

Going off topics to demix quarks and gluons in α_S extractions arXiv:2206.10642 [hep-ph]

M. LeBlanc (CERN), B. Nachman (LBNL), C. Sauer (Heidelberg)

MLB (CERN) — Going off-topic to demix quarks and gluons in α_s extractions — BOOST 2022 — Slide 2

Strong coupling

 $\delta \alpha \sim 10^{-10} \ll \delta G_{\rm F} \sim 10^{-7} \ll \delta G \sim 10^{-5} \ll \delta \alpha_{\rm S} \sim 10^{-3}$

increasingly relevant in predictions related to

Abbate et al. Phys.Rev.D 83 (2011) 074021 P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update.

α_s extractions from jets at the LHC

- Sensitivity to strong coupling at colliders from the jet multiplicity and the jet rate when performing extractions from jet cross-sections.
 - NNLO theory for 3-jet crosssection has only recently been computed at leading colour (Czakon *et al.* 2106.05331)
- The only test of asymptotic freedom at the LHC that enters the PDG world average so-far is the **single point** from CMS's top pair production crosssection measurement, at *Q=m*t

How can we perform an extraction like the LEP thrust one at the LHC?

LHC EXTRACTIONS

Underlying event / colour reconnection

Jet rate or cross-section ratio usually compared to fixedorder calculations

How can we perform an extraction like the LEP thrust one at the LHC?

Soft-drop jet mass ATLAS, CMS references

- The soft-drop jet mass has been measured during Run 2 and compared to >LL theory.
 - Great experimental and theoretical precision in the resummation-dominated region of the observable.
- Leading behaviour: $m_{SD} \sim C_i \alpha_S$.
 - Sensitive to the strong coupling.
 - Also sensitive to the q/g colour factor C_i .

Soft-drop jet mass **ATLAS, CMS references**

- The soft-drop jet mass has been measured during Run 2 and compared to >LL theory.
 - Great experimental and theoretical precision in the resummation-dominated region of the observable.
- Leading behaviour: $m_{SD} \sim C_i \alpha_S$.
 - Sensitive to the strong coupling.
 - Also sensitive to the q/g colour factor C_i .
- Detailed prospective study for $\alpha_{\rm S}$ extractions performed at Les Houches in 2017 (<u>1803.07977</u>).

		_
		_
		_
		_
		-
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
K		
1		111
		110
_	_	

Repeating the LH17 Fit

• Generate **pseudodata** from NLL prediction for quark- & gluon-initiated jets.

Repeating the LH17 Fit

- Generate **pseudodata** from NLL prediction for quark- & gluon-initiated jets.
- Characteristic curve demonstrates degeneracy between f_{gluon} and α_{s} .
 - Obtained by **altering the value of** *f*_{gluon} **in the fit** for a given mixed sample **and extracting** α_s .

40000

80% quarks @ NLL $\alpha_{\rm S} = 0.1180 \pm 10\%$

50% quarks @ NLL

 $\alpha_{\rm S} = 0.1180 \pm 10\%$

MLB (CERN) — Going off-topic to demix quarks and gluons in α_s extractions — BOOST 2022 — Slide 9

NLL prediction from Soyez et al. <u>1712.05105</u>

Repeating the LH17 Fit

- Generate **pseudodata** from NLL prediction for quark- & gluon-initiated jets.
- Characteristic curve demonstrates degeneracy between f_{gluon} and α_{s} .
 - Obtained by **altering the value of** *f*_{gluon} **in the fit** for a given mixed sample **and extracting** α_s .
- Could break this degeneracy in a couple of ways:
 - Theoretical calculation of $f_{gluon} \rightarrow sensitive$ to PDFs, could fit PDFs at the same time (more complex).
 - Could fit multiple higher-order correlators simultaneously (degeneracy breaks beyond NLL).
 - Requires simultaneous theoretical prediction of multiple JSS observables at very high precision ...

MLB (CERN) — Going off-topic to demix quarks and gluons in α_s extractions — BOOST 2022 — Slide 10

NLL prediction from Soyez et al. <u>1712.05105</u>

Results: LH17 Approach

- When left unconstrained, this degeneracy results in large instabilities / uncertainties in the extracted $\alpha_{\rm S}$ value.
 - Can fit both mixed samples at once to improve slightly, but errors still on the order of ~35%.
- The LH Jets Working Group became a bit pessimistic ...

MLB (CERN) — Going off-topic to demix quarks and gluons in α_s extractions — BOOST 2022 — Slide 11

"Without some kind of conceptual breakthrough, though, we expect that the quark/gluon fraction will be a limiting aspect of α_s *extractions from jet substructure at the LHC."*

— Les Houches Jets Working Group, <u>arXiv:1803.07977</u> [hep-ph]

How do we break this degeneracy?

Simultaneously fit α_s and the *q/g* fractions — *explored in LH17*

Calculate the *q/g* fractions — *depends on PDFs*

How do we break this degeneracy?

Simultaneously fit α_s and the *q/g* fractions — *explored in LH17*

Calculate the *q/g* fractions — *depends on PDFs*

MLB (CERN) — Going off-topic to demix quarks and gluons in α_s extractions — BOOST 2022 — Slide 14

Demix underlying *q/g* distributions from data!

