Jet angularities in Z+jet and dijet production

Daniel Reichelt

Institute for Particle Physics Phenomenology, Durham University

based on Simone Caletti, Oleh Fedkevych, Simone Marzani, Steffen Schumann, Gregory Soyez [JHEP 07 (2021) 076], [JHEP 03 (2022) 131]

- ▷ jet substructure observable: jet angularities
- ▷ setup: as recent CMS measurement [JHEP 01 (2022) 188]
- ▷ theoretical predictions: NLO+NLL' based on CAESAR plugin to SHERPA
- ▷ NLL' accuracy via flavour matching
- ▷ NP corrections using transfer matrix approach
- ▷ + MC@NLO (and MEPS@NLO) predictions from SHERPA

▷ jet angularity family of observables

$$\lambda_{\alpha}^{\kappa} = \sum_{i \in J} \left(\frac{p_{T,i}}{p_{T,J}} \right)^{\kappa} \left(\frac{\Delta R_i}{R} \right)^{\alpha}$$

 \triangleright parameters κ (here = 1 for IR safety), and α to probe different phase space regions

- \triangleright measured on anti- k_t jets (R = 0.4, 0.8) for
 - ▷ leading jet in Z+jet
 - separately the more forward/central of the two leading jets in dijets
- ▷ jets with and without soft drop grooming

framework for NLO + NLL' + NP calculations

[JHEP 07 (2021) 076] [JHEP 03 (2022) 131] data from [JHEP 01 (2022) 188]

CAESAR formalism [Banfi, Salam, Zanderighi '04]
 implemented in SHERPA

[Gerwick, Höche, Marzani, Schumann '15]

[Baberuxki, Preuss, DR, Schumann '19]

extended for jet observables...modified wide angle behaviour

[Dasgupta, Khelifa-Kerfa, Marzani, Spannowski '12]

[Caletti, Fedkevych, Marzani, DR, Schumann '21]

- non-global logs [Dasgupta, Salam, '01]
- \triangleright ... and soft drop grooming

[Larkoski, Marzani, Soyez, Thaler '14]

> CAESAR-style formulas available

[Baron, DR, Schumann, Schwanemann, Theeuwes '20] Multiplicative (flavoured) matching non-perturbative effects

- Extract "transfer matrix" from MC
 ~ relative probability P(HL|PL)
 - \triangleright migration between p_T bins
 - > shifts within observable

quark gluon jet definition

> naive definition not IRC safe (starting at NLO)

▷ one solution: BSZ algorithm [Banfi, Salam, Zanderighi '06]

▷ practical problem: defines (BSZ) jet with flavour, not flavour of a given $(anti-k_t)$ jet

Working solution: Iterative application of BSZ:

- 0. Start w/ list ${\mathcal O}$ of coloured final-state objects
- 1. Run the standard IR-safe algorithm with radius parameter R_0 on \mathcal{O} , and obtain the objects in the leading jet $J \subset \mathcal{O}$.
- 2. If $J = \{j \in \mathcal{O}\}$, terminate. The flavour is that of j.
- 3. Determine the pair $\{i, k\} \subset O$ that minimises the BSZ measures, and combine them.

Go to step 1 and repeat.

proxies for q and g jets

[JHEP 07 (2021) 076] [JHEP 03 (2022) 131]

data from [JHEP 01 (2022) 188]

 $\,\triangleright\,$ as expected, dijet \sim gluon, Z+jet \sim quark

 \triangleright qualitatively similar result to [JHEP 01 (2022) 188] (w/ simpler working definition)

results: global view on quark vs. gluons

[JHEP 07 (2021) 076] [JHEP 03 (2022) 131] data from [JHEP 01 (2022) 188]

results: global view on data vs. theory

[JHEP 07 (2021) 076] [JHEP 03 (2022) 131]

data from [JHEP 01 (2022) 188]

ratios between quark and gluon enhanced samples (normalised to data)

- ▷ same selections a before
- ▷ data well described by MC@NLO and NLO+NLL'+NP
 ⇒ challenges traditional "quarks are better understood than gluons"

- ▷ goal: use angularities as a quark tagger (i.e., quark $\equiv \lambda < \lambda_{cut}$)
- ▷ idea: in Z+jet should contain information on initial state \rightarrow useful for pdf fits (?)
- \triangleright what value of λ_{cut} ? (and what α , groomed/ungroomed etc.)
- ightarrow at Born level ightarrow no flavour ambiguity
- \hookrightarrow shower $q\bar{q} \rightarrow Zg$ and $gq \rightarrow Zq$ samples separately, find optimal working points (here using PYTHIA)
- might not be the "best" tagger, but easy to study theoretically

- \triangleright framework for NLO + NLL' calculation of jet angularities
- \triangleright + transfer matrix approach for NP corrections
- ▷ + flavour separated matching
- pheno for [JHEP 07 (2021) 076], full list of results at [https://www.theorie.physik.uni-goettingen.de/ sschuma/JetAngularities].
- ightarrow IRC safe flavour definitions ightarrow calculable flavour separated samples
- ▷ test our understanding of quark and gluon jets
- ▷ use cut in angularity as well defined flavour tagger
- > + as initial state tagger in Z+jet

Backup

migration between transverse momentum regions

