

Conformal Colliders meet the LHC

Boost-Hamburg 2022

Bianka Meçaj - Yale University

Based on work with Ian Moult and Kyle Lee arXiv:2205.03414

QCD at Hadron Colliders

Almost every LHC event contains jets

Jets are reconstructed using jet algorithms (anti- k_T)

Cacciari, Salam 2006 Salam, Soyez 2007

How can we learn the most about underlying physics from the reconstructed jets?

Jet substructure

Study the internal structure of a jet

Any physics dynamics will be imprinted in the energy distributions inside the jet.

Well-defined in QFT!

 Distribution of energy inside the jet is described by correlation functions of the energy flow operators ⇒energy correlators.

$$\langle \Psi \mid \varepsilon(\overrightarrow{n}_1)\varepsilon(\overrightarrow{n}_2)\dots\varepsilon(\overrightarrow{n}_n) \mid \Psi \rangle$$

[Basham, Brown, Ellis, Love]

$$\mathcal{E}(\vec{n}) = \lim_{r \to \infty} \int\limits_0^\infty dt \ r^2 n^i T_{0i}(t, r\vec{n})$$

Energy correlators for jet substructure at LHC

Outline

Scaling behavior

Spectrum of the jet

Applications of the Results

Scaling behavior

We will study energy correlators inside high energy jets at the LHC: small angle behavior

Energy correlators admit an OPE

$$\langle \Psi \mid \varepsilon(\overrightarrow{n}_1)\varepsilon(\overrightarrow{n}_2) \mid \Psi \rangle \sim \sum \theta^{\gamma_i} \mathcal{O}_i(\overrightarrow{n}_1)$$

 Universal scaling behavior in QFT as operators are brought together!

Light-Ray OPE

Energy Correlators at the LHC

Factorization Formula

Hard function: includes pdfs

Energy correlator jet function

Two-point energy correlator

The simplest jet substructure observable

- The complicated LHC environment is described by a simple observable!
- Probe the OPE structure of $\langle \varepsilon(\overrightarrow{n}_1)\varepsilon(\overrightarrow{n}_2) \rangle$

$$\langle \Psi \mid \varepsilon(\overrightarrow{n}_1)\varepsilon(\overrightarrow{n}_2) \mid \Psi \rangle \sim \sum \theta^{\gamma_i} \mathcal{O}_i(\overrightarrow{n}_1)$$

 A jet substructure observable that can test quantum scaling behavior of operators.

[Lee, Mecaj, Moult]

The jet spectrum

Higher-point correlators

[Lee, Mecaj, Moult]

[Chen, Moult, Zhang, Zhu]

- Can be observed at the high energies at the LHC at high precision
- Ratio of the higher-point correlators with the two-point isolates anomalous scaling!
- The anomalous scaling behavior depends on N (slope increases with N)

 \Downarrow

- First hand probe of the anomalous dimensions of QCD operators.
- Non-perturbative effects cancel in the ratio

The jet spectrum

Higher-point correlators

Asymptotic energy flux directly probes the spectrum of (twist-2) lightray operators at the quantum level!

Confinement transition in jet substructure?

Any underlying dynamics will be imprinted in the energy correlators, including hadronization transition.

Jet substructure from first principles!

- Energy correlator is a jet substructure observable defined from first principles in QFT
- ⇒ No room for ambiguity what it's being measured in theory.

- Formalism we have presented can be applied for any conserved charge for LHC processes.
- No jet grooming or pruning is needed to extract the final results, pure QFT calculation!
- Not sensitive to soft and wide angle radiations.

Implementation on tracks

$$E_i \rightarrow \int dx_i \, x_i T_i(x_i) E_i = T_i^{(1)} E_i$$

Multiply by the first moment of the track function

• Incorporate information not only from the calorimeter but also from the tracks.

[Li, Moult, van Velzen, Waalewijn, Zhu]

Possible using track functions.

See Yibei's talk

Better precision

The anomalous dimension can also be measured from these first moments!

Extensions of these results

- Precision measurements, example: strong coupling, since the anomalous dimensions are proportional to α_s .
- Extend these results to massive quark jets: Intrinsic dynamics from non-zero mass effect
- Better jet modeling in MC simulations, especially for heavy quarks

See Kyle's talk on Thursday!

• Higher order NLL are important for better precision in parton showers: "reference resummation" for testing DGLAP finite moments

Conclusions

• Factorization formula for calculating energy correlators study jet substructure at the LHC.

$$\frac{\mathrm{d}\Sigma}{\mathrm{d}p_T\mathrm{d}\eta\mathrm{d}z} = \sum_i \mathcal{H}_i\left(p_Tz,\eta,\mu\right) \otimes \int_0^1 dx \, x^N \mathcal{J}_{ij}(z,x,p_TR,\mu) \, J_j^{[N]}(z,x,\mu)$$

• Can probe a universal scaling behavior of QFT in the complicated LHC environment.

Higher-point correlators can be calculated for LHC and probe anomalous scaling dimension of operators.

NLL Projected Correlators

8 25 ESC/EEC

ESC/EEC

ESC/EEC

ESC/EEC

ESC/EEC

ESC/EEC

RL

RL

• There is a myriad of future applications of such jet observables that can be applied to both QCD in the vacuum and heavy ions

Thank you!