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FIG. 1: E↵ective charge ↵g1(Q)/⇡ obtained from JLab experiments E03006/E97110 [30] (solid stars),

E03006/E05111 [30] (solid circles) and EG1dvcs [29] (solid triangles) and from COMPASS [28] (solid square).

Inner error bars represent the statistical uncertainties and outer ones the systematic and statistical uncer-

tainties added quadratically. The open symbols show the older world data [24–27] with the error bars the

quadratic sum of the systematic and statistical uncertainties. Also shown are the HLFQCD [21] (red line,

using the HLFQCD scale  = 0.534 GeV [52]) and DSE [22] (magenta line and hatched band) parameter-free

predictions of e↵ective charges. The dashed line and hatched cyan band are ↵g1(Q)/⇡ obtained from the

GDH and Bjorken sum rules, respectively.

of QCD at very low Q. That ↵g1 freezes could be already inferred with the old data but

only by complementing them with the GDH sum rule or/and the ↵g1(0) = ⇡ constraint. For

the first time, the onset of freezing is now visible with data only. One notes that only three

of the lowest Q points agree with the GDH expectation. This may signal a fast arising Q-

dependence beyond the leading behavior given by GDH. The data agree well with the ↵HLF

g1

and ↵̂PI predictions. That such agreements would occur was not obvious and is a significant

finding. The possible tension between the data and ↵̂PI for the range 0.3 . Q . 0.5 GeV

may be because ↵g1 and ↵̂PI are not exactly the same e↵ective charges (e.g., at high Q,

↵g1/↵̂PI ' 1+0.05↵pQCD

s
6= 1), but it is noteworthy that it occurs only in the moderately low

Q domain where the ghost-gluon vacuum e↵ect as computed in the Landau gauge contributes

the most to ↵̂PI.
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accordance with the spectroscopy derived from light-front
holographic QCD, where baryon and meson partners
have the masses M2

B ¼ 4λBðnþ LB þ 1Þ and M2
M ¼

4λMðnþ LMÞ respectively. This result follows from
Eqs. (12) and (6) with ν ¼ LB and J ¼ LM, respectively.
If one takes λB ¼ λM in LF holographic QCD, which is
automatic in the superconformal theory, the spectral results
are then identical for LM ¼ LB þ 1.
The predictions of supersymmetric quantum mechanics

are based on the fact that the supercharge operator Rλ
transforms baryon states with angular momentum LB into
their mesonic superpartners with angular momentum
LM ¼ LB þ 1. The operator R†

λ operates in the opposite
direction. The pion has a very special role: Its existence is
predicted by the superconformal algebra, and according to
the formalism, it is massless and has no supersymmetric
partner. We have thus established a complete correspon-
dence between the light-front holographic QCD results and
supersymmetric quantum mechanics.
The superconformal predictions presented in Fig. 1

should be understood as a zeroth-order approximation.
There are, however, several phenomenological corrections
to this initial approximation. First, the slope of the π=b1
trajectory is not exactly identical to the slope of the nucleon
trajectory: For the mesons

ffiffiffiffiffiffi
λM

p
¼ 0.59 GeV, whereas for

the nucleons
ffiffiffiffiffi
λB

p
¼ 0.49 GeV [21]. This makes the b1

heavier than its supersymmetric partner, the nucleon. In
terms of LF holographic QCD this indicates that for this
internal spin configuration, the confining force between the
spectator and the cluster in the baryon is weaker than
between the constituents of the meson; this makes the
meson a more compact object since hr2i ∼ 1=λ. Second, the
negative parity nucleon states are systematically higher
than the nucleons with positive parity, a fact which in LF
holographic QCD has been taken into account phenom-
enologically by the half-integer twist assignment ν ¼ Lþ 1

2

given in Table I. It is expected that this effect could be
explained by the different quark configurations and sym-
metries of the baryon wave function [30–32].
The nucleon-meson superpartner pairs are plotted in

Fig. 2 with their measured masses. The observed difference
in the squared masses of the supersymmetric partners
indicates that the most important breaking of supersym-
metry is due to the difference between λB and λM. Only
confirmed PDG states have been included [34].

B. The mesonic superpartners of the delta trajectory

The essential physics derived from the superconformal
connection of nucleons and mesons follows from the action
of the fermion-number-changing supercharge operator Rλ.
As we have discussed in the previous section, this operator
transforms a baryon wave function with angular momen-
tum LB into a superpartner meson wave function with
angular momentum LM ¼ LB þ 1 (see Appendix B), a

state with the identical eigenvalue—the hadronic mass
squared. We now check if this relation holds empirically
for other baryon trajectories.
We first observe that baryons with positive parity and

internal spin S ¼ 3
2, such as the Δ3

2
þð1232Þ, and baryons

with negative parity and internal spin S ¼ 1
2, such as the

Δ1
2
−ð1620Þ, lie on the same trajectory; this corresponds to

the phenomenological assignment ν ¼ LB þ 1
2, given in

Table I. From (12) we obtain the spectrum [35]

M2ðþÞ
n;LB;S¼3

2

¼ M2ð−Þ
n;LB;S¼1

2

¼ 4

"
nþ LB þ 3

2

#
λB: ð50Þ

If we now apply the superconformal relation LM ¼ LB þ 1
and λM ¼ λB we predict a meson trajectory with
eigenvalues

M2
n;LM

¼ 4

"
nþ LM þ 1

2

#
λM; ð51Þ

which is, precisely, the expression for the spectrum of the ρ
meson (6) for J ¼ LM þ 1. Again, one sees that the lowest-
lying mesonic state, in this case the ρ meson, has no
superpartner, since LM would be negative.
Since the phenomenological value of λ for the Δ

trajectory is close to that of the ρ trajectory,
ffiffiffiffiffi
λΔ

p
¼ 0.51

and
ffiffiffiffiffi
λρ

p
¼ 0.54 (see Ref. [21]), one can expect good

agreement for the masses of the supersymmetric partners.
This is indeed the case, as can be seen from Fig. 3, where
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FIG. 2 (color online). Supersymmetric meson-nucleon partners:
Mesons with S ¼ 0 (red triangles) and baryons with S ¼ 1

2 (blue
squares). The experimental values of M2 are plotted vs
LM ¼ LB þ 1. The solid line corresponds to

ffiffiffi
λ

p
¼ 0.53 GeV.

The π has no baryonic partner.

SUPERCONFORMAL BARYON-MESON SYMMETRY AND … PHYSICAL REVIEW D 91, 085016 (2015)

085016-7

we have included the confirmed Δ and J ¼ Lþ S, S ¼ 1,
vector-meson states from Ref. [34].
Using the assignment ν ¼ LB þ 1

2 from Table I and the
comparison of Eq. (9) with Eq. (40) [or Eq. (10) with
Eq. (39)], we obtain the relation f ¼ νþ 1

2 ¼ LB þ 1 ¼
LM for the superconformal relation LM ¼ LB þ 1. Thus
from (39) we obtain the LF Hamiltonian for the super-
partner vector-meson trajectory,

G11 ¼ −
d2

dζ2
þ λ2Mζ

2 þ 2λMðLM − 1Þ þ
4ðLM þ 1

2Þ
2 − 1

4ζ2
;

ð52Þ

with λ ¼ λM ¼ λB. This expression is to be compared with
the light-front holographic Hamiltonian which follows
from (5) for J ¼ LM þ 1 and ν ¼ LM,

HLF ¼ −
d2

dζ2
þ λ2Mζ

2 þ 2λMLM þ 4L2
M − 1

4ζ2
: ð53Þ

Thus, by extending the meson-baryon connection for
baryons with ν ¼ LB þ 1

2 we obtain an identical expression
for the vector-meson spectrum, but with a different LF
Hamiltonian. This somewhat less satisfactory feature of the
Δ-ρ relations is reflected in the transformation under the
supercharge R†

λ (Appendix B). The ρ-meson wave function
ϕ1, that is, the eigenfunction of G11 with f ¼ 0, is not
annihilated by the action of R†

λ [see Eq. (B31)]. Indeed the

terms which determine the angular momentum, the singular
terms in the two Hamiltonians G11 and G22, Eqs. (39) and
(40) respectively, are identical for f ¼ 0. Thus in this case,
the unphysical value of the angular momentum, LB ¼ −1,
is the only reason to exclude the baryonic superpartner of
the ρ. This is in contrast to the case of the pion, where the
fermion-number-changing operator R†

λ actually annihilates
the pion wave function, Eq. (B29), since it is a zero-mass
eigenmode.

V. SUMMARY AND CONCLUSIONS

Conformal and superconformal quantum mechanics
[8,14], together with light-front holographic QCD [21],
has revealed the importance of conformal symmetry and its
breaking within the algebraic structure for understanding
the confinement mechanism of QCD.
If one introduces the mass scale for hadrons using the

method developed by de Alfaro et al. [8], one obtains a
confining theory for mesons while retaining a conformally
invariant action. If one applies the dAFF procedure to light-
front Hamiltonian theory, the form of the LF potential is
uniquely fixed to that of a harmonic oscillator in the
invariant LF radial variable ζ [9]. It predicts color confine-
ment and linear Regge meson trajectories with the same
slope in the radial and orbital excitations n and L. If one
compares the construction of the confining LF potential
with the Hamiltonian obtained in light-front holographic
QCD, then the dilaton factor in the modified AdS action is
uniquely fixed [5,6]. The appearance of the extra spin-
dependent constant term in the LF potential is a conse-
quence of the specific embedding of the LF wave equations
in AdS for arbitrary integer-spin [7]. This extra term is
essential for agreement with experiment, including the
prediction of a massless pion in the chiral limit.
In the case of half-integer spin, the dilaton in the AdS

action does not lead to confinement for baryons since
such a term can be absorbed into the wave function.
Confinement thus requires the addition of a Yukawa-like
term in the half-integer spin Lagrangian. However, this
apparent deficiency is cured [13] by the application of
superconformal quantum mechanics.
Superconformal quantum mechanics can be constructed

by restricting the superpotential in Witten’s construction
[23] to a conformally invariant expression [14,24].
Remarkably, it is possible to introduce a mass scale into
the quantum-mechanical evolution equations, without vio-
lating supersymmetry, by introducing a new supercharge
which is a linear combination of generators of the super
conformal algebra [14]. Furthermore, by connecting the
resulting wave equations to the light-front holographic
formalism, one fixes not only the confining term for
baryons and mesons for all spins, but also the constant
terms in the LF potential. The resulting spectra reproduces
the principal observed features of mesonic and baryonic
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FIG. 3 (color online). Supersymmetric vector meson and Δ
partners: Mesons with I ¼ 1 (red triangles) and I ¼ 0 (red
circles) and Δ states with S ¼ 3

2 and S ¼ 1
2 (blue squares) for

plus and minus parity respectively. The experimental values of
M2 are plotted vs LM ¼ LB þ 1. The solid line corresponds toffiffiffi
λ

p
¼ 0.53 GeV. The ρ and ω have no baryonic partner, since it

would imply a negative value of LB.
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follows from the stability of the ground state, the proton,
and the mapping of AdS to light-front physics. The
assignment for other spin and parity baryons states, given
in Table II, is motivated by the observed spectrum. It is
hoped that further analysis of the different quark configu-
rations and symmetries of the baryon wave function
[36,45,46] will indeed explain the assignment of the
dimensionless parameter f.
If we follow the non-SUð6Þ quantum number assignment

for the Δ5
2
−ð1930Þ given in Ref. [36], namely S ¼ 3=2,

L ¼ 1, n ¼ 1, we find with the present model the
value MΔð1930Þ ¼ 4

ffiffiffiffiffi
λB

p
¼ 2MP, also consistent with the

experimental result 1.96 GeV [40]. An important feature of

light-front holography and supersymmetric LF quantum
mechanics is the fact that it predicts a similar multiplicity of
states for mesons and baryons, consistent with experimen-
tal observations [36]. This property is consistent with the
LF cluster decomposition of the holographic variable ζ,
which describes a system of partons as an active quark plus
a cluster of n − 1 spectators [37]. From this perspective, a
baryon with 3 quarks looks in light-front holography as a
quark-diquark system.
Another interesting consequence of the supersymmetric

relation between the plus and minus chirality states, is the
equal probability expressed by (88). This remarkable
equality means that in the light-front holographic approach
described here the proton’s spin Jz ¼ Lz þ Sz is carried by
the quark orbital angular momentum: hJzi ¼ hLz

qi ¼ %1=2
since hSzqi ¼ 0.

VI. CONCLUSIONS AND OUTLOOK

In this article we have shown how superconformal
quantum mechanics [21,22] can be extended to the light
front and how it can be precisely mapped to holographic
QCD. We have also examined the higher half-integer spin
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FIG. 1 (color online). Orbital and radial baryon excitation spectrum. (a) Positive-parity spin-12 nucleons and (b) spectrum gap between
the negative-parity spin-32 and the positive-parity spin-

1
2 nucleons families. (c) Minus-parity spin-12 N and (d) plus- and minus-parity spin-

1
2 and spin-32 Δ families. We have used in this figure the value

ffiffiffiffiffi
λB

p
¼ 0.49 GeV for nucleons and 0.51 GeV for the deltas.

TABLE II. Orbital quantum number assignment for the super-
potential parameter f for baryon trajectories according to parity P
and internal spin S.

S ¼ 1
2 S ¼ 3

2

P ¼ þ f ¼ Lþ 1
2

f ¼ Lþ 1

P ¼ − f ¼ Lþ 1 f ¼ Lþ 3
2
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Table 5.1
Confirmed mesons listed by PDG [16]. The labels L, S and n refer to assigned internal orbital angular
momentum, internal spin and radial quantumnumber respectively. For a qq̄ state P = (�1)L+1,C = (�1)L+S .
For the pseudoscalar sector only the I = 1 states are listed.

L S n JPC Meson state

0 0 0 0�+ ⇡(140)
0 0 1 0�+ ⇡(1300)
0 0 2 0�+ ⇡(1800)
0 1 0 1�� ⇢(770)
0 1 0 1�� !(782)
0 1 1 1�� !(1420)
0 1 1 1�� ⇢(1450)
0 1 2 1�� !(1650)
0 1 2 1�� ⇢(1700)

1 0 0 1+� b1(1235)
1 1 0 0++ a0(980)
1 1 1 0++ a0(1450)
1 1 0 1++ a1(1260)
1 1 0 2++ f2(1270)
1 1 0 2++ a2(1320)
1 1 2 2++ f2(1950)
1 1 3 2++ f2(2300)

2 0 0 2�+ ⇡2(1670)
2 0 1 2�+ ⇡2(1880)
2 1 0 3�� !3(1670)
2 1 0 3�� ⇢3(1690)

3 1 0 4++ a4(2040)
3 1 0 4++ f4(2050)

Fig. 5.2. Orbital and radial excitation spectrum for the light pseudoscalar mesons: (a) I = 0 unflavored mesons and (b) strange mesons, for
p

� = 0.59
GeV.

