

Marc Riembau EPFL

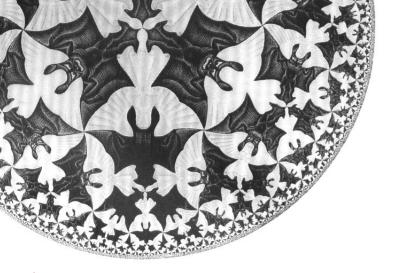
18th August 2022

 \mathcal{L} ?

E

Particle Physics is back to the origin, is again the exploration of the unknown.

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}}$$



 \mathcal{L} ?

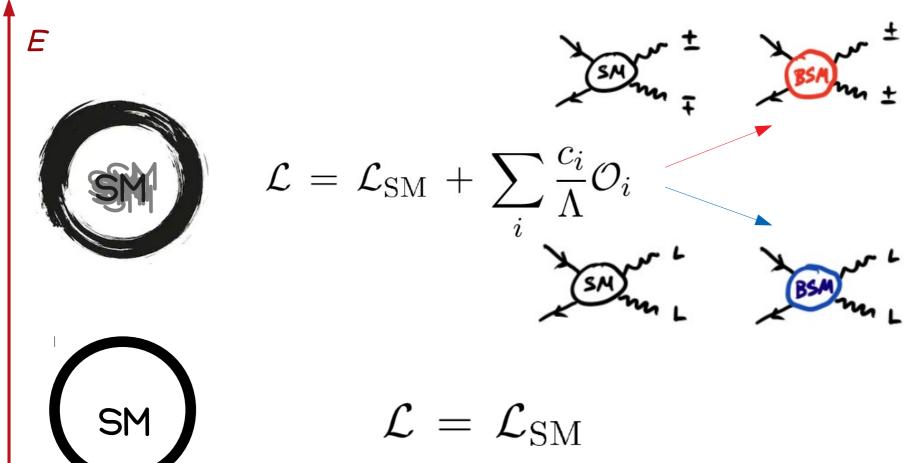
E

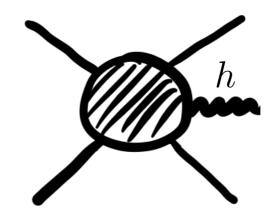
$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \sum_{i} \frac{c_{i}}{\Lambda} \mathcal{O}_{i}$$

EFT operators encode information about the heavy dynamics, and tells us in which way the SM is deformed.

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}}$$

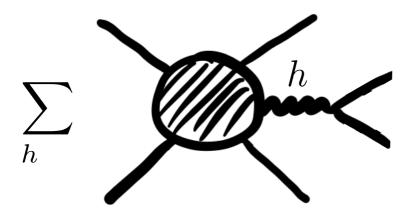
 \mathcal{L} ?





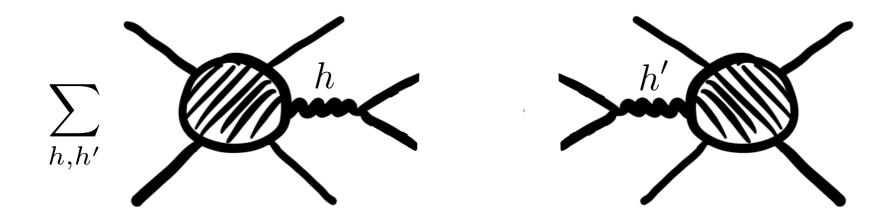
$$\mathcal{A}_{V_h}^{\mathrm{prod}}$$

What does it mean to produce a Vector of helicity h?



$$\mathcal{A}_{V_h}^{\mathrm{prod}} \mathcal{A}_{V_h \to X}^{\mathrm{dec}}$$

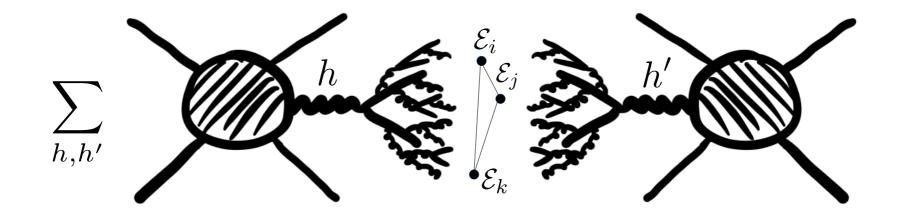
It decays, so not a single but a combination of helicities is produced



