
The	way	of	the	force:	GitOps	on	JEEDY
Antonio	Nappi
Ioannis	Panagiotidis

What	we	do
Hosting	CERN	JAVA	web	applications	on	Tomcat/WebLogic	running	in	Kubernetes

~25	Kubernetes	Clusters
more	than	400	nodes
more	than	3000	pods

Some	of	applications	that	we	hosts

EDH,	Phonebook,	EDMS,	AISMEDIA...

Our	users	are	developers	from	different	Departments

Which	was	the	problem	?
Prometheus	servers:

for	each	K8s	cluster
for	each	user	community	a	dedicated	Prometheus	that	federates	the	ones
running	on	all	their	clusters

Users	wanted	to:

Define	custom	alerting/recording	rules
Define	scraping	endpoints
Define	alertmanager	configuration

Previous	Solution
Building	rundeck	jobs	for	each	of	the	above	requests,	to	deploy	to	our	Kubernetes
clusters

not	scalable
hard	to	mantain
hard	to	track	changes

Solution:	GitOps
Profit	of	all	Git	advantages:

tracebility
versioning

easy	to	roll	back

Build	CI	to	validate	content	of	a	git	repo

valid	yaml,	json	etc..

Works	with	declarative	infrastructure	tools

Implementation:	ArgoCD
Seemed	more	mature	than	Flux	1
Faster	growing	community
As	today	we	use	ArgoCD	to	manage

users	and	internal	monitoring/alerting	systems
user	cronjob	submissions
efiles.cern.ch	deployment

JEEDY	Repositories	structure
3	Kind	of	repositories

1.	 Sources	(e.g.	prometheus-sources)

Helm	Charts
Jsonnet
Kustomize
JSON/YAML	files

2.	 Users	(e.g.	ais-users)

As	sources	but	used	to	apply	user	customization	to	our	Kubernetes	Clusters

3.	 Applications	(e.g.	prometheus-applications)

Contains	ArgoCD	application	definitions

Using	pattern	of	application	of	applications

Using	ArgoCD	Application	Sets	as	alternative

Managing	cronjobs	via	GitOps
ArgoCD	is	used	to	deploy	ArgoWorkflows

ArgoWorkflows	is	a	workflow	engine	that	is	used	to	orchestrate	jobs	in
Kubernetes
Is	used	by	Jeedy	and	DIR	teams,	other	users	are	migrating	to	it

Advantages:

Designed	for	containers,	is	implemeted	as	a	CRD

Cloud	agnostic
Offers	a	web	UI	and	many	extras:	run	jobs	with	a	click,	view	logs,	disable	jobs
etc

Demo
With	just	2	small	commits	we	will:

1.	 As	admins:	Deploy	a	complete	ArgoWorkflows	instance	(with	custom	configmaps,	SSO
functionality,	Ingress,	RBAC	etc)	to	a	new	cluster

2.	 As	users:	Add/remove	jobs

ArgoCD	impressions	(Part	1)
Documentation

it	is	getting	better	but	initially	was	pretty	bad

Scalability

Fixed	in	more	recent	versions
ArgoCD	managing	other	ArgoCD	instances

Plugins

Really	powerful,	allows	you	to	extend	ArgoCD	as	you	wish
When	to	move	to	BYOI	(Build	your	own	image)	?

ArgoCD	impressions	(Part	2)
Installation	is	sold	as	GitOps	oriented	but	not	really	easy	to	achieve

Clusters	as	stored	as	K8s	secrets	but	have	a	no	sense	format
Repositories	a	bit	better	but	still	some	bricolage	to	do

ArgoCD	is	maturing

Secret	Management:	current	solution
ArgoCD	Vault	Pluging

Private	instance	of	Vault

Not	opened	outside	the	group

It	works	pretty	well	but	cannot	be	shared	secrets	with	users

They	first	update	secrets	to	Teigi	and	then	we	add	them	to	Vault

Secret	Management:	possible	alternative
1.	 Custom	plugin	that	interacts	with	Teigi

BYOI	of	ArgoCD

2.	 Use	KSOPS

Quite	easy	to	integrate	with	ArgoCD

3.	 Sealed	Secrets	:x:

It	is	a	HELL	when	you	have	many	clusters

Operator	in	each	cluster
Key	rotation

Lessons	Learned	(Part	1)
No	Golden	rule	to	structure	repositories

base/overlays	to	minimize	code

Mono	repo	or	multiple	ones	?

Multiple

P:	isolate	different	use	cases	and	applications
C:	tracking	can	be	more	difficult

what	is	managing	what?

One	branch	or	multiple	ones	?

One	branch

P:	easier	to	maintain	and	to	update
C:	no	isolation	between	environments

Lessons	Learned	(Part	2)
Upgrades

identical	development	instance	of	ArgoCD	where	we	test	upgrades

need	to	keep	a	real	example	of	applications	running	on	the	Production
instance

Pruning

It	is	useful	but	at	the	same	time	also	dangerous

Mostly	disabled

GitOps	is	not	only	Kubernetes

Deployment	of	K8s	clusters	via	Terraform	and	gitlab
(Previous)	Rundeck	jobs	stored	in	git
It	isn't	panacea

What's	next
Stabilize	secret	management
Manage	ArgoCD	clusters	via	Git
Enabling	GitOps	for	more	applications

Overall	impression
Really	happy	about	GitOps	adoption

It	speed	up	the	deployment	of	infrastructure	components

Faster	recover	after	a	major	incident	(e.g.	Kubernetes	deletion	incident
(https://indico.cern.ch/event/1140863/contributions/4794756/attachments/2414834/4132208/Impact%20on%20WebLogic%20and%20Tomcat%20service%20%282%29.pdf)

Facilitate	customization
Better	control	on	what	is	applied	to	the	infrastructure

<b	style="text-align:	center;"	>Thank	you	

</br>
<b	style="text-align:	center;"	>antonio.nappi@cern.ch
</br>
<b	style="text-align:	center;"	>ioannis.panagiotidis@cern.ch

https://indico.cern.ch/event/1140863/contributions/4794756/attachments/2414834/4132208/Impact%20on%20WebLogic%20and%20Tomcat%20service%20%282%29.pdf