In contrast to the hard-wall model, the soft-wall model with positive dilaton accounts for the mass pattern observed in
radial excitations, as well as for the triplet splitting for the L = 1, J = 0, 1, 2 observed for the vector meson a-states. As
we will discuss in the next section, a spin–orbit effect is only predicted for mesons not baryons, as observed in experiment
[203,209]; it thus becomes a crucial test for anymodel which aims to describe the systematics of the light hadron spectrum.
Using the spectral formula (5.8) we find [176]

Ma2(1320) > Ma1(1260) > Ma0(980). (5.11)

The predicted values are 0.76, 1.08 and 1.32 GeV for the masses of the a0(980), a1(1260) and a2(1320) vector mesons,
compared with the experimental values 0.98, 1.23 and 1.32 GeV respectively. The prediction for the mass of the L = 1,
n = 1 state a0(1450) is 1.53 GeV, compared with the observed value 1.47 GeV. Finally, we would like to mention the recent
precision measurement at COMPASS [210] which found a new resonance named the a1(1420) with a mass 1.42 GeV, the
origin of which remains unclear. In the present framework the a1(1420) is interpreted as a J = 1, S = 1, L = 1, n = 1

S.J. Brodsky et al. / Physics Reports 584 (2015) 1–105 35

Fig. 5.3. Orbital and radial excitation spectrum for the light vector mesons: (a) I = 0 and I = 1 unflavoredmesons and (b) strangemesons, for
p

� = 0.54
GeV.

vector-meson state with a predicted mass of 1.53 GeV. For other calculations of the hadronic spectrum in the framework of
AdS/QCD, see Refs. [211–239].23

The LF holographic model with � > 0 accounts for the mass pattern observed in the radial and orbital excitations of
the light mesons, as well as for the triplet splitting for the L = 1, J = 0, 1, 2, vector meson a-states [176]. The slope of
the Regge trajectories gives a value

p
� ' 0.5 GeV, but the value of � required for describing the pseudoscalar sector is

slightly higher that the value of � extracted from the vector sector. In general the description of the vector sector is better
than the pseudoscalar sector. However, the prediction for the observed spin–orbit splitting for the L = 1 a-vector mesons
is overestimated by the model.

The solution for � < 0 leads to a pion mass heavier than the ⇢ meson and a meson spectrum given by M2 =

4� (n + 1 + (L � J)/2), in clear disagreement with the observed spectrum. Thus the solution � < 0 is incompatible with
the light-front constituent interpretation of hadronic states. We also note that the solution with � > 0 satisfies the stability
requirements from the Wilson loop area condition for confinement [177] discussed in Section 4.2.1.

5.1.2. Meson spectroscopy in a gauge invariant AdS model
Like the AdS wave equation for arbitrary spin (4.23), the AdS wave equation which follows from a gauge invariant

construction described in Section 4.2.2 (see Ref. [61]) can be brought into a Schrödinger-like form by rescaling the AdS
field in (4.36) according to �̃J(z) = zJ�1/2e��z2/2�̃J(z). The result is

✓
�

d2

dz2
�

1 � 4J2

4
+ �2z2 � 2J�

◆
�̃J(z) = M2 �̃J(z), (5.12)

and yields the spectrum

M2
= (4n + 2J + 2)|�| � 2J�. (5.13)

Besides the difference in sign in the dilaton profile, there are conceptual differences in the treatment of higher spin given
by KKSS [61] in Section 4.2.2, as compared with the treatment given in Section 4.2. The mapping of the AdS equation of
motion (4.36) onto the Schrödinger equation (5.12) reveals that J = L and therefore an essential kinematical degree of
freedom is missing in the light-front interpretation of the KKSS AdS wave equation. In particular the ⇢ meson would be an
L = 1 state. Furthermore the method of treating higher spin, based on gauge invariance, can only be applied to the vector
meson trajectory, not pseudoscalar mesons. Generally speaking, one can say that insisting on gauge invariance in AdSd+1
favors a negative dilaton profile (� < 0), whereas the mapping onto the LF equation demands an AdS mass µ 6= 0 and a
positive profile (� > 0).

5.1.3. Light quark masses and meson spectrum
In general, the effective interaction depends on quark masses and the longitudinal momentum fraction x in addition

to the transverse invariant variable ⇣ . However, if the confinement potential is unchanged for small quark masses it then
only depends on the transverse invariant variable ⇣ , and the transverse dynamics are unchanged (see Section 2.4.1). This
is consistent with the fact that the potential is determined from the conformal symmetry of the effective one-dimensional
quantum field theory, which is not badly broken for small quark masses.

23 For recent reviews see, for example, Refs. [114,240]. One can also use the AdS/QCD framework to study hadrons at finite temperature (see, for example
Refs. [241–243] and references therein) or in a hadronic medium [244].

S.J. Brodsky, G.F. de Téramond, H.G. Dosch, J. Erlich, Phys. Rep. 584, 1 (2015); 
H.G. Dosch, G.F. de Téramond, S.J. Brodsky, Phys. Rev. D 91, 045040 (2015); D91, 085016 (2015).
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The coupling of an extermal EM field 
propagating in AdS space to a hadron mode

EM Form Factors in Holographic QCD

bound state behaves like a quark-diquark system, i.e., like a
twist-2 system. However, at large momentum transfer, or at
small distances, where the cluster is resolved into its
individual constituents, the nucleon is governed by twist
3, in contrast to the nonperturbative region where it is
approximated by twist 2. A similar feature appears in the
study of sequential decay chains in baryons [49], which are
sensitive to the short distance behavior of the wave
function. At very short distances, the bound state is twist
3 since the two constituents particles in the diquark are
resolved. This different scaling behavior of the structure
functions at low and high virtualities can be properly
addressed from the LF cluster decomposition for bound
states [50–52] and is discussed below.
In contrast to the prototypical example of the gauge/

gravity duality, the AdS=CFT correspondence [53], where
the baryon is identified as an SUðNCÞ singlet bound state of
NC quarks in the large-NC limit, in the LFHQCD formal-
ism, baryons are computed for NC ¼ 3, not NC → ∞. In
particular, the correct physical twist assignment is critical
when computing hadron FFs since the leading twist
corresponds to the number of constituents N, i.e., τ ¼ 3
for a nucleon. In fact, the nucleon AdS solutions have both
L ¼ 0 and L ¼ 1 components with equal weight. Therefore
we use both the leading twist τ ¼ 3 and τ ¼ 3þ L ¼ 4 to
compute the valence contribution to the nucleon FFs. The
spacelike Pauli FF of the nucleons arises from the overlap
of L ¼ 0 and L ¼ 1AdS wave functions [1]. It is important
to recall that the spin-flavor symmetry is not contained in
the holographic principle, which essentially describes the
Q2 scale dependence for a given twist, and has to be
imposed from the symmetries of the quark model under
consideration. In the present work we use the SU(6) spin-
flavor symmetry and examine possible breaking effects of
this symmetry.
In holographic QCD gluonic degrees of freedom only

arise at high virtuality, whereas gluons with small virtuality
are sublimated in the effective confining potential [54].
Thus, Fock states of hadrons can have any number of extra
qq̄ pairs created by the confining potential. One can extend
the formalism in order to examine the contribution of
higher-Fock states using the holographic framework
described here. Indeed, it was shown in Refs. [34,55] that
higher Fock components are essential to describe the rather
complex timelike structure of the pion FF. Contribution
from the higher-twist components (qq̄ and qq̄qq̄) has also
been considered to describe the pion transition FF in γγ% →
π0 [45]. Contributions from three, four, and five parton
components in the nucleon Fock expansion have been
considered in the holographic QCD framework in Ref. [56],
but the experimental data of a different combination of
Sachs FFs, such as μpG

p
E=G

p
M, could not be successfully

described. More recent works [57,58] by the same group
can describe the experimental data of nucleon FFs well, but
the number of parameters required is large, typically about

eight to 12 free parameters. Other attempts to describe the
flavor nucleon FFs in AdS/QCD also require a large
number of parameters [59]. On the other hand, simple
holographic models, which essentially include only the
valence contribution, fail to systematically account for all
the properties of the nucleon FFs and their flavor decom-
position [34,60,61]. As we show below, higher-twist
components in the Fock expansion are in general needed
for an accurate description of the nucleon FFs, and, in fact,
this can be achieved with a minimal number of parameters
in the LF holographic framework.
The contents of this article are as follows: After briefly

reviewing in Sec. II how nonperturbative analytical expres-
sions for FFs in physical four-dimensional space follow
from semiclassical gravity in AdS5 space, and their light-
front holographic cluster decomposition, we show in
Sec. III how the Dirac and Pauli nucleon FFs in physical
space-time follow from the covariant spin structure of FFs
in AdS5. In Sec. IV we study the effect of higher Fock
states and build a simple light-front holographic model for
the nucleon FFs. We compare our predictions with avail-
able data and compute asymptotic predictions for the
nucleon FFs and their ratios. We compare our results for
the nucleon radii and perform a flavor decomposition of the
nucleon FFs. Predictions are made for comparison with
upcoming JLab experiments. Our concluding remarks are
given in Sec. V.

II. HADRON FORM FACTORS
IN HOLOGRAPHIC QCD

For simplicity let us consider first the FF of a spinless
hadron. In the higher-dimensional gravity theory an
electromagnetic FF corresponds to the coupling of an
external EM field AMðx; zÞ propagating in AdS space with
a hadron mode ΦPðx; zÞ, given by the left-hand side of the
equation
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MΦPðx; zÞAMðx; zÞ

∼ ð2πÞ4δ4ðP0 − P − qÞϵμðPþ P0ÞμFðq2Þ; ð1Þ

defined up to a constant term. In (1) the coordinates are
xM ¼ ðxμ; zÞ, with z being the holographic variable and xμ

Minkowski flat space-time coordinates. The metric deter-
minant is

ffiffiffi
g

p ¼ ðR=zÞ5. To simplify, we set the AdS radius
R ¼ 1 since it does not appear in physical quantities. In the
above expression the hadron has initial and final four-
momenta P and P0 and q is the four-momentum transferred
to the hadron by the photon with polarization ϵμ. For
convenience we have redefined the wave function Φðx; zÞ
to absorb any dependence in Eq. (1) on a dilaton profile.
The expression on the right-hand side represents the EM
hadron FF in physical space-time. It corresponds to the
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EM form factor in physical spacetime

bound state behaves like a quark-diquark system, i.e., like a
twist-2 system. However, at large momentum transfer, or at
small distances, where the cluster is resolved into its
individual constituents, the nucleon is governed by twist
3, in contrast to the nonperturbative region where it is
approximated by twist 2. A similar feature appears in the
study of sequential decay chains in baryons [49], which are
sensitive to the short distance behavior of the wave
function. At very short distances, the bound state is twist
3 since the two constituents particles in the diquark are
resolved. This different scaling behavior of the structure
functions at low and high virtualities can be properly
addressed from the LF cluster decomposition for bound
states [50–52] and is discussed below.
In contrast to the prototypical example of the gauge/

gravity duality, the AdS=CFT correspondence [53], where
the baryon is identified as an SUðNCÞ singlet bound state of
NC quarks in the large-NC limit, in the LFHQCD formal-
ism, baryons are computed for NC ¼ 3, not NC → ∞. In
particular, the correct physical twist assignment is critical
when computing hadron FFs since the leading twist
corresponds to the number of constituents N, i.e., τ ¼ 3
for a nucleon. In fact, the nucleon AdS solutions have both
L ¼ 0 and L ¼ 1 components with equal weight. Therefore
we use both the leading twist τ ¼ 3 and τ ¼ 3þ L ¼ 4 to
compute the valence contribution to the nucleon FFs. The
spacelike Pauli FF of the nucleons arises from the overlap
of L ¼ 0 and L ¼ 1AdS wave functions [1]. It is important
to recall that the spin-flavor symmetry is not contained in
the holographic principle, which essentially describes the
Q2 scale dependence for a given twist, and has to be
imposed from the symmetries of the quark model under
consideration. In the present work we use the SU(6) spin-
flavor symmetry and examine possible breaking effects of
this symmetry.
In holographic QCD gluonic degrees of freedom only

arise at high virtuality, whereas gluons with small virtuality
are sublimated in the effective confining potential [54].
Thus, Fock states of hadrons can have any number of extra
qq̄ pairs created by the confining potential. One can extend
the formalism in order to examine the contribution of
higher-Fock states using the holographic framework
described here. Indeed, it was shown in Refs. [34,55] that
higher Fock components are essential to describe the rather
complex timelike structure of the pion FF. Contribution
from the higher-twist components (qq̄ and qq̄qq̄) has also
been considered to describe the pion transition FF in γγ% →
π0 [45]. Contributions from three, four, and five parton
components in the nucleon Fock expansion have been
considered in the holographic QCD framework in Ref. [56],
but the experimental data of a different combination of
Sachs FFs, such as μpG

p
E=G

p
M, could not be successfully

described. More recent works [57,58] by the same group
can describe the experimental data of nucleon FFs well, but
the number of parameters required is large, typically about

eight to 12 free parameters. Other attempts to describe the
flavor nucleon FFs in AdS/QCD also require a large
number of parameters [59]. On the other hand, simple
holographic models, which essentially include only the
valence contribution, fail to systematically account for all
the properties of the nucleon FFs and their flavor decom-
position [34,60,61]. As we show below, higher-twist
components in the Fock expansion are in general needed
for an accurate description of the nucleon FFs, and, in fact,
this can be achieved with a minimal number of parameters
in the LF holographic framework.
The contents of this article are as follows: After briefly

reviewing in Sec. II how nonperturbative analytical expres-
sions for FFs in physical four-dimensional space follow
from semiclassical gravity in AdS5 space, and their light-
front holographic cluster decomposition, we show in
Sec. III how the Dirac and Pauli nucleon FFs in physical
space-time follow from the covariant spin structure of FFs
in AdS5. In Sec. IV we study the effect of higher Fock
states and build a simple light-front holographic model for
the nucleon FFs. We compare our predictions with avail-
able data and compute asymptotic predictions for the
nucleon FFs and their ratios. We compare our results for
the nucleon radii and perform a flavor decomposition of the
nucleon FFs. Predictions are made for comparison with
upcoming JLab experiments. Our concluding remarks are
given in Sec. V.
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xM ¼ ðxμ; zÞ, with z being the holographic variable and xμ

