Differentiable
Programming
and the IRISHEP Analysis
Grand
Challenge

G. Watts (for IRIS-HEP)2022-09-13

$\frac{\partial Analysis}{\partial \Theta}$

$\partial Analysis$ $\partial \Theta$

- Cuts
- ML Parameters
- etc.

Full analysis

- including likelihood (loss function)
- Systematic errors
- etc.

$\frac{\partial Analysis}{\partial \Theta}$

- + Take Full Advantage of Systematic Errors and optimize for actual sensitivity
- + Interpretability encode and optimize physics-based cuts, along side more complex ML
- + NN's are trained in-situ rather than on separate datasets
- + Don't burn grad student time optimizing individual straight cuts!

- Potential Impact on Analysis is not fully understood given the amount of work required
- Touches almost every single tool in our tool chain – huge amount of work
- NN's are trained in-situ rather than on separate datasets (small datasets)
- Burn graduate student time setting up a complex and interconnected tool chain

The Analysis Grand Challenge

An IRIS-HEP and community HL-LHC Challenge



IRIS-HEP

"Institute for Research and Innovation in Software for High Energy Physics"

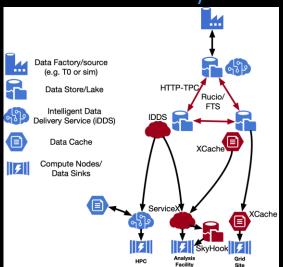
- Large software institute funded by the US National Science Foundation (NSF)
 - 19 universities, ~30 FTE's, spread over ~60 people
- Research and development for the HL-LHC
 - Innovative Algorithms for Data Reconstruction and Triggering
 - Data Organization, Management, and Access (DOMA)
 - Analysis Systems, to reduce time-to-insigt and maximize physics potential
 - Facilities, integration to production (scalable systems laboratory and OSG)

See our website for further information

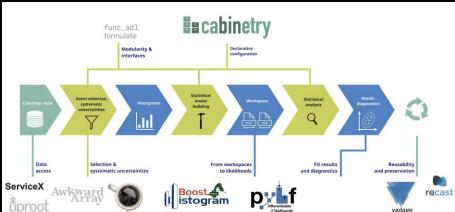
Analysis Grand Challenge

- Started as an integration exercise, now a milestone for HL-LHC
 - Test a realistic analysis pipeline aimed at HL-LHC datasets and analyses
 - Combine technologies being developed in various areas of IRIS-HEP and the ecosystem
 - Identify and address performance bottlenecks and usability issues
- Organized jointly with the US ATLAS and US CMS operations programs
 - Operations programs maintain analysis facilities where we expect these analyses to be performed