Jet topics

- E. Metodiev & J. Thaler <u>1802.00008</u>,
- P. Komiske, E. Metodiev & J. Thaler <u>1809.01140</u> P. Komiske, S. Kryhin & J. Thaler <u>2205.04459</u>

At are "Quark" and Guon Jee What is a Quark Jet? From lunch/dinner discussions III-Defined What people A quark parton sometimes A Born-level quark think we mean	Word Count 3 4 k parton 9 rk parton in a final state shower 9	Our Plan: An operational definition of quark and That definition:
Quark as nounAn eikonal line wi and carrying tripleA quark operator in the context of A parton-level je using a soft-safe collinear safe if hadronic fiducia an enriched satis suitable, though	ich baryon number 1/312iet color charge12ir appearing in a hard matrix element16if a factorization theorem16et object that has been quark-tagged22you sum constituent flavors)22region (as defined by an unambiguous30ial cross section measurement) that yields30gh fundamentally ambiguous, criterion)30	A phase space region (as defined by an unambiguous hadronic fiducial cross section measurement) that yield an enriched sample of quarks (as interpreted by some suitable, though fundamentally ambiguous, criterion) This talk : Translating those 30 words to these 2
Well-Defined What we mean On the Topic	[Les Houches 2015 Report] [P. Gras, et al., 1704.03878] 3	$p_{\text{quark}}(x) \equiv \frac{p_A(x) - \kappa_{AB} p_B(x)}{1 - \kappa_{AB}}$ $p_{\text{gluon}}(x) \equiv \frac{p_B(x)}{1 - \kappa_{AB}}$

ALSO A VERY FUN READ - D. BLEI, COMMUN. ACM 55 4 APR. 2012

Key idea: statistically **demix** two samples of q/g jets by maximally subtracting the two mixtures from one another, such that the zeros of the subtracted distributions correspond to the anchor regions.

Data-driven: does not depend on predictions/labels!

Jet topics

• Obtain **jet topics** from likelihood ratios.

$$p_{\text{quark}}(\boldsymbol{x}) = \frac{p_A(\boldsymbol{x}) - \kappa_{\text{AB}} p_B(\boldsymbol{x})}{1 - \kappa_{\text{AB}}}$$

$$p_{\text{gluon}}(x) = \frac{p_B(x) - \kappa_{\text{BA}} p_A(x)}{1 - \kappa_{\text{BA}}}$$

- Here, using two mixed samples of 50% (~dijets) and 80% quarks (~gluons).
- Extracted topic 1 and topic 2 recover original quark and gluon distributions!
 - Can use extracted topics to obtain the q/g fractions of the two mixed samples (next slide).

arks and gluons in α_s extractions — BOOST 2022 — $\mathfrak{VonStituent Multiplicity} M$

• Results of q/g fraction extraction using

N_{constitutents}.

- Able to recover true fractions to within ~10-15%, performance worse for certain mixtures
 - *e.g.* pure in one flavour or degenerate.
- Using same anchor region for all bins — performance could probably be improved by someone patient.
 - Better methodologies to select anchor regions proposed while we were finalising the study : Komiske et al. 2205.04459.

Extracted fractions (NConst.)

Non-closure (NConst.)

q/g fractions

Mixture 2 Quark Fraction

Mixture 2 Quark Fraction

Going 'off topics' (get it now?)

- - obtain topics for non-mutually-irreducible observables.

Reducibility factors are a property of the *event ensemble*, rather than the jet/event. • Once we extract them from a mutually-irreducible observable, we can apply them to

Other *q/g* discriminants

- N_{constituents} may not be a desirable observable \bullet experimentally.
 - Systematics may be difficult to define in a robust way (cluster efficiency, etc.)
- — but any mutually-irreducible observable can be used.
 - In practice, whatever observable allows for the most precise extraction is probably the best one to try.
- Studied a few other options, and repeated the study in-detail with a PFN q/g classifier.
 - Could design an ML/AI discriminant with correlated response at particle- and detectorlevel, better experimental precision than N_{constituents}.

Particle Flow Networks (Deep Sets) Komiske, Metodiev & Thaler 1810.05165

PFN-ID

Zaher et al. 1703.06114

- Jets are *unordered* particle sets of variable length.
 - Point-clouds are a natural representation for hadronic showers:
 - Deep sets framework is naturally permutation invariant due to internal sum layer.
- This approach has already been explained at BOOST, so we'll spare you the details this time.

MLB (CERN) — Going off-topic to demix quarks and gluons in α_s extractions — BOOST 2022 — Slide 20

Particle Flow Networks (Deep Sets)

Komiske, Metodiev & Thaler 1810.05165

Zaher et al. 1703.06114

MLB (CERN) — Going off-topic to demix quarks and gluons in α_s extractions — BOOST 2022 — Slide 21

Extracted fractions

Improved Results

- Repeat fitting procedure, fixing *q/g* fractions to the values extracted via topics.
 - Large covariances in fit essentially removed: remaining uncertainty is either statistical in nature or related to anchor bin selection.
- Relative uncertainty in this fit reduced to ~7%.
 - Topics extractions can be further refined.
 - Anchor region selection still rudimentary here: better strategies in Komiske et al. 2205.04459.
- Other experimental & theoretical challenges remain, but this approach opens a new way forward toward the first extractions of $\alpha_{\rm S}$ from JSS.

MLB (CERN) — Going off-topic to demix quarks and gluons in α_s extractions — BOOST 2022 — Slide 22

Summary

- We have outlined a proposal to apply statisical demixing procedures in the context of α_s extractions from groomed JSS observables.
 - This work builds upon the strategy outlined by the Jets working group at <u>LH '17</u> <u>(1803.07977)</u>.
 - Degeneracy between α_s and sample q/g composition is broken by this method, removing the major source of methodological uncertainty.
- It is possible to use IRC-unsafe information to extract the sample q/g composition without compromising theoretical tractability.
 - *i.e.* we can incorporate ML/AI-based observables and precision QCD!
- Many experimental & theoretical steps to go before complete $\alpha_{\rm S}$ extractions from JSS are competitive.
 - Can topics be identified as the "quarks" and "gluons" used in calculations?

Thanks for thinking about these topics!

