

- Representing a problem as a quantum many-body system
- Hello world of HEP-ML: Top Tagging
- Quantum Machine Learning on a Quantum device
- Conclusion

Introduction

Tensor Networks: Origins

$$\begin{split} |\Psi\rangle &= \sum_{\phi_1, \dots, \phi_n = 0} \mathscr{W}_{\phi_1 \dots \phi_n} |\phi_1\rangle \otimes |\phi_2\rangle \otimes \dots \otimes |\phi_n\rangle \\ \\ \forall |\phi_i\rangle &\in \mathscr{H}^{\otimes 2^N} \quad \rightarrow \quad |\phi_i\rangle \in \big\{|\uparrow\rangle, |\downarrow\rangle\big\} \end{split}$$
The computational cost of a rank-N tensor is $\mathcal{O}(d^N)$!!! Computational cost is $\mathcal{O}(d^{N-1}\chi^2)$!!!

Types of Tensor Networks (some of them)

Types of Tensor Networks (some of them)

Multiscale Entanglement **Renormalisation Ansatz**

Matrix Product States for Classification

University

 $\mathbf{X} = \left\{ x_1, x_2, \cdots, x_n \right\} \in \mathbb{R} \quad , \quad \phi(x) := \forall x \in \mathbb{R} \to \mathbb{C}^m$ $\Phi^{p_1 \cdots p_n}(\mathbf{x}) = \bigotimes_{p_i=0}^N \phi^{p_i}(x_i) \qquad \phi^{p_i}(x_i) = \sum_{j=0}^{m-1} \alpha_j | j \rangle$ $\bigcup \bigcup \bigcup \bigcup \bigcup \bigcup \bigcup \bigcup \bigcup \bigoplus (a_j) = \Phi^{p_1 \cdots p_n}(\mathbf{x})$

$$= \Phi^{p_1 \dots p_n}(\mathbf{x})$$

$$= \mathcal{W}^l_{p_1 \dots p_n}$$

$$= \mathcal{W}^l_{p_1 \dots p_n}$$

Matrix Product States for Classification

Sub-Outline

How to embed the data?

How to form a network?

How to train the network?

$$\mathscr{L} = \frac{1}{N} \sum_{x \in \mathbf{x}^N} q^{\text{truth}} \log \left(p(x^{(i)}; \theta) \right)$$

Or anything else you like to minimize...

Traditionally NNs are trained with SGD, but MPS is trained with Density Matrix Renormalisation Group Algorithm

Jack Y. Araz - Classical vs Quantum

 $\theta_i \in \mathcal{W}$

Hello World of HEP-ML: Top Tagging

Why Top Quarks?

Why TNs "might" perform well in classification tasks?

- The range of a node in a Tensor Network is bounded by its bond dimension.
- Tensor Networks can capture local "anomalies".
- We are dealing with sparse, locally correlated calorimeter pixels.

Data from:

Similar preprocess, based on CNN:

University

 η - based ordering

		1	
$\phi' - \text{pixels}$	\tilde{p}_T^1	\tilde{p}_T^2	\tilde{p}_T^3
	\tilde{p}_T^{10}	\tilde{p}_T^9	\tilde{p}_T^8
	\tilde{p}_T^{11}	\tilde{p}_T^{12}	\tilde{p}_T^{13}
	\tilde{p}_T^{20}	\tilde{p}_T^{19}	\tilde{p}_T^{18}
	\tilde{p}_T^{21}	\tilde{p}_T^{22}	\tilde{p}_T^{23}
		η' -	– p

 $\mathcal{S}(\rho)$ is a <u>quantifiable</u> measure to understand which pixels are not crucial for the process without the data!!!

Why finding a quantitative measure is important?

Quick answer: We are physicist not just data analysts...

- Understanding the network gives the ability to build better training algorithms.
- Scientific data is largely sparse; if we know where the information comes from, we can get rid of large amounts of data.

 Suppress the noise (and maybe even pile-up to be confirmed)!

Quantum Machine Leating Yes, up to now, it was "classical"...