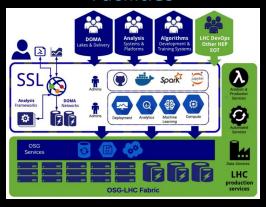
Data Delivery



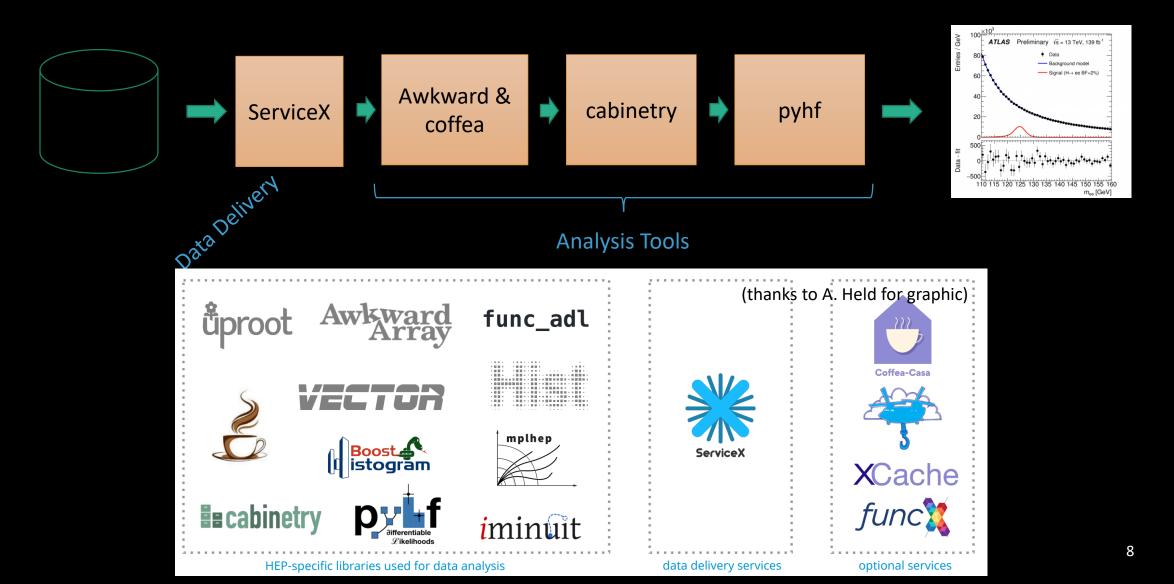
Analysis Tools



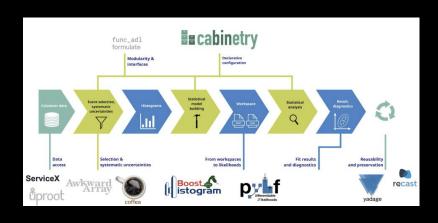
Facilities

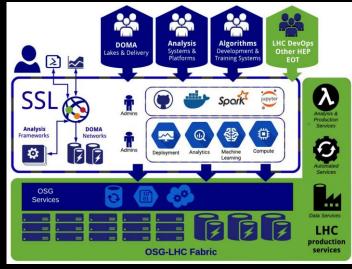


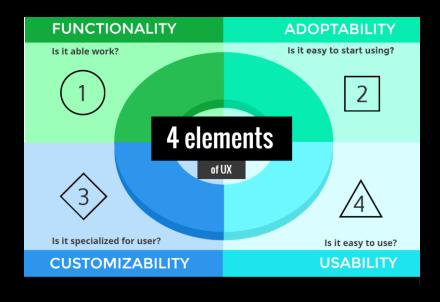
The Analysis Pipeline in the AGC



Integration and Time-To-Insight and UX







Tools must easily talk to each other!

