NNLL resummation of groomed additive observables

Jack Helliwell (jack.helliwell@physics.ox.ac.uk)

with: M. Dasgupta and Basem El-Menoufi

BOOST 2022

- Introduction and motivation
- 2 Recap of NLL resummation
- ${\scriptstyle\rm I\hspace{-.1em}I}$ NNLL resummation in the small $z_{\rm cut}$ limit
- \blacksquare Including finite $z_{\rm cut}$ effects at NLL
- 5 Results
- **6** Summary and future work

Groomed jet shape observables are a good choice for direct comparison between perturbative QCD and measurements:

less susceptible pileup and underlying event

hadronisation corrections are smaller

Resummations are easier due to lack of non global logs

- pQCD calculations have been compared to measurements for several angularities and the jet mass (CMS, ATLAS)
- Calculations compared for the groomed jet mass are either NLL + NLO (Marzani, Schunk, Soyez) or NNLL in the small *z*_{cut} limit (Frye, Larkoski, Schwartz, Yan).
- Other groomed angularities are calculated to NLL accuracy with NLO matching (Caletti, Fedkevych, Marzani, Reichelt, Schumann, Soyez).
- Aim is to get NNLL at small z_{cut} with finite z_{cut} at NLL for any additive observable and demonstrate NLO matching for a selection of observables.
- This talk: $e^+e^- \rightarrow q\bar{q}$ split into two hemispheres, both of which are groomed with mMDTDasgupta, Fregoso, Marzani, Salam (Soft Drop Larkoski, Marzani, Soyez, Thaler with $\beta = 0$).

mMDT Grooming procedure

- Start with a hemisphere (jet) clustered with the Cambridge Aachen (C/A) algorithm.
- **2** Undo the last clustering in the sequence to obtain two branches, i and j.
- 3 If the softer branch does not satisfy $\frac{\min(E_j, E_i)}{E_i + E_j} > z_{\text{cut}}$ then it is discarded and the groomer returns to to step 2.
- If ^{min(E_i,E_j)}/_{E_i+E_j} > z_{cut} is satisfied, the groomer stops and the groomed hemisphere contains all of the particles in both i and j.

Recap of NLL resummation

Can consider strongly ordered primary emissions inclusive of branchings

$$\Sigma^{\mathrm{NLL'}}(v; z_{\mathrm{cut}}) = \frac{1}{\sigma} \int_0^v \frac{\mathrm{d}\sigma}{\mathrm{d}v'} \mathrm{d}v' = \left(1 + \frac{C_F \alpha_s}{\pi} C_1\right) \exp[-R^{\mathrm{NLL'}}(v, z_{\mathrm{cut}})]$$

$$\begin{split} R^{\mathrm{NLL'}}(v, z_{\mathrm{cut}}) &= \\ \int_{z_{\mathrm{cut}}}^{1} \int^{z^2 Q^2} \frac{C_F \alpha_s^{\mathrm{CMW}}(k_t^2)}{\pi} \left(\frac{2}{z} + \delta(1-z)\gamma_0^{\mathrm{h.c.}}\right) \frac{\mathrm{d}k_t^2}{k_t^2} \mathrm{d}z \Theta(V_{\mathrm{s.c}}(z, k_t) - v) \\ \gamma_0^{\mathrm{h.c.}} &= -\frac{3}{2} \end{split}$$

The resummation can be structured as an inclusive piece and a clustering correction:

$$\Sigma^{\text{NNLL}}(v; z_{\text{cut}}) = \Sigma_{\text{inc.}}(v; z_{\text{cut}}) + \Sigma_{\text{clust.}}(v; z_{\text{cut}})$$

NNLL resummation: Inclusive Groomer

- hard collinear part proceeds the same as for ungroomed observables, e.g ARES (Banfi et al.)
- Can distil what we need into a modification of C₁ and evaluating the Sudakov factor up to NNLL accuracy.

$$\Sigma_{\rm inc.}(v, z_{\rm cut}) = \frac{1}{\sigma} \int_0^v \frac{\mathrm{d}\sigma}{\mathrm{d}v'} \mathrm{d}v' = \left(1 + \frac{C_F \alpha_s}{\pi} C^{\rm r.c}(v)\right) \exp[-R^{\rm NNLL}(v, z_{\rm cut})]$$

$$\begin{split} R^{\text{NNLL}}(v, z_{\text{cut}}) &= \int_{z_{\text{cut}}}^{1} \int^{z^2 Q^2} \frac{C_F \alpha_s(k_t^2)}{\pi} \bigg(\frac{2}{z} \left(1 + \frac{\alpha_s(k_t^2) K^{\text{CMW}}}{2\pi} \right) \\ &+ \delta(1-z) \left(\gamma_0^{\text{h.c.}} + \frac{\alpha_s(k_t^2)}{2\pi} \gamma_1^{\text{h.c.}} \right) \bigg) \frac{\mathrm{d}k_t^2}{k_t^2} \mathrm{d}z \Theta(V_{\text{s.c}}(z, k_t) - v) \end{split}$$