$$d\sigma \propto \sum_{h,h'} \int d\Pi \, \mathcal{A}_{V_h}^{\text{prod}} \, \mathcal{A}_{V_h \to X}^{\text{dec}} \qquad (\mathcal{A}_{V_{h'}}^{\text{prod}})^* \, (\mathcal{A}_{V_{h'} \to X}^{\text{dec}})^*$$

$$\equiv d\rho_{h,h'}^{\text{prod},V} d\rho_{h,h'}^{\text{dec},V}$$

Full process is determined by the production and decay density matrices

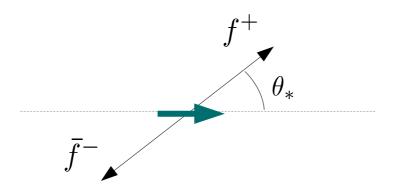


$$d\sigma \propto \sum_{h,h'} \int d\Pi \, \mathcal{A}_{V_h}^{\text{prod}} \, \mathcal{A}_{V_h \to X}^{\text{dec}} \, \mathcal{E}_1 \cdots \mathcal{E}_N \, (\mathcal{A}_{V_{h'}}^{\text{prod}})^* \, (\mathcal{A}_{V_{h'} \to X}^{\text{dec}})^*$$

$$\equiv d\rho_{h,h'}^{\text{prod},V} \, d\rho_{h,h'}^{\text{dec},V} [\{\mathcal{E}_1, \dots, \mathcal{E}_N\}]$$

For hadronic decays, we study the density matrix of energy correlators

W rest frame

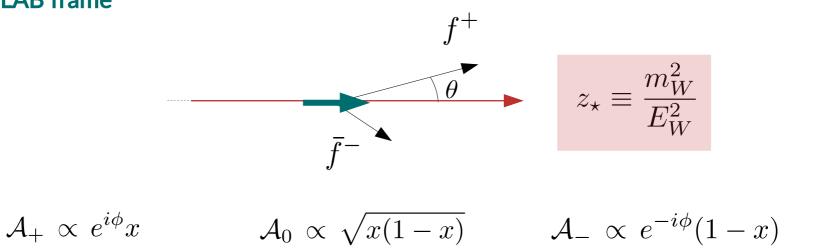


$$\mathcal{A}_{+} \propto e^{i\phi} \frac{1 + \cos \theta_{*}}{2}$$

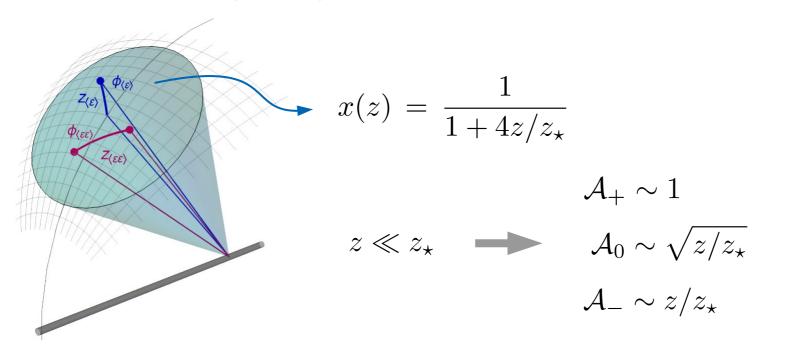
$$A_0 \propto \sin \theta_*$$

$$\mathcal{A}_0 \propto \sin \theta_* \qquad \qquad \mathcal{A}_- \propto e^{-i\phi} \frac{1 - \cos \theta_*}{2}$$