Minkowski flat space-time coordinates. The metric deter-
minant is

ffiffiffi
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p ¼ ðR=zÞ5. To simplify, we set the AdS radius
R ¼ 1 since it does not appear in physical quantities. In the
above expression the hadron has initial and final four-
momenta P and P0 and q is the four-momentum transferred
to the hadron by the photon with polarization ϵμ. For
convenience we have redefined the wave function Φðx; zÞ
to absorb any dependence in Eq. (1) on a dilaton profile.
The expression on the right-hand side represents the EM
hadron FF in physical space-time. It corresponds to the
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sensitive to the short distance behavior of the wave
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addressed from the LF cluster decomposition for bound
states [50–52] and is discussed below.
In contrast to the prototypical example of the gauge/
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ism, baryons are computed for NC ¼ 3, not NC → ∞. In
particular, the correct physical twist assignment is critical
when computing hadron FFs since the leading twist
corresponds to the number of constituents N, i.e., τ ¼ 3
for a nucleon. In fact, the nucleon AdS solutions have both
L ¼ 0 and L ¼ 1 components with equal weight. Therefore
we use both the leading twist τ ¼ 3 and τ ¼ 3þ L ¼ 4 to
compute the valence contribution to the nucleon FFs. The
spacelike Pauli FF of the nucleons arises from the overlap
of L ¼ 0 and L ¼ 1AdS wave functions [1]. It is important
to recall that the spin-flavor symmetry is not contained in
the holographic principle, which essentially describes the
Q2 scale dependence for a given twist, and has to be
imposed from the symmetries of the quark model under
consideration. In the present work we use the SU(6) spin-
flavor symmetry and examine possible breaking effects of
this symmetry.
In holographic QCD gluonic degrees of freedom only

arise at high virtuality, whereas gluons with small virtuality
are sublimated in the effective confining potential [54].
Thus, Fock states of hadrons can have any number of extra
qq̄ pairs created by the confining potential. One can extend
the formalism in order to examine the contribution of
higher-Fock states using the holographic framework
described here. Indeed, it was shown in Refs. [34,55] that
higher Fock components are essential to describe the rather
complex timelike structure of the pion FF. Contribution
from the higher-twist components (qq̄ and qq̄qq̄) has also
been considered to describe the pion transition FF in γγ% →
π0 [45]. Contributions from three, four, and five parton
components in the nucleon Fock expansion have been
considered in the holographic QCD framework in Ref. [56],
but the experimental data of a different combination of
Sachs FFs, such as μpG
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described. More recent works [57,58] by the same group
can describe the experimental data of nucleon FFs well, but
the number of parameters required is large, typically about

eight to 12 free parameters. Other attempts to describe the
flavor nucleon FFs in AdS/QCD also require a large
number of parameters [59]. On the other hand, simple
holographic models, which essentially include only the
valence contribution, fail to systematically account for all
the properties of the nucleon FFs and their flavor decom-
position [34,60,61]. As we show below, higher-twist
components in the Fock expansion are in general needed
for an accurate description of the nucleon FFs, and, in fact,
this can be achieved with a minimal number of parameters
in the LF holographic framework.
The contents of this article are as follows: After briefly

reviewing in Sec. II how nonperturbative analytical expres-
sions for FFs in physical four-dimensional space follow
from semiclassical gravity in AdS5 space, and their light-
front holographic cluster decomposition, we show in
Sec. III how the Dirac and Pauli nucleon FFs in physical
space-time follow from the covariant spin structure of FFs
in AdS5. In Sec. IV we study the effect of higher Fock
states and build a simple light-front holographic model for
the nucleon FFs. We compare our predictions with avail-
able data and compute asymptotic predictions for the
nucleon FFs and their ratios. We compare our results for
the nucleon radii and perform a flavor decomposition of the
nucleon FFs. Predictions are made for comparison with
upcoming JLab experiments. Our concluding remarks are
given in Sec. V.
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For simplicity let us consider first the FF of a spinless
hadron. In the higher-dimensional gravity theory an
electromagnetic FF corresponds to the coupling of an
external EM field AMðx; zÞ propagating in AdS space with
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defined up to a constant term. In (1) the coordinates are
xM ¼ ðxμ; zÞ, with z being the holographic variable and xμ

Minkowski flat space-time coordinates. The metric deter-
minant is

ffiffiffi
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p ¼ ðR=zÞ5. To simplify, we set the AdS radius
R ¼ 1 since it does not appear in physical quantities. In the
above expression the hadron has initial and final four-
momenta P and P0 and q is the four-momentum transferred
to the hadron by the photon with polarization ϵμ. For
convenience we have redefined the wave function Φðx; zÞ
to absorb any dependence in Eq. (1) on a dilaton profile.
The expression on the right-hand side represents the EM
hadron FF in physical space-time. It corresponds to the

ANALYSIS OF NUCLEON ELECTROMAGNETIC FORM … PHYSICAL REVIEW D 95, 014011 (2017)

014011-3

local coupling of the quark current Jμ ¼
P

qeqq̄γ
μq to the

constituents [34].
In holographic QCD a hadron is described by a

z-dependent wave function which includes the scale
dependence and a plane wave in physical space represent-
ing a free hadron: ΦPðx; zÞ ¼ eiP·xΦðzÞ. The physical
incoming electromagnetic probe propagates in AdS accord-
ing to

Aμðx; zÞ ¼ eiq·xVðq2; zÞϵμðqÞ; Az ¼ 0; ð2Þ

where the bulk-to-boundary propagator Vðq2; zÞ has the
boundary conditions Vðq2 ¼ 0; zÞ ¼ Vðq2; z ¼ 0Þ ¼ 1.
Extracting the factor ð2πÞ4δ4ðP0 − P − qÞ from momentum
conservation in Eq. (1) we find [44] (Q2 ¼ −q2)

FðQ2Þ ¼
Z

dz
z3

VðQ2; zÞΦ2
τðzÞ; ð3Þ

where FðQ2 ¼ 0Þ ¼ 0. At small values of z ∼ 1=Q, where
the EM current VðQ2; zÞ has its important support, the
hadron modes scale as Φτ ∼ zτ, and the hard-scattering
power-scaling behavior [47,48] is recovered [46],

FðQ2Þ →
!
1

Q2

"
τ−1

: ð4Þ

In our approach the twist-τ hadronic wave functions are

ΦτðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Γðτ − 1Þ

s

κτ−1zτe−κ
2z2=2; ð5Þ

and the EM current VðQ2; zÞ is the solution of the wave
equation of a vector current in AdS5, with modifications
determined by the superconformal algebra, which are the
same as used in spectroscopy. It has the integral represen-
tation [62]

VðQ2; zÞ ¼ κ2z2
Z

1

0

dx
ð1 − xÞ2

xQ
2=4κ2e−κ

2z2x=ð1−xÞ: ð6Þ

Since the integrand in Eq. (6) contains the generating
function of the associated Laguerre polynomials Lk

n, it can
also be expressed as a sum of poles [62],

VðQ2; zÞ ¼ 4κ4z2
X∞

n¼0

L1
nðκ2z2Þ

M2
n þQ2

; ð7Þ

with the poles located at −Q2 ¼ M2
n ¼ 4κ2ðnþ 1Þ. To

compare with the data, one has, however, to shift the poles
in Eq. (7) to their physical location at the vector meson
masses [34]

−Q2 ¼ M2
ρn ¼ 4κ2

$
nþ 1

2

%
; n ¼ 0; 1; 2;…: ð8Þ

The ground-state mass of the ρ meson, Mρn¼0
≡Mρ ¼

0.775 GeV, gives the value of κ ¼ Mρ=
ffiffiffi
2

p
¼ 0.548 GeV,

where κ ¼
ffiffiffi
λ

p
is the emerging confinement scale [37].

Substituting (5) and (6) in Eq. (3), and shifting the vector
meson poles to their physical locations using (8), we find
for integer twist τ ¼ N the result [34,63,64]

FτðQ2Þ ¼ 1&
1þ Q2

M2
ρn¼0

'&
1þ Q2

M2
ρn¼1

'
% % %

&
1þ Q2

M2
ρn¼τ−2

' ; ð9Þ

expressed as a product of τ − 1 poles along the vector
meson Regge radial trajectory in terms of the ρ vector
meson mass Mρ and its radial excitations. For a pion, for
example, the leading twist is 2, and thus the corresponding
FF has a monopole form [64]. It is interesting to notice that
even if an infinite number of poles appears in the dressed
EM current (7), for a twist τ-bound state the corresponding
FF is given by a product of τ − 1 poles, thus establishing a
precise relation between the twist of each Fock state in a
hadron and the number of poles in the hadron FF. As
expected from this construction, the analytical form (9)
incorporates the correct hard-scattering twist-scaling
behavior at high virtuality and also vector meson domi-
nance at low energy [65].
In LF quantization [66], a hadron state jHi is a super-

position of an infinite number of Fock components jNi,
jHi ¼

P
NψN=HjNi, where ψN=H represents the N-

component LFWF with normalization
P

N jψN=Hj2 ¼ 1.
Thus the FF is given by the sum over an infinite number
of terms

FHðQ2Þ ¼
X

τ

PτFτðQ2Þ; ð10Þ

where Fτ is given by Eq. (9). Since the charge is a diagonal
operator, only amplitudes with an identical number of
components in the initial and final states contribute to the
sum in Eq. (10). Normalization at Q2 ¼ 0, FHð0Þ ¼ 1,
Fτð0Þ ¼ 1 [Eq. (9)] implies that

P
τPτ ¼ 1 if all possible

states are included.
Conventionally, the analysis of FFs is based on the

generalized vector meson dominance model where the EM
form factor is written as a single-pole expansion

FHðQ2Þ ¼
X

λ

Cλ
M2

λ

M2
λ −Q2

; ð11Þ

with a dominant contribution from the ρ vector meson plus
contributions from the higher resonances ρ0, ρ00, ρ000,…, etc.
[67]. The comparison of Eqs. (10) and (11) allows us to
determine the coefficients Cλ in terms of the probabilities
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example, the leading twist is 2, and thus the corresponding
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EM current (7), for a twist τ-bound state the corresponding
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meson poles to their physical locations using (8), we find
for integer twist τ ¼ N the result [34,63,64]

FτðQ2Þ ¼ 1&
1þ Q2

M2
ρn¼0

'&
1þ Q2

M2
ρn¼1

'
% % %

&
1þ Q2

M2
ρn¼τ−2

' ; ð9Þ

expressed as a product of τ − 1 poles along the vector
meson Regge radial trajectory in terms of the ρ vector
meson mass Mρ and its radial excitations. For a pion, for
example, the leading twist is 2, and thus the corresponding
FF has a monopole form [64]. It is interesting to notice that
even if an infinite number of poles appears in the dressed
EM current (7), for a twist τ-bound state the corresponding
FF is given by a product of τ − 1 poles, thus establishing a
precise relation between the twist of each Fock state in a
hadron and the number of poles in the hadron FF. As
expected from this construction, the analytical form (9)
incorporates the correct hard-scattering twist-scaling
behavior at high virtuality and also vector meson domi-
nance at low energy [65].
In LF quantization [66], a hadron state jHi is a super-

position of an infinite number of Fock components jNi,
jHi ¼

P
NψN=HjNi, where ψN=H represents the N-

component LFWF with normalization
P

N jψN=Hj2 ¼ 1.
Thus the FF is given by the sum over an infinite number
of terms

FHðQ2Þ ¼
X

τ

PτFτðQ2Þ; ð10Þ

where Fτ is given by Eq. (9). Since the charge is a diagonal
operator, only amplitudes with an identical number of
components in the initial and final states contribute to the
sum in Eq. (10). Normalization at Q2 ¼ 0, FHð0Þ ¼ 1,
Fτð0Þ ¼ 1 [Eq. (9)] implies that

P
τPτ ¼ 1 if all possible

states are included.
Conventionally, the analysis of FFs is based on the

generalized vector meson dominance model where the EM
form factor is written as a single-pole expansion

FHðQ2Þ ¼
X

λ

Cλ
M2

λ

M2
λ −Q2

; ð11Þ

with a dominant contribution from the ρ vector meson plus
contributions from the higher resonances ρ0, ρ00, ρ000,…, etc.
[67]. The comparison of Eqs. (10) and (11) allows us to
determine the coefficients Cλ in terms of the probabilities
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Extracting the momentum conservation factor

For hadron modes scale as

local coupling of the quark current Jμ ¼
P

qeqq̄γ
μq to the

constituents [34].
In holographic QCD a hadron is described by a

z-dependent wave function which includes the scale
dependence and a plane wave in physical space represent-
ing a free hadron: ΦPðx; zÞ ¼ eiP·xΦðzÞ. The physical
incoming electromagnetic probe propagates in AdS accord-
ing to

Aμðx; zÞ ¼ eiq·xVðq2; zÞϵμðqÞ; Az ¼ 0; ð2Þ

where the bulk-to-boundary propagator Vðq2; zÞ has the
boundary conditions Vðq2 ¼ 0; zÞ ¼ Vðq2; z ¼ 0Þ ¼ 1.
Extracting the factor ð2πÞ4δ4ðP0 − P − qÞ from momentum
conservation in Eq. (1) we find [44] (Q2 ¼ −q2)

FðQ2Þ ¼
Z

dz
z3

VðQ2; zÞΦ2
τðzÞ; ð3Þ

where FðQ2 ¼ 0Þ ¼ 0. At small values of z ∼ 1=Q, where
the EM current VðQ2; zÞ has its important support, the
hadron modes scale as Φτ ∼ zτ, and the hard-scattering
power-scaling behavior [47,48] is recovered [46],

FðQ2Þ →
!
1

Q2

"
τ−1

: ð4Þ

In our approach the twist-τ hadronic wave functions are

ΦτðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Γðτ − 1Þ

s

κτ−1zτe−κ
2z2=2; ð5Þ

and the EM current VðQ2; zÞ is the solution of the wave
equation of a vector current in AdS5, with modifications
determined by the superconformal algebra, which are the
same as used in spectroscopy. It has the integral represen-
tation [62]

VðQ2; zÞ ¼ κ2z2
Z

1

0

dx
ð1 − xÞ2

xQ
2=4κ2e−κ

2z2x=ð1−xÞ: ð6Þ

Since the integrand in Eq. (6) contains the generating
function of the associated Laguerre polynomials Lk

n, it can
also be expressed as a sum of poles [62],

VðQ2; zÞ ¼ 4κ4z2
X∞

n¼0

L1
nðκ2z2Þ

M2
n þQ2

; ð7Þ

with the poles located at −Q2 ¼ M2
n ¼ 4κ2ðnþ 1Þ. To

compare with the data, one has, however, to shift the poles
in Eq. (7) to their physical location at the vector meson
masses [34]

−Q2 ¼ M2
ρn ¼ 4κ2

$
nþ 1

2

%
; n ¼ 0; 1; 2;…: ð8Þ

The ground-state mass of the ρ meson, Mρn¼0
≡Mρ ¼

0.775 GeV, gives the value of κ ¼ Mρ=
ffiffiffi
2

p
¼ 0.548 GeV,

where κ ¼
ffiffiffi
λ

p
is the emerging confinement scale [37].

