EM algorithm for muon scattering tomography

Second MODE Workshop on Differential Programming for Experimental Design

Anna Bordignon Kolymbary, September $12^{th} - 16^{th}$, 2022

Outline

- 1 Overview
- 2 POCA method
 - Results
- 3 EM algorithm
 - Geometric assumptions
 - Results
- 4 Comparison
- 5 References

Overview

- Considering a volume sized [1 m, 1 m, 0.8 m] in x,y,z.
- It is subdivided in cubes of sides [0.1 m, 0.1 m, 0.1 m].

Data:

Given a batch of muons, for each of them assume knowledge of:

- Measured entry and exit points in x,y,z coordinates (x_{in}, y_{in}, z_{in}) , $(x_{out}, y_{out}, z_{out})$.
- Measured entry and exit angles $\theta_{x_{in}}$, $\theta_{y_{in}}$, $\theta_{x_{out}}$, $\theta_{y_{out}}$.
- Momentum.

Problem:

Determining the material composition of each cube:

Inferring the value of X0, radiation length of the material.

POCA method

Assumption:

- the muon scattering occurs in a single point;
- POCA point: Point Of Closest Approach, which minimizes the distance between the two reconstructed tracks.

Two possible cases: incident lines (left) and skew lines (right).

DATASET:

- 10000 muons (the number of muons used is 9981);
- 100µ*m* single hit resolution;
- Incoming and outgoing measured point coordinates;
- Incoming and outgoing measured angles.

(a) POCA

(b) TRUE

EM algorithm

Based on:

- A sample of observed data: measured scattering and displacement in x and y: $\Delta\theta_{\rm X} = \theta_{\rm X_{out}} \theta_{\rm X_{in}}; \quad \Delta\theta_{\rm Y} = \theta_{\rm Y_{out}} \theta_{\rm Y_{in}}; \quad \Delta x = x_{\rm out} x_{\rm in}; \quad \Delta y = y_{\rm out} y_{\rm in}.$
- A sample of hidden data: scattering angles and displacements inside material.
- An initial assumption on value of X0 for each cube.

It iteratively alternates between an Expectation step and a Maximization step:

 To obtain the value which maximizes the log-likelihood associated to the sample of complete data (including both observed and hidden data).

EM algorithm

- The distribution of scattering angles may be approximated as a zero-mean Gaussian: $\Delta\theta \sim \mathcal{N}(0, \sigma_{\Delta\theta}^2)$.
 - The width of distribution may be expressed in terms of material properties: $\sigma_{\Delta\theta} \simeq \frac{15Mev}{\beta c\rho} \sqrt{\frac{H}{X_{\rm t}}}, \quad \text{with } \rho \text{ muon momentum and } H \text{ depth of the material}.$
 - Defining the scattering density of a material in terms of X0: $\lambda(X_0) \equiv \left(\frac{15}{\rho_0}\right)^2 \frac{1}{X_0}$, with p_0 nominal muon momentum $\Rightarrow \sigma_{\Delta\theta}^2 = \lambda H(\frac{\rho_0}{p})^2$.
- The distribution of displacement may be approximated as a zero-mean Gaussian: $\Delta x \sim \mathcal{N}(0, \sigma_{\Delta x}^2)$.
 - The width of distribution may be expressed in terms of $\sigma_{\Delta\theta}$: $\sigma_{\Delta x} = \frac{H}{\sqrt{3}}\sigma_{\Delta\theta}$.
- Scattering angles and displacement in a plane are correlated:
 - Correlation: $\rho_{\Delta \times \Delta \theta} = \frac{\sqrt{3}}{2}$.

 - The probability density function of scattering angles and displacement may be approximated as a **jointly Gaussian**: $f(\Delta x, \Delta \theta_x | X_0, p) \sim N(0, \Sigma)$, with

$$\Sigma = \begin{pmatrix} \sigma_{\Delta\theta}^2 & \sigma_{\Delta x \Delta_{\theta}} \\ \sigma_{\Delta x \Delta_{\theta}} & \sigma_{\Delta x}^2 \end{pmatrix} = \lambda \begin{pmatrix} H & \frac{H^2}{2} \\ \frac{H^2}{2} & \frac{H^3}{3} \end{pmatrix} \begin{pmatrix} \frac{\rho_0}{p} \end{pmatrix}^2.$$

EM algorithm

For each muon i = 1, ..., M, given j = 1, ..., N voxels:

