
RCS-SIS GitOps
Setup and use cases

By Benjamin Bergia

mailto:benjamin.bergia@cern.ch

RCS-SIS

The CERN Scientific Information Service aims at efficiently managing, preserving and
disseminating scientific information to make it openly accessible and reusable to CERN
and the worldwide High-Energy Physics community.

All about collaborations:
➔ Inside the CERN community (CERN Analysis Preservation and CERN Academic

Training).
➔ With other institutions in the field (InspireHEP and HEPData).
➔ With the scholarly community as a whole (SCOAP3, SciPost and arXiv).

https://analysispreservation.cern.ch
https://academictraining.cern.ch/
https://academictraining.cern.ch/
https://inspirehep.net
https://www.hepdata.org
https://scoap3.org
https://scipost.org
https://arxiv.org

Requirements

- Codebases should be publicly available on Github.
- Docker images should also be publicly available.
- Some external, non-CERN, developers.
- Different release cycles.
- Production traffic 24x7.
- QA and Prod environment for each project.

Overview

Codebases

- Github public repository
- Currently python only
- Github actions:

- Build docker images
- Run test
- Push to DockerHub or CERN Registry
- Trigger events on the configuration repository

Configurations

- Github private repository
- Flat YAML files + Kustomizations
- Github actions:

- Test
- Push to production branches
- Update image tags
- Call ArgoCD Webhook

ArgoCD

- In-Cluster
- Different projects
- Pull from the Configurations repository
- Run Kustomize
- Apply result
- Auto Sync & Self Heal
- 61 Apps
- ApplicationSet

Kustomize

- Flat YAML files
- Base resources
- Copy
- Transform
- You can layer transformations
- Doesn’t enforce any file structure

Basically prototype-based (think JS)

Pros:

- YAML all the way
- High Level (get a lot done

quickly)
- Generators
- Remote resources

Cons:

- New features
- Team responsiveness
- Arbitrary limitations (opinionated)

https://kustomize.io/
https://en.wikipedia.org/wiki/Prototype-based_programming

Configurations structure

Base resources

Overlays that build on top of the base

One environment for each namespace
that include all the overlays needed.

Overview

Branching & environments

WHY?!

- Everything on master goes to all QAs
- Prod committed on master
- Each project advance its prod branch

when needed

Deployment process

Why doing all of this

- Straightforward: what is on the repo is on
the cluster.

- Simple rollbacks.
- Single source of truth.
- Releases don’t impact other projects.
- The image used to run the codebase test

is the one going on prod.

Where we struggle

- Local Dev environments
- Manual interventions
- Git workflow on the Configuration repo
- Checking changes before deployment
- Testing before pushing to master

Future improvements

- Store generated YAML on the Prod branches
(Github Page like)

- Add more policies to conftest
- Branchless git workflow?

Questions