Substituting (5) and (6) in Eq. (3), and shifting the vector
meson poles to their physical locations using (8), we find
for integer twist τ ¼ N the result [34,63,64]

FτðQ2Þ ¼ 1&
1þ Q2

M2
ρn¼0

'&
1þ Q2

M2
ρn¼1

'
% % %

&
1þ Q2

M2
ρn¼τ−2

' ; ð9Þ

expressed as a product of τ − 1 poles along the vector
meson Regge radial trajectory in terms of the ρ vector
meson mass Mρ and its radial excitations. For a pion, for
example, the leading twist is 2, and thus the corresponding
FF has a monopole form [64]. It is interesting to notice that
even if an infinite number of poles appears in the dressed
EM current (7), for a twist τ-bound state the corresponding
FF is given by a product of τ − 1 poles, thus establishing a
precise relation between the twist of each Fock state in a
hadron and the number of poles in the hadron FF. As
expected from this construction, the analytical form (9)
incorporates the correct hard-scattering twist-scaling
behavior at high virtuality and also vector meson domi-
nance at low energy [65].
In LF quantization [66], a hadron state jHi is a super-

position of an infinite number of Fock components jNi,
jHi ¼

P
NψN=HjNi, where ψN=H represents the N-

component LFWF with normalization
P

N jψN=Hj2 ¼ 1.
Thus the FF is given by the sum over an infinite number
of terms

FHðQ2Þ ¼
X

τ

PτFτðQ2Þ; ð10Þ

where Fτ is given by Eq. (9). Since the charge is a diagonal
operator, only amplitudes with an identical number of
components in the initial and final states contribute to the
sum in Eq. (10). Normalization at Q2 ¼ 0, FHð0Þ ¼ 1,
Fτð0Þ ¼ 1 [Eq. (9)] implies that

P
τPτ ¼ 1 if all possible

states are included.
Conventionally, the analysis of FFs is based on the

generalized vector meson dominance model where the EM
form factor is written as a single-pole expansion

FHðQ2Þ ¼
X

λ

Cλ
M2

λ

M2
λ −Q2

; ð11Þ

with a dominant contribution from the ρ vector meson plus
contributions from the higher resonances ρ0, ρ00, ρ000,…, etc.
[67]. The comparison of Eqs. (10) and (11) allows us to
determine the coefficients Cλ in terms of the probabilities
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GPDs and LFWFs [52,55]. Shifting the FF poles to their
physical location [56] does not modify the exclusive
counting rules, but modifies the slope and intercept of
the Regge trajectory, and hence the analytic structure of the
GPDs that incorporates the Regge behavior. As a result, the
x dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present context
up to a universal reparametrization function; therefore,
imposing further physically motivated constraints is
necessary.
Generalized parton distributions in LFHQCD.—In

LFHQCD, the FF for arbitrary twist τ is expressed in
terms of Gamma functions [28,52], an expression that can
be recast in terms of the Euler Beta function Bðu; vÞ as [29]

FτðtÞ ¼
1

Nτ
B
!
τ − 1;

1

2
−

t
4λ

"
; ð1Þ

where

Bðu; vÞ ¼
Z

1

0
dyyu−1ð1 − yÞv−1; ð2Þ

and Bðu; vÞ ¼ Bðv; uÞ ¼ ½ΓðuÞΓðvÞ=Γðuþ vÞ& with Nτ ¼ffiffiffi
π

p
½Γðτ − 1Þ=Γðτ − 1

2Þ&. For fixed u and large v, we have
Bðu; vÞ ∼ ΓðuÞv−u: we thus recover, for large Q2 ¼ −t, the
hard scattering scaling behavior [53,54]

FτðQ2Þ ∼
!

1

Q2

"
τ−1

: ð3Þ

In contrast with the GPD twist that is determined by the
quark-quark correlator, twist τ in (1) and (3) refers to
the number of constituents in a given Fock component in
the Fock expansion of the hadron state. It controls the short
distance behavior of the hadronic state and thus the power-
law asymptotic behavior (3).
For integer τ Eq. (1) generates the pole structure [52]

FτðQ2Þ ¼ 1

ð1þ Q2

M2
0

Þð1þ Q2

M2
1

Þ ' ' ' ð1þ Q2

M2
τ−2
Þ
; ð4Þ

with M2
n ¼ 4λðnþ 1

2Þ; n ¼ 0; 1; 2;…; τ − 2, corresponding
to the ρ vector meson and its radial excitations [28]. Notice
that the Beta function in (1) can be rewritten as B(τ − 1;
1 − αðtÞ) with Regge trajectory

αðtÞ ¼ t
4λ

þ 1

2
; ð5Þ

slope α0 ¼ 1=4λ and intercept αð0Þ ¼ 1
2. This is just the ρ

trajectory emerging from LFHQCD. The value of the
universal scale λ is fixed from the ρ mass:

ffiffiffi
λ

p
¼ κ ¼

mρ=
ffiffiffi
2

p
¼ 0.548 GeV [28,57].

Notice that the form factor (1) can be expressed as a
Veneziano amplitude [58] B(1 − αðsÞ; 1 − αðtÞ), where the
s-channel dependence is replaced by a fixed pole,
1 − αðsÞ → τ − 1, allowed by unitarity constraints, since
no resonances are formed in the s channel [59–61]
It will be useful to rewrite (1) using the reparametrization

invariance of the Euler Beta function (2) and thus transform
the integral representation of the form factor (1) into the
invariant form

FτðtÞ ¼
1

Nτ

Z
1

0
dxw0ðxÞwðxÞ−t=4λ−1

2½1 − wðxÞ&τ−2; ð6Þ

if wðxÞ is a monotonically increasing function with fixed
values at the integration limits given by the constraints

wð0Þ ¼ 0; wð1Þ ¼ 1; w0ðxÞ ≥ 0; ð7Þ

with x ∈ ½0; 1&. Any function wðxÞ that satisfies the con-
straints (7) will give the same result for the form factor.
Writing the flavor FF in terms of the valence GPD

FqðtÞ ¼
R
1
0 dxH

q
vðx; tÞ at zero skewness, Hqðx; tÞ≡

Hqðx; ξ ¼ 0; tÞ, we obtain

Hqðx; tÞ ¼ 1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞeðt=4λÞ log½1=wðxÞ&

¼ qτðxÞ exp½tfðxÞ&; ð8Þ

where the PDF qτðxÞ and the profile function fðxÞ

qτðxÞ ¼
1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞ; ð9Þ

fðxÞ ¼ 1

4λ
log

!
1

wðxÞ

"
; ð10Þ

are expressed in terms of the function wðxÞ fulfilling
conditions (7).
If, for x ∼ 0, wðxÞ behaves as wðxÞ ∼ x, we find the

t dependence

Hq
vðx; tÞ ∼ x−t=4λqvðxÞ; ð11Þ

which is the Regge theory motivated ansatz for small x
given in Ref. [62] for α0 ¼ 1=4λ.
To study the behavior of wðxÞ at large x, we perform a

Taylor expansion near x ¼ 1

wðxÞ ¼ 1 − ð1 − xÞw0ð1Þ þ 1

2
ð1 − xÞ2w00ð1Þ þ ' ' ' : ð12Þ

Upon substitution of (12) in (9), we find that the leading
term in the expansion, which behaves as ð1 − xÞτ−2,
vanishes if w0ð1Þ ¼ 0. Hence, setting

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð13Þ
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local coupling of the quark current Jμ ¼
P

qeqq̄γ
μq to the

constituents [34].
In holographic QCD a hadron is described by a

z-dependent wave function which includes the scale
dependence and a plane wave in physical space represent-
ing a free hadron: ΦPðx; zÞ ¼ eiP·xΦðzÞ. The physical
incoming electromagnetic probe propagates in AdS accord-
ing to

Aμðx; zÞ ¼ eiq·xVðq2; zÞϵμðqÞ; Az ¼ 0; ð2Þ

where the bulk-to-boundary propagator Vðq2; zÞ has the
boundary conditions Vðq2 ¼ 0; zÞ ¼ Vðq2; z ¼ 0Þ ¼ 1.
Extracting the factor ð2πÞ4δ4ðP0 − P − qÞ from momentum
conservation in Eq. (1) we find [44] (Q2 ¼ −q2)

FðQ2Þ ¼
Z

dz
z3

VðQ2; zÞΦ2
τðzÞ; ð3Þ

where FðQ2 ¼ 0Þ ¼ 0. At small values of z ∼ 1=Q, where
the EM current VðQ2; zÞ has its important support, the
hadron modes scale as Φτ ∼ zτ, and the hard-scattering
power-scaling behavior [47,48] is recovered [46],

FðQ2Þ →
!
1

Q2

"
τ−1

: ð4Þ

In our approach the twist-τ hadronic wave functions are

ΦτðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Γðτ − 1Þ

s

κτ−1zτe−κ
2z2=2; ð5Þ

and the EM current VðQ2; zÞ is the solution of the wave
equation of a vector current in AdS5, with modifications
determined by the superconformal algebra, which are the
same as used in spectroscopy. It has the integral represen-
tation [62]

VðQ2; zÞ ¼ κ2z2
Z

1

0

dx
ð1 − xÞ2

xQ
2=4κ2e−κ

2z2x=ð1−xÞ: ð6Þ

Since the integrand in Eq. (6) contains the generating
function of the associated Laguerre polynomials Lk

n, it can
also be expressed as a sum of poles [62],

VðQ2; zÞ ¼ 4κ4z2
X∞

n¼0

L1
nðκ2z2Þ

M2
n þQ2

; ð7Þ

with the poles located at −Q2 ¼ M2
n ¼ 4κ2ðnþ 1Þ. To

compare with the data, one has, however, to shift the poles
in Eq. (7) to their physical location at the vector meson
masses [34]

−Q2 ¼ M2
ρn ¼ 4κ2

$
nþ 1

2

%
; n ¼ 0; 1; 2;…: ð8Þ

The ground-state mass of the ρ meson, Mρn¼0
≡Mρ ¼

0.775 GeV, gives the value of κ ¼ Mρ=
ffiffiffi
2

p
¼ 0.548 GeV,

where κ ¼
ffiffiffi
λ

p
is the emerging confinement scale [37].

Substituting (5) and (6) in Eq. (3), and shifting the vector
meson poles to their physical locations using (8), we find
for integer twist τ ¼ N the result [34,63,64]

FτðQ2Þ ¼ 1&
1þ Q2

M2
ρn¼0

'&
1þ Q2

M2
ρn¼1

'
% % %

&
1þ Q2

M2
ρn¼τ−2

' ; ð9Þ

expressed as a product of τ − 1 poles along the vector
meson Regge radial trajectory in terms of the ρ vector
meson mass Mρ and its radial excitations. For a pion, for
example, the leading twist is 2, and thus the corresponding
FF has a monopole form [64]. It is interesting to notice that
even if an infinite number of poles appears in the dressed
EM current (7), for a twist τ-bound state the corresponding
FF is given by a product of τ − 1 poles, thus establishing a
precise relation between the twist of each Fock state in a
hadron and the number of poles in the hadron FF. As
expected from this construction, the analytical form (9)
incorporates the correct hard-scattering twist-scaling
behavior at high virtuality and also vector meson domi-
nance at low energy [65].
In LF quantization [66], a hadron state jHi is a super-

position of an infinite number of Fock components jNi,
jHi ¼

P
NψN=HjNi, where ψN=H represents the N-

component LFWF with normalization
P

N jψN=Hj2 ¼ 1.
Thus the FF is given by the sum over an infinite number
of terms

FHðQ2Þ ¼
X

τ

PτFτðQ2Þ; ð10Þ

where Fτ is given by Eq. (9). Since the charge is a diagonal
operator, only amplitudes with an identical number of
components in the initial and final states contribute to the
sum in Eq. (10). Normalization at Q2 ¼ 0, FHð0Þ ¼ 1,
Fτð0Þ ¼ 1 [Eq. (9)] implies that

P
τPτ ¼ 1 if all possible

states are included.
Conventionally, the analysis of FFs is based on the

generalized vector meson dominance model where the EM
form factor is written as a single-pole expansion

FHðQ2Þ ¼
X

λ

Cλ
M2

λ

M2
λ −Q2

; ð11Þ

with a dominant contribution from the ρ vector meson plus
contributions from the higher resonances ρ0, ρ00, ρ000,…, etc.
[67]. The comparison of Eqs. (10) and (11) allows us to
determine the coefficients Cλ in terms of the probabilities
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EM Form Factors in Holographic QCD
Hadron wave function of twist-τ (soft-wall)

local coupling of the quark current Jμ ¼
P

qeqq̄γ
μq to the

constituents [34].
In holographic QCD a hadron is described by a

z-dependent wave function which includes the scale
dependence and a plane wave in physical space represent-
ing a free hadron: ΦPðx; zÞ ¼ eiP·xΦðzÞ. The physical
incoming electromagnetic probe propagates in AdS accord-
ing to

Aμðx; zÞ ¼ eiq·xVðq2; zÞϵμðqÞ; Az ¼ 0; ð2Þ

where the bulk-to-boundary propagator Vðq2; zÞ has the
boundary conditions Vðq2 ¼ 0; zÞ ¼ Vðq2; z ¼ 0Þ ¼ 1.
Extracting the factor ð2πÞ4δ4ðP0 − P − qÞ from momentum
conservation in Eq. (1) we find [44] (Q2 ¼ −q2)

FðQ2Þ ¼
Z

dz
z3

VðQ2; zÞΦ2
τðzÞ; ð3Þ

where FðQ2 ¼ 0Þ ¼ 0. At small values of z ∼ 1=Q, where
the EM current VðQ2; zÞ has its important support, the
hadron modes scale as Φτ ∼ zτ, and the hard-scattering
power-scaling behavior [47,48] is recovered [46],

FðQ2Þ →
!
1

Q2

"
τ−1

: ð4Þ

In our approach the twist-τ hadronic wave functions are

ΦτðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Γðτ − 1Þ

s

κτ−1zτe−κ
2z2=2; ð5Þ

and the EM current VðQ2; zÞ is the solution of the wave
equation of a vector current in AdS5, with modifications
determined by the superconformal algebra, which are the
same as used in spectroscopy. It has the integral represen-
tation [62]

VðQ2; zÞ ¼ κ2z2
Z

1

0

dx
ð1 − xÞ2

xQ
2=4κ2e−κ

2z2x=ð1−xÞ: ð6Þ

Since the integrand in Eq. (6) contains the generating
function of the associated Laguerre polynomials Lk

n, it can
also be expressed as a sum of poles [62],

VðQ2; zÞ ¼ 4κ4z2
X∞

n¼0

L1
nðκ2z2Þ

M2
n þQ2

; ð7Þ

with the poles located at −Q2 ¼ M2
n ¼ 4κ2ðnþ 1Þ. To

compare with the data, one has, however, to shift the poles
in Eq. (7) to their physical location at the vector meson
masses [34]

−Q2 ¼ M2
ρn ¼ 4κ2

$
nþ 1

2

%
; n ¼ 0; 1; 2;…: ð8Þ

The ground-state mass of the ρ meson, Mρn¼0
≡Mρ ¼

0.775 GeV, gives the value of κ ¼ Mρ=
ffiffiffi
2

p
¼ 0.548 GeV,

where κ ¼
ffiffiffi
λ

p
is the emerging confinement scale [37].