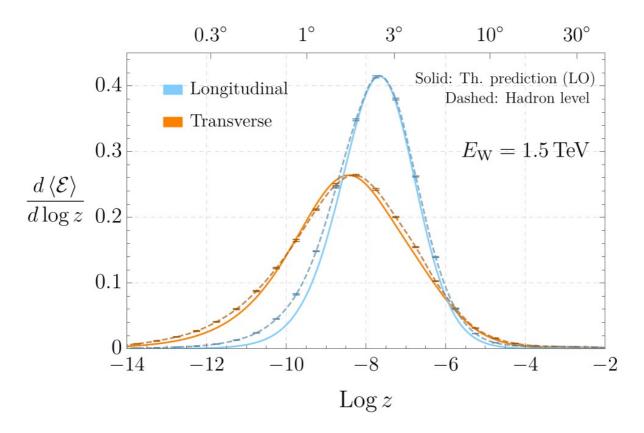
W LAB frame



This LO calculation gives a good prediction for the one-point correlator

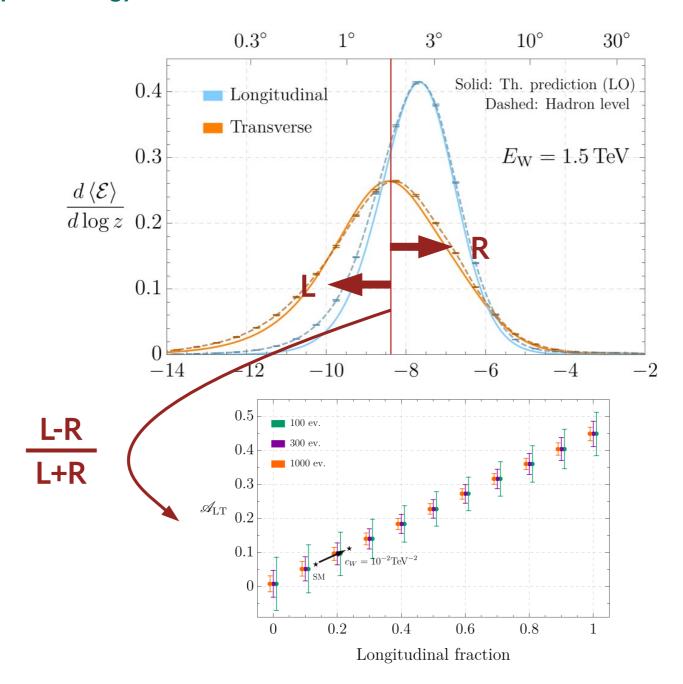


One-point Energy Correlator

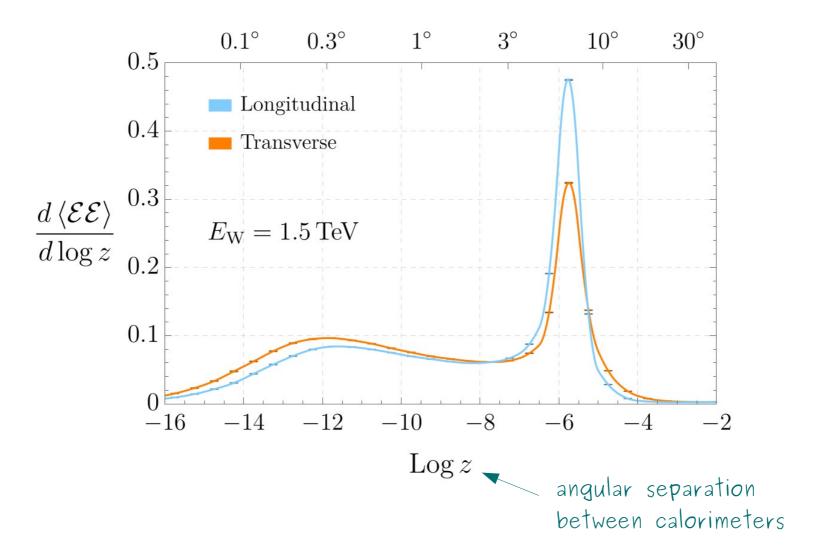


- Basic kinematics explains Transverse and Longitudinal distributions' shape
- Transverse jets tend to deposit more energy in the central region (small z)
- Recall: this is from ensamble of events. Individual events very different.