Variational Quantum Circuits

- Choose an ansatz variational quantum circuit.
- Embed the data by rotating each qubit.
- Update your ansatz with respect to the output!

Nguyen, Chen; arXiv: 2105.11853

$$\begin{split} \mathbf{M}_{\theta}(\Phi^{\beta_{1}\cdots\beta_{n}}(\mathbf{x})) &= \langle \Phi \mid \hat{\mathcal{U}}_{\mathrm{QC}}^{\dagger}(U_{i}(\theta_{j})) \ \hat{\mathbf{M}} \ \hat{\mathcal{U}}_{\mathrm{QC}}(U_{i}(\theta_{j})) \mid \Phi \rangle \\ p\left(\mathbf{x}^{(i)};\theta\right) &= \left| \mathbf{M}_{\theta}\left(\Phi^{\beta_{1}\cdots\beta_{n}}\left(\mathbf{x}^{(i)}\right)\right) \right|^{2} \end{split}$$

Experimenting with 6-Qubits

Experimenting with 6-Qubits

Experimenting with 6-Qubits

Ansatz	D	χ	# Parameters	AU
	2	5	235	0.75
	2	10	1320	0.80
TTN	2	20	9040	0.84
	5	10	1950	0.87
	10	20	14800	0.89
	2	5	230	0.81
MPS	2	10	860	0.81
	2	20	3320	0.81
	5	10	2150	0.89
	2	5	1225	0.85
MERA	2	10	13400	0.84
	2	20	181600	0.84
	5	10	18200	0.90
Q-TTN	_	_	9	0.89
Q-MPS	-	-	9	0.88
Q-MERA	-	-	17	0.91

Loss landscape for classical TNs becomes exponentially flat!

Conclusion

Conclusion

Classical

- Tensor Networks opens up the entire world of techniques developed for Quantum Mechanics to ML applications.
- A linear network allows a more straightforward interpretation.
- The perfect tool to do linear algebra in higher-dimensional spaces.

Main Drawbacks

- Cost to train can be high
- Choice of architecture is still a research area.

Jack Y. Araz - Classical vs Quantum ~(1p3)~

Classical

- Tensor Networks opens up the entire world of techniques developed for Quantum Mechanics to ML applications.
- A linear network allows a more straightforward interpretation.
- The perfect tool to do linear algebra in higherdimensional spaces.
- The optimisation landscape becomes exponentially flat with increasing bond dimensions and Hilbert space mapping.

Quantum

- Natural quantum systems have more representation capacity.
- Quantum Natural Gradient Descent allows faster optimization compared to classical networks.
- BUT near term quantum devices are still very much limited to a few qubits.

Experimenting with 4-Qubits

Experimenting with 4-Qubits

Singular Value Decomposition

 λ_i also known as Schmidt values

Singular Value Decomposition

Singular Value Decomposition

Computational cost is $\mathcal{O}(d^{N-1}\chi^2)$!!!

Matrix Product States for Classification

Data Embedding

$$\Phi^{p_1 \cdots p_n}(\mathbf{x}) = \phi^{p_1}(x_1) \otimes \phi^{p_2}(x_2) \otimes \cdots \otimes \phi^{p_n}(x_n)$$
$$\phi^{p_i}(x_i) = \begin{bmatrix} \cos(x_i \ \pi/2) \\ \sin(x_i \ \pi/2) \end{bmatrix} \text{ or } \phi^{p_i}(x_i) = \begin{bmatrix} 1 \\ x_i \\ x_i^2 \end{bmatrix} \text{ or } \cdots$$

$$\bigcup_{i=1}^{n} \bigcup_{i=1}^{n} \bigcup_{$$

Density Matrix Renormalization Group Algorithm

Durham I University

 \wedge

Density Matrix Renormalization Group Algorithm

University

$$\sum_{i}^{\chi} \lambda_{\alpha} | \alpha \rangle_{A} | \alpha \rangle_{B} \rightarrow \lambda_{\alpha} := \text{Schmidt values}$$

$$\sum_{i}^{\chi} \lambda_i^2 \log \lambda_i^2$$

Fisher Information & Effective Dimensions

42