Substituting (5) and (6) in Eq. (3), and shifting the vector
meson poles to their physical locations using (8), we find
for integer twist τ ¼ N the result [34,63,64]

FτðQ2Þ ¼ 1&
1þ Q2

M2
ρn¼0

'&
1þ Q2

M2
ρn¼1

'
% % %

&
1þ Q2

M2
ρn¼τ−2

' ; ð9Þ

expressed as a product of τ − 1 poles along the vector
meson Regge radial trajectory in terms of the ρ vector
meson mass Mρ and its radial excitations. For a pion, for
example, the leading twist is 2, and thus the corresponding
FF has a monopole form [64]. It is interesting to notice that
even if an infinite number of poles appears in the dressed
EM current (7), for a twist τ-bound state the corresponding
FF is given by a product of τ − 1 poles, thus establishing a
precise relation between the twist of each Fock state in a
hadron and the number of poles in the hadron FF. As
expected from this construction, the analytical form (9)
incorporates the correct hard-scattering twist-scaling
behavior at high virtuality and also vector meson domi-
nance at low energy [65].
In LF quantization [66], a hadron state jHi is a super-

position of an infinite number of Fock components jNi,
jHi ¼

P
NψN=HjNi, where ψN=H represents the N-

component LFWF with normalization
P

N jψN=Hj2 ¼ 1.
Thus the FF is given by the sum over an infinite number
of terms

FHðQ2Þ ¼
X

τ

PτFτðQ2Þ; ð10Þ

where Fτ is given by Eq. (9). Since the charge is a diagonal
operator, only amplitudes with an identical number of
components in the initial and final states contribute to the
sum in Eq. (10). Normalization at Q2 ¼ 0, FHð0Þ ¼ 1,
Fτð0Þ ¼ 1 [Eq. (9)] implies that

P
τPτ ¼ 1 if all possible

states are included.
Conventionally, the analysis of FFs is based on the

generalized vector meson dominance model where the EM
form factor is written as a single-pole expansion

FHðQ2Þ ¼
X

λ

Cλ
M2

λ

M2
λ −Q2

; ð11Þ

with a dominant contribution from the ρ vector meson plus
contributions from the higher resonances ρ0, ρ00, ρ000,…, etc.
[67]. The comparison of Eqs. (10) and (11) allows us to
determine the coefficients Cλ in terms of the probabilities
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Vector current

local coupling of the quark current Jμ ¼
P

qeqq̄γ
μq to the

constituents [34].
In holographic QCD a hadron is described by a

z-dependent wave function which includes the scale
dependence and a plane wave in physical space represent-
ing a free hadron: ΦPðx; zÞ ¼ eiP·xΦðzÞ. The physical
incoming electromagnetic probe propagates in AdS accord-
ing to

Aμðx; zÞ ¼ eiq·xVðq2; zÞϵμðqÞ; Az ¼ 0; ð2Þ

where the bulk-to-boundary propagator Vðq2; zÞ has the
boundary conditions Vðq2 ¼ 0; zÞ ¼ Vðq2; z ¼ 0Þ ¼ 1.
Extracting the factor ð2πÞ4δ4ðP0 − P − qÞ from momentum
conservation in Eq. (1) we find [44] (Q2 ¼ −q2)

FðQ2Þ ¼
Z

dz
z3

VðQ2; zÞΦ2
τðzÞ; ð3Þ

where FðQ2 ¼ 0Þ ¼ 0. At small values of z ∼ 1=Q, where
the EM current VðQ2; zÞ has its important support, the
hadron modes scale as Φτ ∼ zτ, and the hard-scattering
power-scaling behavior [47,48] is recovered [46],

FðQ2Þ →
!
1

Q2

"
τ−1

: ð4Þ

In our approach the twist-τ hadronic wave functions are

ΦτðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Γðτ − 1Þ

s

κτ−1zτe−κ
2z2=2; ð5Þ

and the EM current VðQ2; zÞ is the solution of the wave
equation of a vector current in AdS5, with modifications
determined by the superconformal algebra, which are the
same as used in spectroscopy. It has the integral represen-
tation [62]

VðQ2; zÞ ¼ κ2z2
Z

1

0

dx
ð1 − xÞ2

xQ
2=4κ2e−κ

2z2x=ð1−xÞ: ð6Þ

Since the integrand in Eq. (6) contains the generating
function of the associated Laguerre polynomials Lk

n, it can
also be expressed as a sum of poles [62],

VðQ2; zÞ ¼ 4κ4z2
X∞

n¼0

L1
nðκ2z2Þ

M2
n þQ2

; ð7Þ

with the poles located at −Q2 ¼ M2
n ¼ 4κ2ðnþ 1Þ. To

compare with the data, one has, however, to shift the poles
in Eq. (7) to their physical location at the vector meson
masses [34]

−Q2 ¼ M2
ρn ¼ 4κ2

$
nþ 1

2

%
; n ¼ 0; 1; 2;…: ð8Þ

The ground-state mass of the ρ meson, Mρn¼0
≡Mρ ¼

0.775 GeV, gives the value of κ ¼ Mρ=
ffiffiffi
2

p
¼ 0.548 GeV,

where κ ¼
ffiffiffi
λ

p
is the emerging confinement scale [37].

Substituting (5) and (6) in Eq. (3), and shifting the vector
meson poles to their physical locations using (8), we find
for integer twist τ ¼ N the result [34,63,64]

FτðQ2Þ ¼ 1&
1þ Q2

M2
ρn¼0

'&
1þ Q2

M2
ρn¼1

'
% % %

&
1þ Q2

M2
ρn¼τ−2

' ; ð9Þ

expressed as a product of τ − 1 poles along the vector
meson Regge radial trajectory in terms of the ρ vector
meson mass Mρ and its radial excitations. For a pion, for
example, the leading twist is 2, and thus the corresponding
FF has a monopole form [64]. It is interesting to notice that
even if an infinite number of poles appears in the dressed
EM current (7), for a twist τ-bound state the corresponding
FF is given by a product of τ − 1 poles, thus establishing a
precise relation between the twist of each Fock state in a
hadron and the number of poles in the hadron FF. As
expected from this construction, the analytical form (9)
incorporates the correct hard-scattering twist-scaling
behavior at high virtuality and also vector meson domi-
nance at low energy [65].
In LF quantization [66], a hadron state jHi is a super-

position of an infinite number of Fock components jNi,
jHi ¼

P
NψN=HjNi, where ψN=H represents the N-

component LFWF with normalization
P

N jψN=Hj2 ¼ 1.
Thus the FF is given by the sum over an infinite number
of terms

FHðQ2Þ ¼
X

τ

PτFτðQ2Þ; ð10Þ

where Fτ is given by Eq. (9). Since the charge is a diagonal
operator, only amplitudes with an identical number of
components in the initial and final states contribute to the
sum in Eq. (10). Normalization at Q2 ¼ 0, FHð0Þ ¼ 1,
Fτð0Þ ¼ 1 [Eq. (9)] implies that

P
τPτ ¼ 1 if all possible

states are included.
Conventionally, the analysis of FFs is based on the

generalized vector meson dominance model where the EM
form factor is written as a single-pole expansion

FHðQ2Þ ¼
X

λ

Cλ
M2

λ

M2
λ −Q2

; ð11Þ

with a dominant contribution from the ρ vector meson plus
contributions from the higher resonances ρ0, ρ00, ρ000,…, etc.
[67]. The comparison of Eqs. (10) and (11) allows us to
determine the coefficients Cλ in terms of the probabilities
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local coupling of the quark current Jμ ¼
P

qeqq̄γ
μq to the

constituents [34].
In holographic QCD a hadron is described by a

z-dependent wave function which includes the scale
dependence and a plane wave in physical space represent-
ing a free hadron: ΦPðx; zÞ ¼ eiP·xΦðzÞ. The physical
incoming electromagnetic probe propagates in AdS accord-
ing to

Aμðx; zÞ ¼ eiq·xVðq2; zÞϵμðqÞ; Az ¼ 0; ð2Þ

where the bulk-to-boundary propagator Vðq2; zÞ has the
boundary conditions Vðq2 ¼ 0; zÞ ¼ Vðq2; z ¼ 0Þ ¼ 1.
Extracting the factor ð2πÞ4δ4ðP0 − P − qÞ from momentum
conservation in Eq. (1) we find [44] (Q2 ¼ −q2)
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Z

dz
z3

VðQ2; zÞΦ2
τðzÞ; ð3Þ

where FðQ2 ¼ 0Þ ¼ 0. At small values of z ∼ 1=Q, where
the EM current VðQ2; zÞ has its important support, the
hadron modes scale as Φτ ∼ zτ, and the hard-scattering
power-scaling behavior [47,48] is recovered [46],
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"
τ−1

: ð4Þ

In our approach the twist-τ hadronic wave functions are

ΦτðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Γðτ − 1Þ

s

κτ−1zτe−κ
2z2=2; ð5Þ

and the EM current VðQ2; zÞ is the solution of the wave
equation of a vector current in AdS5, with modifications
determined by the superconformal algebra, which are the
same as used in spectroscopy. It has the integral represen-
tation [62]

VðQ2; zÞ ¼ κ2z2
Z

1

0

dx
ð1 − xÞ2

xQ
2=4κ2e−κ

2z2x=ð1−xÞ: ð6Þ

Since the integrand in Eq. (6) contains the generating
function of the associated Laguerre polynomials Lk

n, it can
also be expressed as a sum of poles [62],

VðQ2; zÞ ¼ 4κ4z2
X∞

n¼0

L1
nðκ2z2Þ

M2
n þQ2

; ð7Þ

with the poles located at −Q2 ¼ M2
n ¼ 4κ2ðnþ 1Þ. To

compare with the data, one has, however, to shift the poles
in Eq. (7) to their physical location at the vector meson
masses [34]

−Q2 ¼ M2
ρn ¼ 4κ2

$
nþ 1

2

%
; n ¼ 0; 1; 2;…: ð8Þ

The ground-state mass of the ρ meson, Mρn¼0
≡Mρ ¼

0.775 GeV, gives the value of κ ¼ Mρ=
ffiffiffi
2

p
¼ 0.548 GeV,

where κ ¼
ffiffiffi
λ

p
is the emerging confinement scale [37].

Substituting (5) and (6) in Eq. (3), and shifting the vector
meson poles to their physical locations using (8), we find
for integer twist τ ¼ N the result [34,63,64]

FτðQ2Þ ¼ 1&
1þ Q2

M2
ρn¼0
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1þ Q2

M2
ρn¼1

'
% % %

&
1þ Q2

M2
ρn¼τ−2
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expressed as a product of τ − 1 poles along the vector
meson Regge radial trajectory in terms of the ρ vector
meson mass Mρ and its radial excitations. For a pion, for
example, the leading twist is 2, and thus the corresponding
FF has a monopole form [64]. It is interesting to notice that
even if an infinite number of poles appears in the dressed
EM current (7), for a twist τ-bound state the corresponding
FF is given by a product of τ − 1 poles, thus establishing a
precise relation between the twist of each Fock state in a
hadron and the number of poles in the hadron FF. As
expected from this construction, the analytical form (9)
incorporates the correct hard-scattering twist-scaling
behavior at high virtuality and also vector meson domi-
nance at low energy [65].
In LF quantization [66], a hadron state jHi is a super-

position of an infinite number of Fock components jNi,
jHi ¼

P
NψN=HjNi, where ψN=H represents the N-

component LFWF with normalization
P

N jψN=Hj2 ¼ 1.
Thus the FF is given by the sum over an infinite number
of terms

FHðQ2Þ ¼
X

τ

PτFτðQ2Þ; ð10Þ

where Fτ is given by Eq. (9). Since the charge is a diagonal
operator, only amplitudes with an identical number of
components in the initial and final states contribute to the
sum in Eq. (10). Normalization at Q2 ¼ 0, FHð0Þ ¼ 1,
Fτð0Þ ¼ 1 [Eq. (9)] implies that

P
τPτ ¼ 1 if all possible

states are included.
Conventionally, the analysis of FFs is based on the

generalized vector meson dominance model where the EM
form factor is written as a single-pole expansion

FHðQ2Þ ¼
X

λ

Cλ
M2

λ

M2
λ −Q2

; ð11Þ

with a dominant contribution from the ρ vector meson plus
contributions from the higher resonances ρ0, ρ00, ρ000,…, etc.
[67]. The comparison of Eqs. (10) and (11) allows us to
determine the coefficients Cλ in terms of the probabilities
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local coupling of the quark current Jμ ¼
P

qeqq̄γ
μq to the

constituents [34].
In holographic QCD a hadron is described by a

z-dependent wave function which includes the scale
dependence and a plane wave in physical space represent-
ing a free hadron: ΦPðx; zÞ ¼ eiP·xΦðzÞ. The physical
incoming electromagnetic probe propagates in AdS accord-
ing to

Aμðx; zÞ ¼ eiq·xVðq2; zÞϵμðqÞ; Az ¼ 0; ð2Þ

where the bulk-to-boundary propagator Vðq2; zÞ has the
boundary conditions Vðq2 ¼ 0; zÞ ¼ Vðq2; z ¼ 0Þ ¼ 1.
Extracting the factor ð2πÞ4δ4ðP0 − P − qÞ from momentum
conservation in Eq. (1) we find [44] (Q2 ¼ −q2)

FðQ2Þ ¼
Z

dz
z3

VðQ2; zÞΦ2
τðzÞ; ð3Þ

where FðQ2 ¼ 0Þ ¼ 0. At small values of z ∼ 1=Q, where
the EM current VðQ2; zÞ has its important support, the
hadron modes scale as Φτ ∼ zτ, and the hard-scattering
power-scaling behavior [47,48] is recovered [46],

FðQ2Þ →
!
1

Q2

"
τ−1

: ð4Þ

In our approach the twist-τ hadronic wave functions are

ΦτðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Γðτ − 1Þ

s

κτ−1zτe−κ
2z2=2; ð5Þ

and the EM current VðQ2; zÞ is the solution of the wave
equation of a vector current in AdS5, with modifications
determined by the superconformal algebra, which are the
same as used in spectroscopy. It has the integral represen-
tation [62]

VðQ2; zÞ ¼ κ2z2
Z

1

0

dx
ð1 − xÞ2

xQ
2=4κ2e−κ

2z2x=ð1−xÞ: ð6Þ

Since the integrand in Eq. (6) contains the generating
function of the associated Laguerre polynomials Lk

n, it can
also be expressed as a sum of poles [62],

VðQ2; zÞ ¼ 4κ4z2
X∞

n¼0

L1
nðκ2z2Þ

M2
n þQ2

; ð7Þ

with the poles located at −Q2 ¼ M2
n ¼ 4κ2ðnþ 1Þ. To

compare with the data, one has, however, to shift the poles
in Eq. (7) to their physical location at the vector meson
masses [34]

−Q2 ¼ M2
ρn ¼ 4κ2

$
nþ 1

2

%
; n ¼ 0; 1; 2;…: ð8Þ

The ground-state mass of the ρ meson, Mρn¼0
≡Mρ ¼

0.775 GeV, gives the value of κ ¼ Mρ=
ffiffiffi
2

p
¼ 0.548 GeV,

where κ ¼
ffiffiffi
λ

p
is the emerging confinement scale [37].