One-point Energy Correlator



Two-point Energy Correlator



The z dependence of the two-point correlator cannot be used to separate L and T

Off-diagonal entries: Interference

$$d\rho_{hh'}^V \sim e^{i\Delta h\phi}, \quad \Delta h \equiv h - h'$$

- Inclusive quantities not sensitive to interference
- Ignorance on "which quark" the calorimeters are placed: $\frac{\phi \to \pi + \phi}{x \to 1 x}$ redundancy

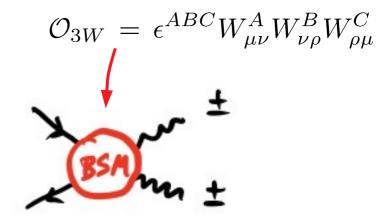
$$|\Delta h|=2$$
 Transverse - Transverse interference Redundancy acts trivially, easy

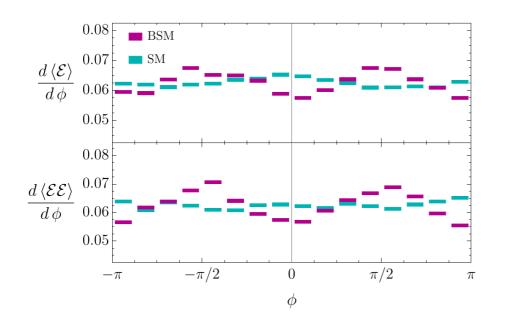
Two types of interference:

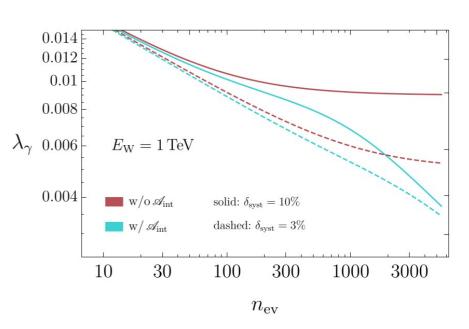
$$|\Delta h|=1 \begin{array}{c} \text{Transverse - Longitudinal} \text{ interference} \\ \text{Redundancy acts nontrivially,} \\ \text{each process needs dedicated study} \end{array}$$

Off-diagonal entries: Interference

$$|\Delta h|=2$$

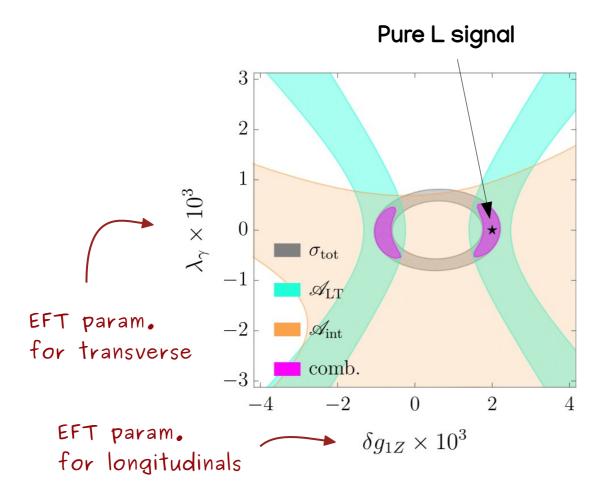






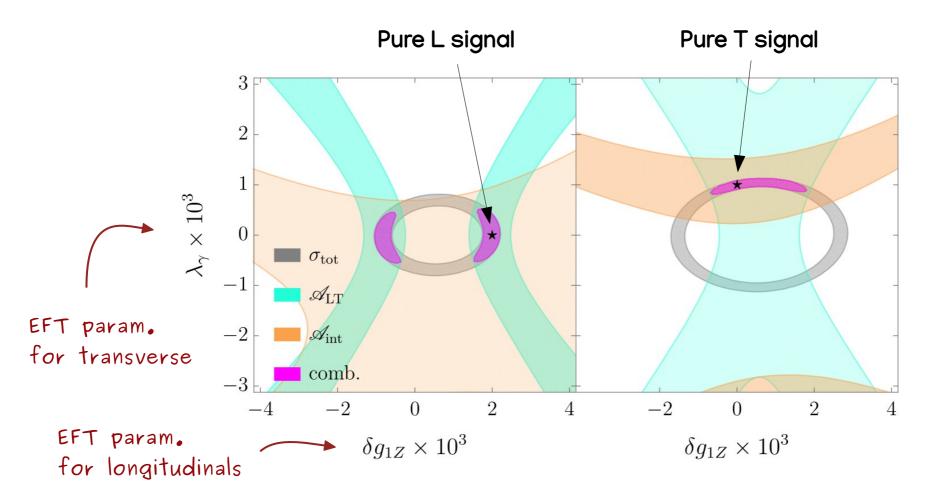
- Interference pattern shows up in the azimuthal dependence of the Ecs
- Measuring the interference leads to linear sensitivity to BSM effects

Impact on BSM scenarios



The one-point correlator identifies the excess coming from an anomalous production of longitudinal modes

Impact on BSM scenarios



The one-point correlator identifies the excess coming from an anomalous production of longitudinal modes

The azimuthal dependence of the correlators identifies the interference term

Towards the LHC

Problem: LHC is not a monoenergetic beam of W bosons.