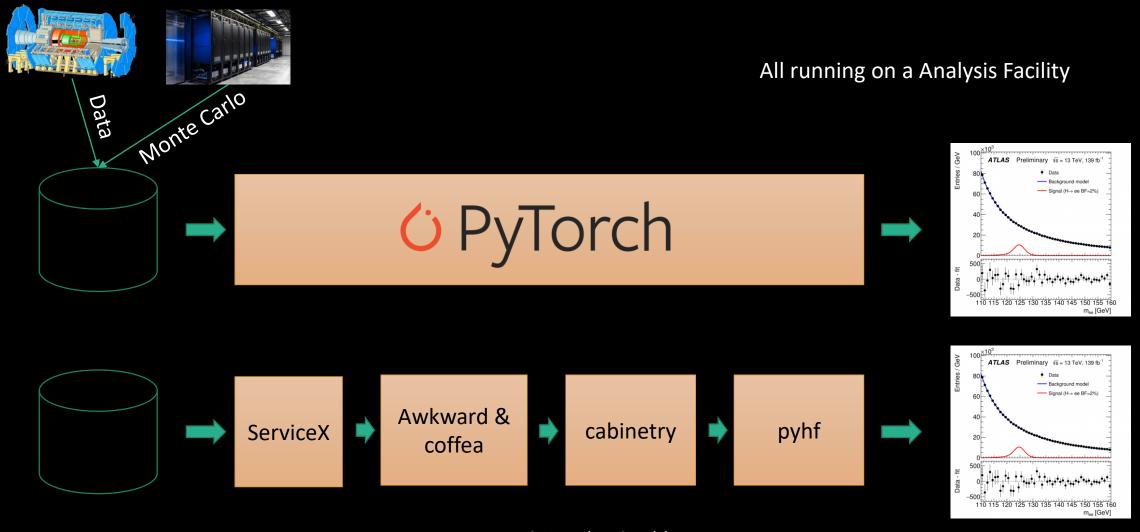
Scale-out by default

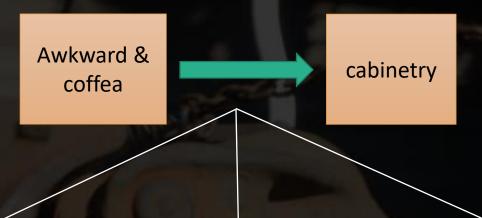
Reasonable User Interface and Experience

Differentiable Analysis

Adding differentiable capabilities to the analysis pipeline

Not A Single System





Analysis

- Forward pass only
- Only data needs to be passed from one step to the next
- Awkward arrays, parquet files, ROOT files

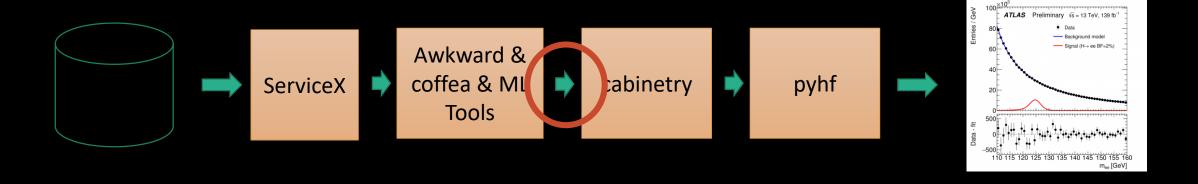
Autodiff – forward pass

- Updated parameters for all earlier layers
- Derivatives and primal values
- Per parameter running

Autodiff – backward pass

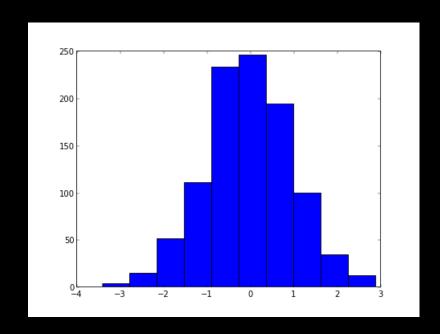
- Updated parameters for all earlier layers
- Tape of operations
 - Does this have to be passed up to the top?
- Intermediate values have to be stored

Infrastructure



- Need a standardized way to communicate between layers and systems
 - Language agnostic?
- Need a library that implements this standard
- Will need to be 2-way communication as data and Jacobian's move up and down the chain!
- And will need to run in real-time as training is iterative!

Common Libraries - histograms



We have powerful libraries for histogramming that are packed with features

- python's hist
- ROOT

These are carefully designed for speed and distributed filling! Years of engineering work!

What does it mean to make a histogram differentiable?

- 1 Assume binning is fixed
 - Each bin is a scalar, n_i , and you must now calculate $\frac{dn_i}{d\theta}$
 - 100 bins is very expensive!
 - What happens to all the nifty histogram manipulation utilities we already have?

Relaxed Library

awkward Array

The numpy analog for jagged data structures

numpy – rectilinear data (square table, each row has same number of columns)

awkward – jagged data (rows can have variable numbers of columns – 3jet pt's in one event, 10 in another)

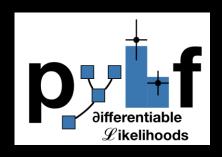
Making awkward differentiable is under way as part of the awkward-dask project.