Substituting (5) and (6) in Eq. (3), and shifting the vector
meson poles to their physical locations using (8), we find
for integer twist τ ¼ N the result [34,63,64]

FτðQ2Þ ¼ 1&
1þ Q2

M2
ρn¼0

'&
1þ Q2

M2
ρn¼1

'
% % %

&
1þ Q2

M2
ρn¼τ−2

' ; ð9Þ

expressed as a product of τ − 1 poles along the vector
meson Regge radial trajectory in terms of the ρ vector
meson mass Mρ and its radial excitations. For a pion, for
example, the leading twist is 2, and thus the corresponding
FF has a monopole form [64]. It is interesting to notice that
even if an infinite number of poles appears in the dressed
EM current (7), for a twist τ-bound state the corresponding
FF is given by a product of τ − 1 poles, thus establishing a
precise relation between the twist of each Fock state in a
hadron and the number of poles in the hadron FF. As
expected from this construction, the analytical form (9)
incorporates the correct hard-scattering twist-scaling
behavior at high virtuality and also vector meson domi-
nance at low energy [65].
In LF quantization [66], a hadron state jHi is a super-

position of an infinite number of Fock components jNi,
jHi ¼

P
NψN=HjNi, where ψN=H represents the N-

component LFWF with normalization
P

N jψN=Hj2 ¼ 1.
Thus the FF is given by the sum over an infinite number
of terms

FHðQ2Þ ¼
X

τ

PτFτðQ2Þ; ð10Þ

where Fτ is given by Eq. (9). Since the charge is a diagonal
operator, only amplitudes with an identical number of
components in the initial and final states contribute to the
sum in Eq. (10). Normalization at Q2 ¼ 0, FHð0Þ ¼ 1,
Fτð0Þ ¼ 1 [Eq. (9)] implies that

P
τPτ ¼ 1 if all possible

states are included.
Conventionally, the analysis of FFs is based on the

generalized vector meson dominance model where the EM
form factor is written as a single-pole expansion

FHðQ2Þ ¼
X

λ

Cλ
M2

λ

M2
λ −Q2

; ð11Þ

with a dominant contribution from the ρ vector meson plus
contributions from the higher resonances ρ0, ρ00, ρ000,…, etc.
[67]. The comparison of Eqs. (10) and (11) allows us to
determine the coefficients Cλ in terms of the probabilities
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compare with LFHQCD spectral formula M2
n = 42
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⌘

corresponding to the Regge trajectory J = L = 1
ρ meson trajectory is J = L + 1 = 1 shift poles to local coupling of the quark current Jμ ¼

P
qeqq̄γ

μq to the
constituents [34].
In holographic QCD a hadron is described by a

z-dependent wave function which includes the scale
dependence and a plane wave in physical space represent-
ing a free hadron: ΦPðx; zÞ ¼ eiP·xΦðzÞ. The physical
incoming electromagnetic probe propagates in AdS accord-
ing to

Aμðx; zÞ ¼ eiq·xVðq2; zÞϵμðqÞ; Az ¼ 0; ð2Þ

where the bulk-to-boundary propagator Vðq2; zÞ has the
boundary conditions Vðq2 ¼ 0; zÞ ¼ Vðq2; z ¼ 0Þ ¼ 1.
Extracting the factor ð2πÞ4δ4ðP0 − P − qÞ from momentum
conservation in Eq. (1) we find [44] (Q2 ¼ −q2)

FðQ2Þ ¼
Z

dz
z3

VðQ2; zÞΦ2
τðzÞ; ð3Þ

where FðQ2 ¼ 0Þ ¼ 0. At small values of z ∼ 1=Q, where
the EM current VðQ2; zÞ has its important support, the
hadron modes scale as Φτ ∼ zτ, and the hard-scattering
power-scaling behavior [47,48] is recovered [46],

FðQ2Þ →
!
1

Q2

"
τ−1

: ð4Þ

In our approach the twist-τ hadronic wave functions are

ΦτðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Γðτ − 1Þ

s

κτ−1zτe−κ
2z2=2; ð5Þ

and the EM current VðQ2; zÞ is the solution of the wave
equation of a vector current in AdS5, with modifications
determined by the superconformal algebra, which are the
same as used in spectroscopy. It has the integral represen-
tation [62]

VðQ2; zÞ ¼ κ2z2
Z

1

0

dx
ð1 − xÞ2

xQ
2=4κ2e−κ

2z2x=ð1−xÞ: ð6Þ

Since the integrand in Eq. (6) contains the generating
function of the associated Laguerre polynomials Lk

n, it can
also be expressed as a sum of poles [62],

VðQ2; zÞ ¼ 4κ4z2
X∞

n¼0

L1
nðκ2z2Þ

M2
n þQ2

; ð7Þ

with the poles located at −Q2 ¼ M2
n ¼ 4κ2ðnþ 1Þ. To

compare with the data, one has, however, to shift the poles
in Eq. (7) to their physical location at the vector meson
masses [34]

−Q2 ¼ M2
ρn ¼ 4κ2

$
nþ 1

2

%
; n ¼ 0; 1; 2;…: ð8Þ

The ground-state mass of the ρ meson, Mρn¼0
≡Mρ ¼

0.775 GeV, gives the value of κ ¼ Mρ=
ffiffiffi
2

p
¼ 0.548 GeV,

where κ ¼
ffiffiffi
λ

p
is the emerging confinement scale [37].

Substituting (5) and (6) in Eq. (3), and shifting the vector
meson poles to their physical locations using (8), we find
for integer twist τ ¼ N the result [34,63,64]
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1þ Q2

M2
ρn¼0
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ρn¼1
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expressed as a product of τ − 1 poles along the vector
meson Regge radial trajectory in terms of the ρ vector
meson mass Mρ and its radial excitations. For a pion, for
example, the leading twist is 2, and thus the corresponding
FF has a monopole form [64]. It is interesting to notice that
even if an infinite number of poles appears in the dressed
EM current (7), for a twist τ-bound state the corresponding
FF is given by a product of τ − 1 poles, thus establishing a
precise relation between the twist of each Fock state in a
hadron and the number of poles in the hadron FF. As
expected from this construction, the analytical form (9)
incorporates the correct hard-scattering twist-scaling
behavior at high virtuality and also vector meson domi-
nance at low energy [65].
In LF quantization [66], a hadron state jHi is a super-

position of an infinite number of Fock components jNi,
jHi ¼

P
NψN=HjNi, where ψN=H represents the N-

component LFWF with normalization
P

N jψN=Hj2 ¼ 1.
Thus the FF is given by the sum over an infinite number
of terms

FHðQ2Þ ¼
X

τ

PτFτðQ2Þ; ð10Þ

where Fτ is given by Eq. (9). Since the charge is a diagonal
operator, only amplitudes with an identical number of
components in the initial and final states contribute to the
sum in Eq. (10). Normalization at Q2 ¼ 0, FHð0Þ ¼ 1,
Fτð0Þ ¼ 1 [Eq. (9)] implies that

P
τPτ ¼ 1 if all possible

states are included.
Conventionally, the analysis of FFs is based on the

generalized vector meson dominance model where the EM
form factor is written as a single-pole expansion

FHðQ2Þ ¼
X

λ

Cλ
M2

λ

M2
λ −Q2

; ð11Þ

with a dominant contribution from the ρ vector meson plus
contributions from the higher resonances ρ0, ρ00, ρ000,…, etc.
[67]. The comparison of Eqs. (10) and (11) allows us to
determine the coefficients Cλ in terms of the probabilities
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local coupling of the quark current Jμ ¼
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μq to the
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In holographic QCD a hadron is described by a

z-dependent wave function which includes the scale
dependence and a plane wave in physical space represent-
ing a free hadron: ΦPðx; zÞ ¼ eiP·xΦðzÞ. The physical
incoming electromagnetic probe propagates in AdS accord-
ing to

Aμðx; zÞ ¼ eiq·xVðq2; zÞϵμðqÞ; Az ¼ 0; ð2Þ

where the bulk-to-boundary propagator Vðq2; zÞ has the
boundary conditions Vðq2 ¼ 0; zÞ ¼ Vðq2; z ¼ 0Þ ¼ 1.
Extracting the factor ð2πÞ4δ4ðP0 − P − qÞ from momentum
conservation in Eq. (1) we find [44] (Q2 ¼ −q2)

FðQ2Þ ¼
Z

dz
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VðQ2; zÞΦ2
τðzÞ; ð3Þ

where FðQ2 ¼ 0Þ ¼ 0. At small values of z ∼ 1=Q, where
the EM current VðQ2; zÞ has its important support, the
hadron modes scale as Φτ ∼ zτ, and the hard-scattering
power-scaling behavior [47,48] is recovered [46],
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In our approach the twist-τ hadronic wave functions are

ΦτðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Γðτ − 1Þ

s

κτ−1zτe−κ
2z2=2; ð5Þ

and the EM current VðQ2; zÞ is the solution of the wave
equation of a vector current in AdS5, with modifications
determined by the superconformal algebra, which are the
same as used in spectroscopy. It has the integral represen-
tation [62]

VðQ2; zÞ ¼ κ2z2
Z

1

0

dx
ð1 − xÞ2

xQ
2=4κ2e−κ
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Since the integrand in Eq. (6) contains the generating
function of the associated Laguerre polynomials Lk

n, it can
also be expressed as a sum of poles [62],
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with the poles located at −Q2 ¼ M2
n ¼ 4κ2ðnþ 1Þ. To

compare with the data, one has, however, to shift the poles
in Eq. (7) to their physical location at the vector meson
masses [34]
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The ground-state mass of the ρ meson, Mρn¼0
≡Mρ ¼

0.775 GeV, gives the value of κ ¼ Mρ=
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2

p
¼ 0.548 GeV,

where κ ¼
ffiffiffi
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is the emerging confinement scale [37].

Substituting (5) and (6) in Eq. (3), and shifting the vector
meson poles to their physical locations using (8), we find
for integer twist τ ¼ N the result [34,63,64]
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expressed as a product of τ − 1 poles along the vector
meson Regge radial trajectory in terms of the ρ vector
meson mass Mρ and its radial excitations. For a pion, for
example, the leading twist is 2, and thus the corresponding
FF has a monopole form [64]. It is interesting to notice that
even if an infinite number of poles appears in the dressed
EM current (7), for a twist τ-bound state the corresponding
FF is given by a product of τ − 1 poles, thus establishing a
precise relation between the twist of each Fock state in a
hadron and the number of poles in the hadron FF. As
expected from this construction, the analytical form (9)
incorporates the correct hard-scattering twist-scaling
behavior at high virtuality and also vector meson domi-
nance at low energy [65].
In LF quantization [66], a hadron state jHi is a super-

position of an infinite number of Fock components jNi,
jHi ¼

P
NψN=HjNi, where ψN=H represents the N-

component LFWF with normalization
P

N jψN=Hj2 ¼ 1.
Thus the FF is given by the sum over an infinite number
of terms

FHðQ2Þ ¼
X

τ

PτFτðQ2Þ; ð10Þ

where Fτ is given by Eq. (9). Since the charge is a diagonal
operator, only amplitudes with an identical number of
components in the initial and final states contribute to the
sum in Eq. (10). Normalization at Q2 ¼ 0, FHð0Þ ¼ 1,
Fτð0Þ ¼ 1 [Eq. (9)] implies that

P
τPτ ¼ 1 if all possible

states are included.
Conventionally, the analysis of FFs is based on the

generalized vector meson dominance model where the EM
form factor is written as a single-pole expansion

FHðQ2Þ ¼
X

λ

Cλ
M2

λ
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λ −Q2

; ð11Þ

with a dominant contribution from the ρ vector meson plus
contributions from the higher resonances ρ0, ρ00, ρ000,…, etc.
[67]. The comparison of Eqs. (10) and (11) allows us to
determine the coefficients Cλ in terms of the probabilities
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The coupling of an extermal EM field 
propagating in AdS space to a nucleon mode

EM Form Factors in Holographic QCD

Dirac form factor in physical spacetime

Nucleon wave function

Pτ for each Fock state and the vector meson masses M2
ρn .

