

Detector optimization in Muon Scattering Tomography

Maxime Lagrange on behalf of the **TomOpt authors***

Second MODE Workshop on Differentiable Programming for Experiment Design

*G Strong¹, T Dorigo¹, A Giammanco², P Vischia², J Kieseler³, M Lagrange², F Nardi¹, H Zaraket⁴, M Lamparth⁵, F Fanzago¹, O Savchenko¹, & A Bordignon¹.

¹INFN-Padova, ²Université catholique de Louvain, ³CERN, ⁴Lebanese University, ⁵Technical University of Munich

Previously...

"Gradient-based optimization"

$$x^{(k+1)} = x^{(k)} + \eta_k \cdot \nabla_x f(x^{(k)})$$

"Express the desired task as a loss function"

- I Muon Scattering Tomography applications
- **II Parameter space in MST**
- **III TomOpt optimization example**

Muon Scattering Tomography

I - Muon Scattering Tomography applications

Silent Border MST scanner for border guard

Cosmic Ray Tomograph for Identification of Hazardous and Illegal Goods hidden in Trucks and Sea Containers

Illustration from <u>"Muography of different structures using muon scattering and absorption algorithms</u>"

Constraints

Short acquisition time

Target performance

Anomaly detection

Industrial scanning solutions

I - Measurement of the width of an insulated pipe

Illustrations from "<u>Non-destructive</u> testing of industrial equipment using <u>muon radiography</u>"

2 - Estimation of slag on a furnace laddle

unknown amount of waste

Target performance

Anomaly detection

Constraints

Portability, logistic

Nuclear Industry

Nuclear waste characterization

Illustrations from: "Muon Imaging Applications for Nuclear Waste Management and Decommissioning"

Target performance

Accurate material identification

(University of Glasgow)

II - Parameter space in Muon Scattering Tomography

Parameter space in MST

Parameter

- . Grid/random search
- Bayesian optimisation, Simulated annealing, genetic algorithm, particle swap optimisation, ...
- 3. Gradient-based optimisation: Newtonian, gradient descent, BFGS, ...

Hardware

- Tracking system **technology** (RPC's, scintillators, micromegas, drift tubes, etc..)
- Spatial resolution
- Efficiency
- **Tracking system** (# planes, dimensions, geometry)

Software

- **Reconstruction algorithms**
- Material classifiers
- Image recognition, clustering

Hardware parameters

Detector parameters and performance

Software parameters

I - Reconstruction algorithm (POCA, ASR, Maximum

Likelihood, Binned Clustered Algorithm, etc..)

a - Point Of Closest Approach (POCA)

b - Angle Statistic Reconstruction algorithm (ASR)

Typical MST reconstruction parameters

- Cuts on scattering angles
- Noise reduction sensitivity

Detector parameters and cost

Given its design and technology choices, how to estimate detector cost?

Cost specific to the technology used

Sealed RPC prototype in development at UCLouvain

Local cost γ

 $\gamma_{technology} = \gamma(x)$

with x the performance properties of the given technology e.g time, spatial resolution, efficiency

 $\gamma [m^{-2}.readout^{-1}]$

Global cost C(γ,φ) *Describe overall detector conception*

Portable muoscope in development at UCLouvain

III - TomOpt optimization: Example border guard Use-case

Muon momentum measurement

Question TomOpt will answer

Is it worth it to add a muon energy spectrometer to the detector?

OR

BACKUP SLIDES

TomOpt

TomOpt

TomOpt