- \blacksquare soft part is essentially the same as at NLL as soft logs are logs of $z_{\rm cut}$
- Multiple emission effects turn out to be N³LL

J.Helliwell (U.O.O)

NNLL resummation: Clustering Correction

 $z_{\alpha} < z_{\text{cut}}, \qquad z_{\beta} < z_{\text{cut}}, \qquad z_{\text{cut}} < z_{\alpha} + z_{\beta}$

$$\Sigma^{\text{clust}}(v, z_{\text{cut}}) = \mathcal{F}_{\text{clust.}}(v) \exp[-R^{\text{NLL}}(v, z_{\text{cut}})]$$

$$\begin{aligned} \mathcal{F}_{\mathsf{clust.}}(v) &= \left(\frac{\alpha_s}{2\pi}\right)^2 \times \\ &\left(C_F^2 \frac{4\pi}{3} \mathsf{Cl}_2\left(\frac{\pi}{3}\right) - C_F C_A 1.161 - C_F T_R n_f 1.754\right) \frac{\ln\left(v^{\frac{2}{a+b}}\right)}{1 + \beta_0 \alpha_s(Q^2) \ln(v^{\frac{2}{a+b}})} \end{aligned}$$

 \blacksquare NLL terms suppressed by powers of $z_{\rm cut}$ could be of a similar size to NNLL terms.

■ Can match NNLL small z_{cut} calculation to finite z_{cut} NLL calculation (Dasgupta, Fregoso, Marzani, Salam)

$$\Sigma(v, z_{\text{cut}}) = \left(1 + C^{\text{r.c}}(v) + \mathcal{F}_{\text{clust.}}, 1\right)$$

$$\exp \begin{pmatrix} -R_q^{\text{NNLL}} - R_q \ z_{\text{cut}} - R_q \rightarrow g & R_{g \rightarrow q} \\ R_{q \rightarrow g} & -R_g^{\text{NLL}} - R_g \ z_{\text{cut}} - R_{g \rightarrow q} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad (1)$$

Results

- Method applied to three observables: heavy hemisphere mass, Width (λ_1^1) and Les Houches angularity $(\lambda_{0.5}^1)$
- NLO matching using multiplicative scheme
- Uncertainty from varying resummation and renormalisation scales to introduce variation beyond the stated accuracy.

Results

Heavy hemisphere mass

 General method for NNLL resummation of additive observables computed on jets groomed with mMDT

First results with small z_{cut} at NNLL + $O(z_{cut})$ at NLL + NLO matching

future work: extension to gluon jets

• Other extensions: non-additive observables, Soft drop with $\beta \neq 0$

Backup Slides

$$V_{\mathrm{s.c}}(k_1, \dots k_n) = \sum_{i}^{n} V_{\mathrm{s.c}}(k_i)$$

Can ignore the contribution of all emissions softer then $z_{\rm cut}$ to the observable

$$\rightarrow \Sigma^{\text{NLL}}(v, z_{\text{cut}}) = \frac{\exp[R(v, z_{\text{cut}}) - \gamma_{\text{E}} R'(v, z_{\text{cut}})]}{\Gamma[1 + R'(v, z_{\text{cut}})]} = \exp[-R(v, z_{\text{cut}})] + N^3 \text{LL}$$
(2)

$$\Sigma(v) = \Sigma_{\text{NNLL}}(v) \left[1 + \left(\Sigma^{(1)}(v) - \Sigma^{(1)}_{\text{NNLL}}(v) \right) + \left(\Sigma^{(2)}(v) - \Sigma^{(2)}_{\text{NNLL}}(v) \right) - \Sigma^{(1)}_{\text{NNLL}}(v) \left(\Sigma^{(1)}(v) - \Sigma^{(1)}_{\text{NNLL}}(v) \right) \right].$$

 $\Sigma^{(n)}$ is the fixed order result up to α_s^n .

$$\begin{split} R(v, z_{\rm cut}) &\to R^{\rm NLL}(v, z_{\rm cut}) + R^{\rm remainder}(xv, z_{\rm cut}) \\ & \text{where} \\ R^{\rm remainder}(v, z_{\rm cut}) = R^{\rm NNLL}(v, z_{\rm cut}) - R^{\rm NLL}(v, z_{\rm cut}) \end{split}$$

and

$$\alpha_s(Q) \to \alpha_s(xQ) + \alpha_s^2(Q)\beta_0 \ln(x)$$