Gluing awkward array together with a NN training

- PyTorch, TensorFlow and JAX all have the ability to add <u>differentiable function</u> to the language
- Glue code will have to be written if a NN is expected to participate in the differentiable analysis pipeline

DASK +

Components



pyhf is a pure-python implementation of that statistical model for multi-bin histogram-based analysis and its interval estimation is based on the asymptotic formulas of "Asymptotic formulae for likelihood-based tests of new physics"

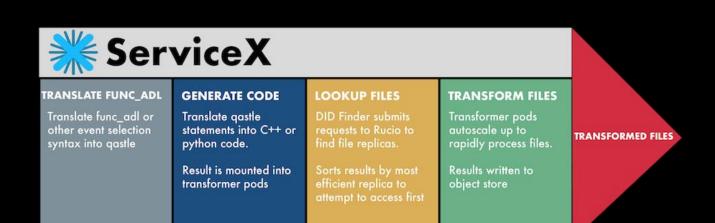
- Likelihood is calculated using JAX, PyTorch, or TensorFlow (and numpy)
- As a result, already differentiable
- Has already been used to drive minimizations

E cabinetry

cabinetry is a Python package to build and steer (profile likelihood) template fits.

- Uses hist, pyhf and awkward array
- Glue code will have to be written, but will rely on those tools' differentiability for the most part

Components



Data-delivery: transforms data from "arbitrary" formats into columnar data, as well as enabling predicate push-down.

Does need to be differentiable

- Implements selection cuts in its code to reduce data
- Can do object aggregation (# of good jets with $p_T > 30$ GeV)

But this is a big ask

- Every transformer backend would have to be differentiable
- Some transformers are running in legacy software (e.g. CMS Run 1 Transformer)

Possible Solutions

- 1. Implement a "wrapper" that can differentiate the cut language
- 2. Separate training from inference:
 - Implement simple cuts in differentiable training code
 - Move cuts to SX once training is complete

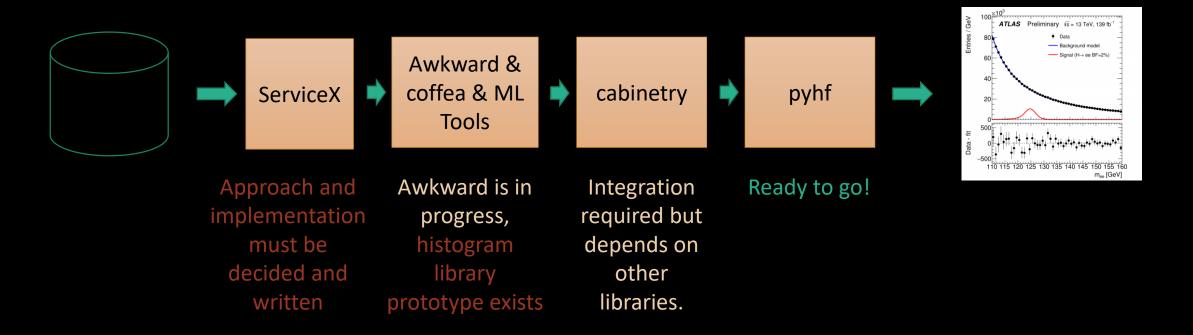
Systematic Errors

Systematic Errors steer the training away from problematic areas of phase space and variables that aren't well modeled

Very powerful in the training

- 1 Include systematic errors as (differentiable) functions
 - Would allow one to stay away from poorly modeled areas of phase space
 - Most systematic errors are applied as functions already
 - Some experiments have hidden systematic errors under many layers of C++
 - Handling operating points (make tight → medium → loose continuous)
- 2 Calibrations fully differentiable
 - Include datasets and calibration as part of training
 - Calibration will be best for the part of phase space analyzer is most interested in
 - Akin to in-situ jet calibration in top mass measurements
 - Lots of data, complex calibrations, and potential approval nightmare in large experiments

Conclusion



Protocol for passing Jacobian's and parameters between layers must move past proof-of-principle.

This is a tremendous amount of work: we are looking forward to more items turning green!