

The Einstein Telescope project

G. Bruno University of Louvain, Belgium

2nd MODE Workshop; Kolymbari, Crete, Greece; 14 September 2022

The beginning of GW astronomy

September 2015: first direct observation of GW

UCLouvain

August 2017: first multi-messenger observation of a Neutron star merger

 $df (1/2)S_n(f)|\tilde{K}(f)|^2$

treatment (matched filtering) and parameter estimation 2

G. Bruno – The Einstein Telescope project

UCLouvain The network of GW laser interferometers

EINSTEIN

Observations so far

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

GW global landscape

UCLouvain

ISTEIN

UCLouvain ET : the next-generation terrestrial GW laser interferometer

E

Examples of ET physics potential

UCLouvain

ET science case

Astrophysics

- Black hole properties
 - origin (stellar vs. primordial)
 - evolution, demography
- Neutron star properties
 - demography, equation of state
- Multi-messenger astronomy
 - joint GW/EM observations
 - multiband GW detection (LISA)
 - neutrinos
- Detection of new astrophysical sources
 - core collapse supernovae
 - isolated neutron stars
 - stochastic background of astrophysical origin

Fundamental physics and cosmology

- Tests of GR
- QCD
 - interior structure of neutron stars probe QCD at ultra-high temperatures and densities
- Dark matter/new particles
 - primordial BHs, new bosons (e.g axions) accreting around compact objects
- Dark energy and modifications of gravity on cosmological scales
- Stochastic backgrounds of cosmological origin and connections with high-energy physics
 - Inflation, phase transitions, cosmic strings...

- •ET on ESFRI roadmap since 2021
- ET Collaboration launched in June 2022
 - ~80 groups; ~1200 members
- Construction to start in 2026
 - Site selection in 2025
- •Operation in ~2035

ET status

ET Conceptual Design Study - ET-0106C-10

- Seismic noise
- Gravity gradient noise
- Thermal noise
- Quantum noise
- Excess gas

.. and myriad of technical noise sources

ET basic design concepts

0.5

• Longer arms

- Effect of GW is equivalent to a relative change in the arm lengths ($\Delta L/L$)
- →All mirror displacement noise sources reduced by making L larger

but this increases laser beam size (need for large mirrors)

- Underground operation
 - Reduction of seismic and gravity gradient noise
 - \rightarrow key for sensitivity at low frequency
- Triangular shape
 - Wave polarizations
 - Null streams
 - Redundancy
 - Antenna pattern
 - Single compact infrastructure

0.8

0.6

0.4

z-direction

-0.4

-0.6

-1 -

-0.5

Low-frequency target

- Intermediate mass BHs

 Larger masses (and redshift)
- Larger redshift → dark energy and GR tests at cosmological distances
- Multi-messenger observations
 - Early detections
- NS physics (QCD)

UCLouvain

 Many radio and young pulsars spinning at low frequencies

Low frequency performance drives some of the most significant design choices

Xylophone design

Xylophone is the solution to **conflicting requirements**:

- High frequency needs high laser power (shot noise)
- Low frequency needs cryogenic mirrors (thermal noise) and low laser power (rad. pressure). Control noise at low frequency also increased by high power
- ET-HF : high laser power; extend current technology
- ET-LF : Low laser power, cryogenic mirrors (new materials, new wavelength, ...)

Parameter	ET-HF	ET-LF
Arm length	_10 km	10 km
Input power (after IMC)	500 W	3 W
Arm power	3 MW	18 kW
Temperature	290 K	10-20 K
Mirror material	fused silica	silicon
Mirror diameter / thickness	62 cm / 30 cm	45 cm/ 57 cm
Mirror masses	200 kg	211 kg
Laser wavelength	1064 nm	1550 nm
SR-phase (rad)	tuned (0.0)	detuned (0.6)
SR transmittance	10 %	20 %
Quantum noise suppression	freq. dep. squeez.	freq. dep. squeez.
Filter cavities	1×300 m	2×1.0 km
Squeezing level	10 dB (effective)	$10 \mathrm{dB}$ (effective)
Beam shape	TEM_{00}	TEM_{00}
Beam radius	12.0 cm	9 cm
Scatter loss per surface	37 ppm	37 ppm
Seismic isolation	SA, 8 m tall	mod SA, 17 m tall
Seismic (for $f > 1$ Hz)	$5 \cdot 10^{-10} \mathrm{m}/f^2$	$5 \cdot 10^{-10} \mathrm{m}/f^2$
Gravity gradient subtraction	none	factor of a few

. . .

ET design

Environmental noise

- Seismic and geology studies ongoing
- Newtonian noise
 - Highly reduced underground
 Seismic NN
 - Cancellation
 - Wave properties: speed, polarization, sources,
 - Geology, topography
 - Optimal number and placement of sensors

access

Infrastructure

De-watering arm tunnel not to scale access

Feasibility study of beam-expanding telescopes in the interferometer arms for the Einstein Telescope https://arxiv.org/abs/2011.02983

EINŚTEIN

Computing

• On-site: control, DAQ and preprocessing, buffering

- Low-latency alerts for multi-messenger astronomy
 - Dedicated facility serving triggers to external cloudcomputing facility providing also catalogues
- Expect global EU infrastructure (HL-LHC, SKA, CTA, ET,...)
 - Data lake feeding HTC/HPC facilities

O(PB/year) similar to current detectors

 Not critical

 Computing power

 >10³ current needs
 > Driven by CBC detections
 > Very challenging
 Optimise algorithms

Data management

- HW (GPUs, parallelization,..)
- SW (deep learning, etc)
- New technologies

- ET project has highly relevant scientific case
- ET is making steady progress toward realization
 ESFRI, official Collaboration
- Basic design is in place
- Large number of R&D challenges