### DeXTer: Deep Sets based Neural Networks for  $Low\text{-}p_{T} \times \text{-} b\overline{b}$  Identification in ATLAS

University of<br>Massachusetts Amherst

**Yuan-Tang Chou (University of Massachusetts Amherst)**

on behalf of ATLAS Collaboration



Aug 15-19 BOOST 2022@Hamburg



### Introduction

- Several Standard Model and BSM processes produce collimated some Higgs portal and dark matter models
- Machine learning techniques offer significant improvements in
	- Recurrent neural network (RNN)
	- Convolutional neural network (CNN)
- Dedicated flavor tagging algorithms are developed to tag collim resonance
- Several BSM search for light resonance motivate the developme double-b tagging
	- VH,  $H \rightarrow aa \rightarrow b\overline{b}b\overline{b}$

#### **We present the first general-purpose low-mass/** $p_T$  **double**

## Deep Sets in jet flavor tagging

- Collection of objects treated as a set without empirical ordering
- Architecture suitable for jet flavor tagging with a variable number of tracks
- Prior development using this architecture has shown improvement on single btagging in ATLAS



# DeXTer: Deep Sets  $X \rightarrow bb$  Ta

A low-mass end-to-end double-b identification algorithm



- First general-purpose low-mass  $b\overline{b}$  tagger in ATLAS specialized for jets
- DeXTer does multi-flavor tagging using jets and surrounding displaced
- End-to-end training starting from displaced tracks and dedicated mult reconstruction
	- **B: double-b tagged jets**

UMassAmherst *BOOST 2022@Hamburg* 4

# DeXTer: Deep Sets  $X \rightarrow bb$  Ta

A low-mass end-to-end double-b identification algorithn



- First general-purpose low-mass  $b\overline{b}$  tagger in ATLAS specialized for jets
- DeXTer does multi-flavor tagging using jets and surrounding displaced
- End-to-end training starting from displaced tracks and dedicated mult reconstruction
	- **B: double-b tagged jets**

**UMassAmherst** *BOOST 2022@Hamburg* 5

### Input features for DeXTer

#### **PFlow Jet**

• Features to global NN

#### **Track**

- Inner detector hits
- Impact parameters
- Angular separation to track subjets

#### **Secondary Vertex**

- Track mass
- Angular separation to track subjets
- Decay length and significance



### DeXTer with domain adaptatic

- An adversarial classifier is added to regulate the feature extractor part of DeXTer
- Adversarial classifier tried to categorizes B-jets originated from  $a \rightarrow bb$  signals and  $g \rightarrow bb$
- The gradients of the total loss with respect to the feature extractor weights  $(\theta_f)$

$$
\frac{\partial L}{\partial \theta_f} = \frac{\partial L_D}{\partial \theta_f} - \lambda \frac{\partial L_A}{\partial \theta_f}
$$



 $\frac{\partial L_D}{\partial \theta_f} - \lambda \frac{\partial L}{\partial \theta_f}$ 

### **Calibrateability** Tuning  $\lambda$  parameter

- Extra parameter  $(\lambda)$  to tuned the strength of constraint from adversarial classifier
- $\lambda = 10$  was found to be the optimum value which has the smallest difference between  $a \rightarrow bb$  and  $g \rightarrow$ bb



### DeXTer discriminant and perfo

The class probabilities predicted by the model outputs  $(p_B, p_b,$  and  $p_l$ ), are combined into a B-tagging discriminant:

$$
D_B = \ln \frac{p_B}{(1 - f_b)p_l + f_b p_b}
$$

where  $f_h$  is a free parameter that balances between the rejection of light-flavor vs b-jets for a given efficiency of selecting b-jets.  $f_h$ =0.4 was used in the results



### Dependency on Resonance M

- An ensemble mix of H $\rightarrow$ aa  $\rightarrow$  b $\overline{b}$ b $\overline{b}$  and tta,  $a \rightarrow b\overline{b}$  sample with different a boson mass are used as B-labeled jet training sample
- Features are redefinition or drop if it's large different in ROCs was observed between different  $m_a$



#### **UMassAmherst** BOOST 2022@Hamburg

## Compare with previous BDT T



#### We achieve much better signal efficiency with the same backg

**UMassAmherst** BOOST 2022@Hamburg



UMassAmherst BOOST 2022@Hamburg

#### Calibration of B-tagged SFs with Z+jets events

#### Events are selected with

- Exactly two same flavor and oppsite charge leptons
- Exactly one probe jet with  $\Delta R(jet, Z \text{ or lepton})$  $> 1$

#### Muon-in-jet tagging is used in the track-subjet to enrich HF fraction from Z+jets events

Flavor-sensitive variables are used to define regions

- 60-100 % tagging interval : Ex $K_t^{(2)}\left(S_{d_0}\right)$
- 0-40 and 40-60 % tagging intervals :  $\mathsf{ExK}_t^{(2)}$   $m_{SV}^{max}$





non-muon  $\operatorname{Exk}_t^{(2)}\langle S_{d_0}\rangle$ 

#### Calibration of bottom mis-tag rate with  $t\bar{t}$  events

#### Events are selected with

- Exactly one electron and one muon with opposite sign with  $m_{e\mu}$  > 50 GeV
- Exactly two jets with  $\Delta R(jet, \text{ lepton}) > 0.8$

A simple top-quark pair reconstruction is adopted

argmin  $(m_{j_1,\ell(i)}^2 + m_{j_2,\ell(j)}^2)$ ,<br>  $i,j \in \{e,\mu\}$ 

• The signal and control regions are defined using  $m_{j_1l}$ ,  $m_{j_2l}$  to better constraint the flavor composition corrections.





### DeXTer Data/MC Scale Factor for analysis

- Z-regions and top-regions are used simultaneously to measure both B-tagging and b mis-tag efficiency in data
- The measurements are mostly systematically dominated which are from MC modeling or extrapolation.



#### **Ready for analysis to use!**



### **Summary**

- A novel low-mass double-b tagger, DeXTer, is developed to search for new light resonances.
	- Deep Sets architecture allows us to develop an end-to-end tagger utilizing low-level features which significantly boosts tagger performance
- The simultaneous measurement of the tagging and mis-tag efficiency with data allows to account for the full correlation model in the propagation of uncertainties
	- Easier for analysis to apply the systematic uncertainties for different SFs
- DeXTer opens many new possibilities to probe the phase space that was known to be difficult in the past
	- ZH,  $H \rightarrow aa \rightarrow b\overline{b}b\overline{b}$

and more!