- lacksquare Observed data : $D_i=(D_{x_i},D_{y_i})$, where $D_{x_i}=(\Delta heta_{x_i},\Delta x_i)$, $D_{y_i}=(\Delta heta_{y_i},\Delta y_i)$
- $\blacksquare \ \ \mathsf{Hidden} \ \ \mathsf{data}: \ H_{ij} = (H_{x_{ij}}, H_{y_{ij}}), \ \mathit{where} \ \ \mathsf{H}_{x_{ij}} = (\Delta \theta_{x_{ij}}, \Delta x_{ij}), \ D_{y_{ij}} = (\Delta \theta_{y_{ij}}, \Delta y_{ij})$
- Considering scattering occurring in xy plane

$$P(D_{x_i}|\lambda) = \frac{1}{2\pi(\det \Sigma_i)^{1/2}} \exp\left(\frac{-D_{x_i}^T \Sigma_i^{-1} D_{x_i}}{2}\right)$$

- Likelihood: $L(\lambda|D_x) = \prod_{i=1}^M P(D_{x_i}|\lambda) \Rightarrow logL(\lambda|D_x) = \sum_{i=1}^M log(P(D_{x_i}|\lambda))$
- $P(H_{x_{ij}}|\lambda) = \frac{1}{2\pi(\det \Sigma_{ij})^{1/2}} exp\left(\frac{-H_{x_{ij}}^T \Sigma_{ij}^{-1} H_{x_{ij}}}{2}\right)$
- Likelihood: $L(\lambda|H_x) = \prod_i \prod_j P(H_{x_{ij}}|\lambda)$ $\Rightarrow logL(\lambda|H_x) = \sum_{i=1}^{M} \sum_{j \leq N} log(P(H_{x_{ij}}|\lambda))$

E step

Determining the auxiliary function $Q(\lambda; \lambda^{(n)}) = E_{H|D, \lambda^{(n)}}[log(P(H|\lambda))]$

M step

Maximizing the auxiliary function $\lambda^{(n+1)} = argmax_{\lambda} Q(\lambda; \lambda^{(n)})$

Geometric assumptions

For each muon, needs to know:

- which voxels it hits;
- 3d path length inside each voxel.

Initially, considering a straight line connecting entry to exit points.

DATASET:

- 10000 muons (the number of muons used is 9981);
- 100µm single hit resolution;
- Incoming and outgoing measured point coordinates;
- Incoming and outgoing measured angles;
- X0 initial guess: 0.005 m in each voxel (similar to beryllium);
- 55 iterations.

(a) EM

(b) TRUE

(a) Test Statistic:

$$\frac{E[X0_{\textit{beryllium}}] - E[X0_{\textit{lead}}]}{\sqrt{\sigma_{X0_{\textit{beryllium}}}^2 + \sigma_{X0_{\textit{lead}}}^2}}$$

(b) Densities of estimated log(X0) for voxels known as being of beryllium and lead.

DATASET:

- 10000 muons (the number of muons used is 9981);
- 100µm single hit resolution;
- Incoming and outgoing measured point coordinates;
- Incoming and outgoing measured angles;
- X0 initial guess: **0.5 m** in each voxel (similar to beryllium);
- 12 iterations.

(a) EM

(b) TRUE

(a) Test Statistic:

$$\frac{E[X0_{\textit{beryllium}}] - E[X0_{\textit{lead}}]}{\sqrt{\sigma_{X0_{\textit{beryllium}}}^2 + \sigma_{X0_{\textit{lead}}}^2}}$$

(b) Densities of estimated log(X0) for known voxels of beryllium and lead.

Improvement

Improving the model considering muon path length as a straight line connecting entry to exit points, passing for the POCA location.

DATASET:

- 10000 muons (the number of muons used is 9981);
- 100µm single hit resolution;
- POCA point coordinates;
- Incoming and outgoing measured point coordinates;
- Incoming and outgoing measured angles;
- X0 initial guess: **0.5 m** in each voxel (similar to beryllium);
- 60 iterations.

(a) Test Statistic:

$$\frac{E[X0_{\textit{beryllium}}] - E[X0_{\textit{lead}}]}{\sqrt{\sigma_{X0_{\textit{beryllium}}}^2 + \sigma_{X0_{\textit{lead}}}^2}}$$

(b) Densities of estimated log(X0) for known voxels of beryllium and lead.

Comparison

(c) POCA method.

(d) EM with POCA coordinates.

References

- [1] L. J. Schultz et al. *Statistical Reconstruction for Cosmic Ray Muon Tomography*. IEEE transactions on image processing, Vol. 16, No. 8, 1985-1993. 2007.
- [2] R. L. Siddon. Fast calculation of the exact radiological path for a three-dimensional CT array. Medical Physics, Vol. 12, No. 2, 252-255. 1985.
- [3] T. Dorigo, A. Giammanco, P. Vischia (editors) MODE Collaboration. *Toward the End-to-End Optimization of Particle Physics Instruments with Differentiable Programming: a White Paper*. 2022. arXiv:2203.13818v1.

Thanks for your attention