Part I of the solution:

$$\frac{E_i}{E_J} = \frac{p_{T,i}}{p_{T,J}} + \mathcal{O}(z_{\star}^{1/2})$$

$$\frac{z}{z_{\star}} = \frac{\Delta R^2}{R_{\star}^2} + \mathcal{O}(z_{\star}^{1/2})$$

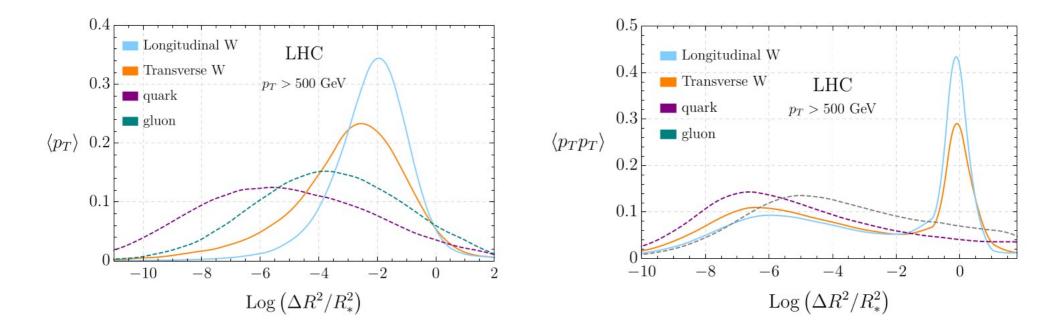
$$R_{\star}^2 = 4m_V^2/p_{T,J}^2$$

Up to $\mathcal{O}(z_\star^{1/2})$, energy and angular ratios are equivalent to boost invariant objects.

Part II of the solution:

Up to $\mathcal{O}(z_\star)$, amplitudes only depend on the ratio $\frac{z}{z_\star}$, not on z alone

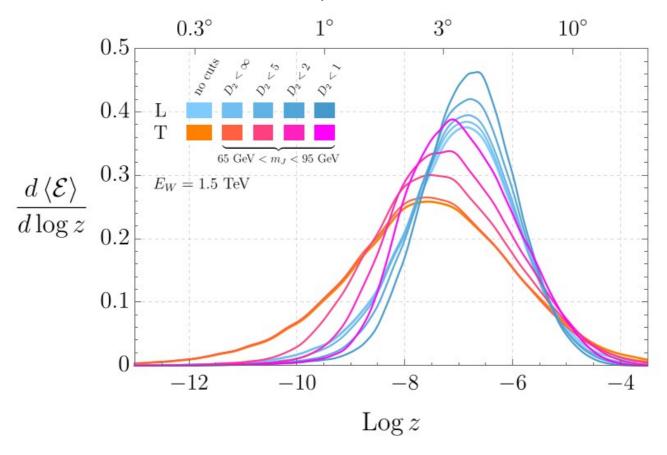
Towards the LHC



By rescaling the angular separations and using boost invariant variables, pT correlators of W jets at the LHC are identical to Energy Correlators of a monoenergetic W boson beam.

Towards the LHC

Impact of selection cuts to the one-point correlator:



- Jet mass and n_track have irrelevant impact.
- D_2, however, has a strong bias towards cutting off more Transv. than Long.
- The reason is kinematical: low z is in one-to-one with having all energy deposited in a single q, which leads to larger D_2 values.
- Polarization studies require revisiting QCD vs EW discrimination.

Conclusions

Angular separation z of one-pont EC discriminates L and T vector bosons

Azimuthal dependence of one- and two-point EC shows $|\Delta\Phi|=2$ interference

EC are useful to characterize BSM physics

Impact of QCD jets and selection criteria needs to be explored further

Thank you!