The advantage, however, of the holographic approach is
that no fine-tuning of the coefficients Cλ is necessary since
the correct scaling is incorporated from the onset; the
expansion coefficients Pτ then have a clear physical
meaning in terms of the probability of each Fock
component.
The expression for the FF (9) contains a cluster decom-

position: the hadronic FF factorizes into the i ¼ N − 1
product of twist-2 monopole FFs evaluated at different
scales [52] (N is the total number of constituents of a given
Fock state),

FiðQ2Þ ¼ Fi¼2ðQ2ÞFi¼2

!
1

3
Q2

"
$ $ $Fi¼2

!
1

2i − 1
Q2

"
:

ð12Þ

In the case of a nucleon, for example, the Dirac FF
of the twist-3 valence quark-diquark state F1ðQ2Þ ¼
Fi¼2ðQ2ÞFi¼2ð13Q

2Þ corresponds to the factorization of
the proton FF as a product of a pointlike quark and a
diquark-cluster FF. The identical twist-3 expression from
Eq. (9) is described by the product of two poles consistent
with leading-twist scaling, Q4F1ðQ2Þ ∼ const, at high
momentum transfer. As we show below, the Pauli form
factor F2 is given instead by the i ¼ N þ 1 product of
dipoles, and thus the leading-twist scaling Q6F2ðQ2Þ∼
const.

III. NUCLEON FORM FACTORS
IN HOLOGRAPHIC QCD

The nucleon spin-nonflip EM FF follows from the
expression [34]

Z
d4xdz

ffiffiffi
g

p
Ψ̄P0ðx; zÞeMA ΓAAMðx; zÞΨPðx; zÞ

∼ ð2πÞ4δ4ðP0 − P − qÞϵμūðP0ÞγμF1ðq2ÞuðPÞ; ð13Þ

where the curved space indices in AdS5 space are M, N,
and tangent indices in flat five-dimensional space are A, B.
The ΓA are Dirac gamma matrices which obey the usual
anticommutation relation fΓA;ΓBg ¼ 2ηAB and are given
by ΓA ¼ ðγμ;−iγ5Þ, and the eMA are the inverse vielbein,
eMA ¼ ðzRÞδ

M
A . The expression on the right-hand side repre-

sents the Dirac EM form factor in physical space-time. It is
the EM spin-conserving matrix element of the quark
current Jμ ¼

P
qeqq̄γ

μq [34].
In the higher-dimensional gravity theory nucleons are

described by plus and minus wave functions Ψþ and Ψ−
corresponding to the positive and negative chirality of the
nucleon [33,34]

ΨþðzÞ ∼ zτþ1=2e−κ
2z2=2; Ψ−ðzÞ ∼ zτþ3=2e−κ

2z2=2; ð14Þ

which represent, respectively, a positive chirality compo-
nent with orbital angular momentum L ¼ 0 and a negative
chirality component with L ¼ 1, and have identical nor-
malization. The spin-nonflip nucleon elastic form factor F1

follows from (13) and is given in terms of Ψþ and Ψ− [34],

FN
1 ðQ2Þ ¼

X

&
gN&

Z
dz
z4

VðQ2; zÞΨ2
&ðzÞ: ð15Þ

The effective charges g& have to be determined by the
specific spin-flavor structure which is not contained in the
holographic principle. For example, in the SU(6) symmetry
approximation the effective charges are computed by the
sum of the EM charges of the struck quark convoluted by
the corresponding probability for the L ¼ 0 and L ¼ 1
components Ψþ and Ψ− respectively. The result is [34]

gpþ ¼ 1; gp− ¼ 0; gnþ ¼ −
1

3
; gn− ¼ 1

3
: ð16Þ

Notice that there is an additional scaling power in (15), as
compared with Eq. (3), but this is compensated by the
additional z1=2 factor in the twist-τ nucleon AdS wave
functions (14).
Since the structure of (13) can only account for F1, one

should therefore include an effective gauge-invariant inter-
action in the five-dimensional gravity action to describe the
spin-flip amplitude [68]. The nucleon spin-flip EM FF
follows from the nonminimal term
Z

d4xdz
ffiffiffi
g

p
Ψ̄P0ðx;zÞeMA eNB ½ΓA;ΓB(FMNðx;zÞΨPðx;zÞ

∼ ð2πÞ4δ4ðP0 −P−qÞϵμūðP0Þσ
μνqν
2MN

F2ðq2ÞuðPÞ; ð17Þ

where the expression on the right-hand side represents the
Pauli EM form factor in physical space-time. It corresponds
to the EM spin-flip matrix element of the quark current
Jμ ¼

P
qeqq̄γ

μq [34]. Since (17) represents an effective
interaction, its overall strength has to be fixed to the static
values of the anomalous magnetic moments χp and
χn [34,68].
Extracting the factor ð2πÞ4δ4ðP0 − P − qÞ from momen-

tum conservation in (17) we find [68]

FN
2 ðQ2Þ ¼ χN

Z
dz
z3

ΨþðzÞVðQ2; zÞΨ−ðzÞ; ð18Þ

where N ¼ p, n. Comparing the spin-flip result (18) with
the with the spin-nonflip FF (15), it becomes clear that there
is an important difference between the scaling powers of z
in both expressions. This difference arises from two
sources: first, the appearance of one vielbein in (13), but
two in Eq. (17), and secondly, the appearance of an
additional power of z in the product of the two wave
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μνqν
2MN

F2ðq2ÞuðPÞ; ð17Þ

where the expression on the right-hand side represents the
Pauli EM form factor in physical space-time. It corresponds
to the EM spin-flip matrix element of the quark current
Jμ ¼

P
qeqq̄γ

μq [34]. Since (17) represents an effective
interaction, its overall strength has to be fixed to the static
values of the anomalous magnetic moments χp and
χn [34,68].
Extracting the factor ð2πÞ4δ4ðP0 − P − qÞ from momen-

tum conservation in (17) we find [68]

FN
2 ðQ2Þ ¼ χN

Z
dz
z3

ΨþðzÞVðQ2; zÞΨ−ðzÞ; ð18Þ

where N ¼ p, n. Comparing the spin-flip result (18) with
the with the spin-nonflip FF (15), it becomes clear that there
is an important difference between the scaling powers of z
in both expressions. This difference arises from two
sources: first, the appearance of one vielbein in (13), but
two in Eq. (17), and secondly, the appearance of an
additional power of z in the product of the two wave
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Pτ for each Fock state and the vector meson masses M2
ρn .

The advantage, however, of the holographic approach is
that no fine-tuning of the coefficients Cλ is necessary since
the correct scaling is incorporated from the onset; the
expansion coefficients Pτ then have a clear physical
meaning in terms of the probability of each Fock
component.
The expression for the FF (9) contains a cluster decom-

position: the hadronic FF factorizes into the i ¼ N − 1
product of twist-2 monopole FFs evaluated at different
scales [52] (N is the total number of constituents of a given
Fock state),

FiðQ2Þ ¼ Fi¼2ðQ2ÞFi¼2

!
1

3
Q2

"
$ $ $Fi¼2

!
1

2i − 1
Q2

"
:

ð12Þ

In the case of a nucleon, for example, the Dirac FF
of the twist-3 valence quark-diquark state F1ðQ2Þ ¼
Fi¼2ðQ2ÞFi¼2ð13Q

2Þ corresponds to the factorization of
the proton FF as a product of a pointlike quark and a
diquark-cluster FF. The identical twist-3 expression from
Eq. (9) is described by the product of two poles consistent
with leading-twist scaling, Q4F1ðQ2Þ ∼ const, at high
momentum transfer. As we show below, the Pauli form
factor F2 is given instead by the i ¼ N þ 1 product of
dipoles, and thus the leading-twist scaling Q6F2ðQ2Þ∼
const.

III. NUCLEON FORM FACTORS
IN HOLOGRAPHIC QCD

The nucleon spin-nonflip EM FF follows from the
expression [34]

Z
d4xdz

ffiffiffi
g

p
Ψ̄P0ðx; zÞeMA ΓAAMðx; zÞΨPðx; zÞ

∼ ð2πÞ4δ4ðP0 − P − qÞϵμūðP0ÞγμF1ðq2ÞuðPÞ; ð13Þ

where the curved space indices in AdS5 space are M, N,
and tangent indices in flat five-dimensional space are A, B.
The ΓA are Dirac gamma matrices which obey the usual
anticommutation relation fΓA;ΓBg ¼ 2ηAB and are given
by ΓA ¼ ðγμ;−iγ5Þ, and the eMA are the inverse vielbein,
eMA ¼ ðzRÞδ

M
A . The expression on the right-hand side repre-

sents the Dirac EM form factor in physical space-time. It is
the EM spin-conserving matrix element of the quark
current Jμ ¼

P
qeqq̄γ

μq [34].
In the higher-dimensional gravity theory nucleons are

described by plus and minus wave functions Ψþ and Ψ−
corresponding to the positive and negative chirality of the
nucleon [33,34]

ΨþðzÞ ∼ zτþ1=2e−κ
2z2=2; Ψ−ðzÞ ∼ zτþ3=2e−κ

2z2=2; ð14Þ

which represent, respectively, a positive chirality compo-
nent with orbital angular momentum L ¼ 0 and a negative
chirality component with L ¼ 1, and have identical nor-
malization. The spin-nonflip nucleon elastic form factor F1

follows from (13) and is given in terms of Ψþ and Ψ− [34],

FN
1 ðQ2Þ ¼

X

&
gN&

Z
dz
z4

VðQ2; zÞΨ2
&ðzÞ: ð15Þ

The effective charges g& have to be determined by the
specific spin-flavor structure which is not contained in the
holographic principle. For example, in the SU(6) symmetry
approximation the effective charges are computed by the
sum of the EM charges of the struck quark convoluted by
the corresponding probability for the L ¼ 0 and L ¼ 1
components Ψþ and Ψ− respectively. The result is [34]

gpþ ¼ 1; gp− ¼ 0; gnþ ¼ −
1

3
; gn− ¼ 1

3
: ð16Þ

Notice that there is an additional scaling power in (15), as
compared with Eq. (3), but this is compensated by the
additional z1=2 factor in the twist-τ nucleon AdS wave
functions (14).
Since the structure of (13) can only account for F1, one

should therefore include an effective gauge-invariant inter-
action in the five-dimensional gravity action to describe the
spin-flip amplitude [68]. The nucleon spin-flip EM FF
follows from the nonminimal term
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Ψ̄P0ðx;zÞeMA eNB ½ΓA;ΓB(FMNðx;zÞΨPðx;zÞ
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2MN
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where the expression on the right-hand side represents the
Pauli EM form factor in physical space-time. It corresponds
to the EM spin-flip matrix element of the quark current
Jμ ¼

P
qeqq̄γ

μq [34]. Since (17) represents an effective
interaction, its overall strength has to be fixed to the static
values of the anomalous magnetic moments χp and
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Extracting the factor ð2πÞ4δ4ðP0 − P − qÞ from momen-
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where N ¼ p, n. Comparing the spin-flip result (18) with
the with the spin-nonflip FF (15), it becomes clear that there
is an important difference between the scaling powers of z
in both expressions. This difference arises from two
sources: first, the appearance of one vielbein in (13), but
two in Eq. (17), and secondly, the appearance of an
additional power of z in the product of the two wave
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that no fine-tuning of the coefficients Cλ is necessary since
the correct scaling is incorporated from the onset; the
expansion coefficients Pτ then have a clear physical
meaning in terms of the probability of each Fock
component.
The expression for the FF (9) contains a cluster decom-
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the proton FF as a product of a pointlike quark and a
diquark-cluster FF. The identical twist-3 expression from
Eq. (9) is described by the product of two poles consistent
with leading-twist scaling, Q4F1ðQ2Þ ∼ const, at high
momentum transfer. As we show below, the Pauli form
factor F2 is given instead by the i ¼ N þ 1 product of
dipoles, and thus the leading-twist scaling Q6F2ðQ2Þ∼
const.
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current Jμ ¼
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corresponding to the positive and negative chirality of the
nucleon [33,34]

ΨþðzÞ ∼ zτþ1=2e−κ
2z2=2; Ψ−ðzÞ ∼ zτþ3=2e−κ

2z2=2; ð14Þ

which represent, respectively, a positive chirality compo-
nent with orbital angular momentum L ¼ 0 and a negative
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follows from (13) and is given in terms of Ψþ and Ψ− [34],
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The effective charges g& have to be determined by the
specific spin-flavor structure which is not contained in the
holographic principle. For example, in the SU(6) symmetry
approximation the effective charges are computed by the
sum of the EM charges of the struck quark convoluted by
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components Ψþ and Ψ− respectively. The result is [34]
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Notice that there is an additional scaling power in (15), as
compared with Eq. (3), but this is compensated by the
additional z1=2 factor in the twist-τ nucleon AdS wave
functions (14).
Since the structure of (13) can only account for F1, one

should therefore include an effective gauge-invariant inter-
action in the five-dimensional gravity action to describe the
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where the expression on the right-hand side represents the
Pauli EM form factor in physical space-time. It corresponds
to the EM spin-flip matrix element of the quark current
Jμ ¼

P
qeqq̄γ

μq [34]. Since (17) represents an effective
interaction, its overall strength has to be fixed to the static
values of the anomalous magnetic moments χp and
χn [34,68].
Extracting the factor ð2πÞ4δ4ðP0 − P − qÞ from momen-

tum conservation in (17) we find [68]

FN
2 ðQ2Þ ¼ χN

Z
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where N ¼ p, n. Comparing the spin-flip result (18) with
the with the spin-nonflip FF (15), it becomes clear that there
is an important difference between the scaling powers of z
in both expressions. This difference arises from two
sources: first, the appearance of one vielbein in (13), but
two in Eq. (17), and secondly, the appearance of an
additional power of z in the product of the two wave
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2
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For integer τ, it gives the pole structure:

GPDs and LFWFs [52,55]. Shifting the FF poles to their
physical location [56] does not modify the exclusive
counting rules, but modifies the slope and intercept of
the Regge trajectory, and hence the analytic structure of the
GPDs that incorporates the Regge behavior. As a result, the
x dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present context
up to a universal reparametrization function; therefore,
imposing further physically motivated constraints is
necessary.
Generalized parton distributions in LFHQCD.—In

LFHQCD, the FF for arbitrary twist τ is expressed in
terms of Gamma functions [28,52], an expression that can
be recast in terms of the Euler Beta function Bðu; vÞ as [29]

FτðtÞ ¼
1

Nτ
B
!
τ − 1;

1

2
−

t
4λ

"
; ð1Þ

where

Bðu; vÞ ¼
Z

1

0
dyyu−1ð1 − yÞv−1; ð2Þ

and Bðu; vÞ ¼ Bðv; uÞ ¼ ½ΓðuÞΓðvÞ=Γðuþ vÞ& with Nτ ¼ffiffiffi
π

p
½Γðτ − 1Þ=Γðτ − 1

2Þ&. For fixed u and large v, we have
Bðu; vÞ ∼ ΓðuÞv−u: we thus recover, for large Q2 ¼ −t, the
hard scattering scaling behavior [53,54]

FτðQ2Þ ∼
!

