

Concept of measuring (Multi-)Strange Hadron Yields in the CBM Experiment using Machine Learning Techniques Axel Puntke¹, Shantanu Bhalerao², Andrea Dubla³, Felix Fidorra¹, Shahid Khan², Oleksii Lubynets^{3,4}, Philipp Munkes¹, Ilya Selyuzhenkov³ for the CBM Collaboration

¹ WWU Münster, Germany, ² Eberhard Karls University of Tübingen, Germany, ³ GSI Darmstadt, Germany, ⁴ Goethe University, Frankfurt am Main, Germany

Experimental Background

CBM Experiment

- Future fixed target heavy-ion experiment at FAIR
- Setup at FAIR with proton and ion beams
- Explores the QDC phase diagram at high net-baryon densities ($\mu_B > 500$ MeV)
 - \rightarrow Search for critical point and possible QGP phases

- High interaction rates of up to 10⁷ Hz at foil target
 - \rightarrow Multi-differential (p_T, y, centrality) measurements of rare multi-strange particles
- Increased production of strangeness in QGP phases compared to hadron phase

Simulation and Reconstruction

- Event generators: UrQMD, DCM-QGSM-SMM
- Simulation of interaction with CBM detector with GEANT4
- Detector response, digitization, identification & tracking with CbmRoot
- Investigate most abundantly produced hyperon: $\Lambda \rightarrow p + \pi^{-1}$
 - \rightarrow Simulated: 2 \cdot 10⁶ AuAu-collisions @ 12 A GeV/c beam momentum, minimum bias

Machine Learning Approach

Data Preparation: Reconstruction of **A** Candidates with PFSimple

- Kalman filter mathematics based C++ package to reconstruct particles via their weak decay topology
 - Input: All reconstructed tracks from the simulation (event-wise)
 - **Output:** Decay candidates for a given particle hypothesis

e Existing facility (GSI) Planed facility Perimenta Directly reconstructed by CBM: e[±], μ[±], π[±], p[±], K[±], lons

 $m_{\Lambda} = 1116 \text{ MeV/c}^2$

PFSimple Main Topological Variables

Variable	Description
χ ² prim1/2	Squared distance between daughter track and primary vertex divided by covariance matrix (CV)
χ ² geo	Squared distance between daughter tracks divided by CV
X ² topo	Squared distance between mother particle trajectory and primary vertex
DCA	Distance of closest apporach between daughter tracks

 Selection criteria are applied to remove numerical artifacts and reduce combinatorics

XGBoost Model Training with Hipe4ML

- XGBoost classifier is trained to distinguish signal candidates from combinatorial background using Monte Carlo information (best peforming ML model for this task)
- Data set (50/50 split test/train):
 - $\begin{tabular}{lll} \hline \end{tabular} \rightarrow \begin{tabular}{lll} Signal-only DCM candidates in the 5 σ region around the Λ peak \end{tabular} \end{tabular}$
 - → **Background:** UrQMD candidates for Λ from side bands¹⁰² (proxy for real data in running experiment)

Feature Importance: SHAP Value Distributions

SHAP (SHapley Additive exPlanations):

- Calculate the contribution of a feature to a result
- For each candidate, an explanatory model (linear function) is fitted to the real model, which yields Shapley values when a specific fit weight is chosen
- Feature Importance: Average of these values over many candidates

Hyperparameters optimization: Optuna package

 Overfitting control: ROC curves and BDT probability plots for train-test sets

- Candidates with BDT score > 0.9 are selected as signal candidates
- Currently p_T integrated
- High signal to background ratio is achieved with 87.7 % efficiency

1.10

1.12

1.14

1.18 1.20

mass [GeV/c²]

SHAP Value (impact on model output)

mean(|SHAP Value|) (avg. impact on model output)