1

Q2

"
τ−1

: ð3Þ

In contrast with the GPD twist that is determined by the
quark-quark correlator, twist τ in (1) and (3) refers to
the number of constituents in a given Fock component in
the Fock expansion of the hadron state. It controls the short
distance behavior of the hadronic state and thus the power-
law asymptotic behavior (3).
For integer τ Eq. (1) generates the pole structure [52]

FτðQ2Þ ¼ 1

ð1þ Q2

M2
0

Þð1þ Q2

M2
1

Þ ' ' ' ð1þ Q2

M2
τ−2
Þ
; ð4Þ

with M2
n ¼ 4λðnþ 1

2Þ; n ¼ 0; 1; 2;…; τ − 2, corresponding
to the ρ vector meson and its radial excitations [28]. Notice
that the Beta function in (1) can be rewritten as B(τ − 1;
1 − αðtÞ) with Regge trajectory

αðtÞ ¼ t
4λ

þ 1

2
; ð5Þ

slope α0 ¼ 1=4λ and intercept αð0Þ ¼ 1
2. This is just the ρ

trajectory emerging from LFHQCD. The value of the
universal scale λ is fixed from the ρ mass:

ffiffiffi
λ

p
¼ κ ¼

mρ=
ffiffiffi
2

p
¼ 0.548 GeV [28,57].

Notice that the form factor (1) can be expressed as a
Veneziano amplitude [58] B(1 − αðsÞ; 1 − αðtÞ), where the
s-channel dependence is replaced by a fixed pole,
1 − αðsÞ → τ − 1, allowed by unitarity constraints, since
no resonances are formed in the s channel [59–61]
It will be useful to rewrite (1) using the reparametrization

invariance of the Euler Beta function (2) and thus transform
the integral representation of the form factor (1) into the
invariant form

FτðtÞ ¼
1

Nτ

Z
1

0
dxw0ðxÞwðxÞ−t=4λ−1

2½1 − wðxÞ&τ−2; ð6Þ

if wðxÞ is a monotonically increasing function with fixed
values at the integration limits given by the constraints

wð0Þ ¼ 0; wð1Þ ¼ 1; w0ðxÞ ≥ 0; ð7Þ

with x ∈ ½0; 1&. Any function wðxÞ that satisfies the con-
straints (7) will give the same result for the form factor.
Writing the flavor FF in terms of the valence GPD

FqðtÞ ¼
R
1
0 dxH

q
vðx; tÞ at zero skewness, Hqðx; tÞ≡

Hqðx; ξ ¼ 0; tÞ, we obtain

Hqðx; tÞ ¼ 1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞeðt=4λÞ log½1=wðxÞ&

¼ qτðxÞ exp½tfðxÞ&; ð8Þ

where the PDF qτðxÞ and the profile function fðxÞ

qτðxÞ ¼
1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞ; ð9Þ

fðxÞ ¼ 1

4λ
log

!
1

wðxÞ

"
; ð10Þ

are expressed in terms of the function wðxÞ fulfilling
conditions (7).
If, for x ∼ 0, wðxÞ behaves as wðxÞ ∼ x, we find the

t dependence

Hq
vðx; tÞ ∼ x−t=4λqvðxÞ; ð11Þ

which is the Regge theory motivated ansatz for small x
given in Ref. [62] for α0 ¼ 1=4λ.
To study the behavior of wðxÞ at large x, we perform a

Taylor expansion near x ¼ 1

wðxÞ ¼ 1 − ð1 − xÞw0ð1Þ þ 1

2
ð1 − xÞ2w00ð1Þ þ ' ' ' : ð12Þ

Upon substitution of (12) in (9), we find that the leading
term in the expansion, which behaves as ð1 − xÞτ−2,
vanishes if w0ð1Þ ¼ 0. Hence, setting

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð13Þ

PHYSICAL REVIEW LETTERS 120, 182001 (2018)

182001-2

S.J. Brodsky and G.F. de Téramond,  
Phys. Rev. D 77, 056007 (2008); 

S.J. Brodsky, G.F. de Téramond, H.G. 
Dosch, J. Erlich, Phys. Rep. 584, 1 (2015).

For large Q2 = – t, it has the scaling behavior

GPDs and LFWFs [52,55]. Shifting the FF poles to their
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counting rules, but modifies the slope and intercept of
the Regge trajectory, and hence the analytic structure of the
GPDs that incorporates the Regge behavior. As a result, the
x dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present context
up to a universal reparametrization function; therefore,
imposing further physically motivated constraints is
necessary.
Generalized parton distributions in LFHQCD.—In

LFHQCD, the FF for arbitrary twist τ is expressed in
terms of Gamma functions [28,52], an expression that can
be recast in terms of the Euler Beta function Bðu; vÞ as [29]
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hard scattering scaling behavior [53,54]

FτðQ2Þ ∼
!

1

Q2

"
τ−1

: ð3Þ

In contrast with the GPD twist that is determined by the
quark-quark correlator, twist τ in (1) and (3) refers to
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the Fock expansion of the hadron state. It controls the short
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1 − αðtÞ) with Regge trajectory

αðtÞ ¼ t
4λ

þ 1

2
; ð5Þ

slope α0 ¼ 1=4λ and intercept αð0Þ ¼ 1
2. This is just the ρ

trajectory emerging from LFHQCD. The value of the
universal scale λ is fixed from the ρ mass:
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¼ κ ¼

mρ=
ffiffiffi
2

p
¼ 0.548 GeV [28,57].

Notice that the form factor (1) can be expressed as a
Veneziano amplitude [58] B(1 − αðsÞ; 1 − αðtÞ), where the
s-channel dependence is replaced by a fixed pole,
1 − αðsÞ → τ − 1, allowed by unitarity constraints, since
no resonances are formed in the s channel [59–61]
It will be useful to rewrite (1) using the reparametrization

invariance of the Euler Beta function (2) and thus transform
the integral representation of the form factor (1) into the
invariant form
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values at the integration limits given by the constraints
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with x ∈ ½0; 1&. Any function wðxÞ that satisfies the con-
straints (7) will give the same result for the form factor.
Writing the flavor FF in terms of the valence GPD
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are expressed in terms of the function wðxÞ fulfilling
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Upon substitution of (12) in (9), we find that the leading
term in the expansion, which behaves as ð1 − xÞτ−2,
vanishes if w0ð1Þ ¼ 0. Hence, setting

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð13Þ
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GPDs and LFWFs [52,55]. Shifting the FF poles to their
physical location [56] does not modify the exclusive
counting rules, but modifies the slope and intercept of
the Regge trajectory, and hence the analytic structure of the
GPDs that incorporates the Regge behavior. As a result, the
x dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present context
up to a universal reparametrization function; therefore,
imposing further physically motivated constraints is
necessary.
Generalized parton distributions in LFHQCD.—In

LFHQCD, the FF for arbitrary twist τ is expressed in
terms of Gamma functions [28,52], an expression that can
be recast in terms of the Euler Beta function Bðu; vÞ as [29]
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One can fix the mass scale λ with spectroscopy, e.g., ρ/ω trajectory: 

N⌧ =

p
⇡�(⌧ � 1)

�(⌧ � 1
2 )

p
� =  = 0.534GeV

<latexit sha1_base64="mvRSr/XKneTDe1L8savdrFJx+Tw=">AAACDXicbVC7SgNBFJ2Nrxhfq5Y2g1GwkGVXI9oEghZaRjAPyC7h7mQ2GTL7cGZWCEt+wMZfsbFQxNbezr9x8ig08cDA4Zx7uHOPn3AmlW1/G7mFxaXllfxqYW19Y3PL3N6pyzgVhNZIzGPR9EFSziJaU0xx2kwEhdDntOH3r0Z+44EKyeLoTg0S6oXQjVjACCgttc0DV94LlblcRzowLLt9SBIo29bZack9dkWIr2m9bRZtyx4DzxNnSopoimrb/HI7MUlDGinCQcqWYyfKy0AoRjgdFtxU0gRIH7q0pWkEIZVeNr5miA+10sFBLPSLFB6rvxMZhFIOQl9PhqB6ctYbif95rVQFF17GoiRVNCKTRUHKsYrxqBrcYYISxQeaABFM/xWTHgggShdY0CU4syfPk/qJ5diWc1sqVi6ndeTRHtpHR8hB56iCblAV1RBBj+gZvaI348l4Md6Nj8lozphmdtEfGJ8/yX6asA==</latexit><latexit sha1_base64="mvRSr/XKneTDe1L8savdrFJx+Tw=">AAACDXicbVC7SgNBFJ2Nrxhfq5Y2g1GwkGVXI9oEghZaRjAPyC7h7mQ2GTL7cGZWCEt+wMZfsbFQxNbezr9x8ig08cDA4Zx7uHOPn3AmlW1/G7mFxaXllfxqYW19Y3PL3N6pyzgVhNZIzGPR9EFSziJaU0xx2kwEhdDntOH3r0Z+44EKyeLoTg0S6oXQjVjACCgttc0DV94LlblcRzowLLt9SBIo29bZack9dkWIr2m9bRZtyx4DzxNnSopoimrb/HI7MUlDGinCQcqWYyfKy0AoRjgdFtxU0gRIH7q0pWkEIZVeNr5miA+10sFBLPSLFB6rvxMZhFIOQl9PhqB6ctYbif95rVQFF17GoiRVNCKTRUHKsYrxqBrcYYISxQeaABFM/xWTHgggShdY0CU4syfPk/qJ5diWc1sqVi6ndeTRHtpHR8hB56iCblAV1RBBj+gZvaI348l4Md6Nj8lozphmdtEfGJ8/yX6asA==</latexit><latexit sha1_base64="mvRSr/XKneTDe1L8savdrFJx+Tw=">AAACDXicbVC7SgNBFJ2Nrxhfq5Y2g1GwkGVXI9oEghZaRjAPyC7h7mQ2GTL7cGZWCEt+wMZfsbFQxNbezr9x8ig08cDA4Zx7uHOPn3AmlW1/G7mFxaXllfxqYW19Y3PL3N6pyzgVhNZIzGPR9EFSziJaU0xx2kwEhdDntOH3r0Z+44EKyeLoTg0S6oXQjVjACCgttc0DV94LlblcRzowLLt9SBIo29bZack9dkWIr2m9bRZtyx4DzxNnSopoimrb/HI7MUlDGinCQcqWYyfKy0AoRjgdFtxU0gRIH7q0pWkEIZVeNr5miA+10sFBLPSLFB6rvxMZhFIOQl9PhqB6ctYbif95rVQFF17GoiRVNCKTRUHKsYrxqBrcYYISxQeaABFM/xWTHgggShdY0CU4syfPk/qJ5diWc1sqVi6ndeTRHtpHR8hB56iCblAV1RBBj+gZvaI348l4Md6Nj8lozphmdtEfGJ8/yX6asA==</latexit><latexit sha1_base64="mvRSr/XKneTDe1L8savdrFJx+Tw=">AAACDXicbVC7SgNBFJ2Nrxhfq5Y2g1GwkGVXI9oEghZaRjAPyC7h7mQ2GTL7cGZWCEt+wMZfsbFQxNbezr9x8ig08cDA4Zx7uHOPn3AmlW1/G7mFxaXllfxqYW19Y3PL3N6pyzgVhNZIzGPR9EFSziJaU0xx2kwEhdDntOH3r0Z+44EKyeLoTg0S6oXQjVjACCgttc0DV94LlblcRzowLLt9SBIo29bZack9dkWIr2m9bRZtyx4DzxNnSopoimrb/HI7MUlDGinCQcqWYyfKy0AoRjgdFtxU0gRIH7q0pWkEIZVeNr5miA+10sFBLPSLFB6rvxMZhFIOQl9PhqB6ctYbif95rVQFF17GoiRVNCKTRUHKsYrxqBrcYYISxQeaABFM/xWTHgggShdY0CU4syfPk/qJ5diWc1sqVi6ndeTRHtpHR8hB56iCblAV1RBBj+gZvaI348l4Md6Nj8lozphmdtEfGJ8/yX6asA==</latexit>

F1(t) = c⌧F⌧ (t) + c⌧+1F⌧+1(t)
<latexit sha1_base64="as3nPk4bvzy6WE3xMtU1agQWntg=">AAACH3icbVDLSgMxFM3UV62vUZdugkWoFMqMiLoRikJxWcE+oB2GTJppQzMPkjtCGfonbvwVNy4UEXf9GzNtBW09EHJyzr3c3OPFgiuwrImRW1ldW9/Ibxa2tnd298z9g6aKEklZg0Yikm2PKCZ4yBrAQbB2LBkJPMFa3vA281uPTCoehQ8wipkTkH7IfU4JaMk1L2quXYJTfI2p2wWS4JqbZvc4E8tanL7K9vjH0FRbrlm0KtYUeJnYc1JEc9Rd86vbi2gSsBCoIEp1bCsGJyUSOBVsXOgmisWEDkmfdTQNScCUk073G+MTrfSwH0l9QsBT9XdHSgKlRoGnKwMCA7XoZeJ/XicB/8pJeRgnwEI6G+QnAkOEs7Bwj0tGQYw0IVRy/VdMB0QSCjrSgg7BXlx5mTTPKrZVse/Pi9WbeRx5dISOUQnZ6BJV0R2qowai6Am9oDf0bjwbr8aH8TkrzRnznkP0B8bkG170oBo=</latexit><latexit sha1_base64="as3nPk4bvzy6WE3xMtU1agQWntg=">AAACH3icbVDLSgMxFM3UV62vUZdugkWoFMqMiLoRikJxWcE+oB2GTJppQzMPkjtCGfonbvwVNy4UEXf9GzNtBW09EHJyzr3c3OPFgiuwrImRW1ldW9/Ibxa2tnd298z9g6aKEklZg0Yikm2PKCZ4yBrAQbB2LBkJPMFa3vA281uPTCoehQ8wipkTkH7IfU4JaMk1L2quXYJTfI2p2wWS4JqbZvc4E8tanL7K9vjH0FRbrlm0KtYUeJnYc1JEc9Rd86vbi2gSsBCoIEp1bCsGJyUSOBVsXOgmisWEDkmfdTQNScCUk073G+MTrfSwH0l9QsBT9XdHSgKlRoGnKwMCA7XoZeJ/XicB/8pJeRgnwEI6G+QnAkOEs7Bwj0tGQYw0IVRy/VdMB0QSCjrSgg7BXlx5mTTPKrZVse/Pi9WbeRx5dISOUQnZ6BJV0R2qowai6Am9oDf0bjwbr8aH8TkrzRnznkP0B8bkG170oBo=</latexit><latexit sha1_base64="as3nPk4bvzy6WE3xMtU1agQWntg=">AAACH3icbVDLSgMxFM3UV62vUZdugkWoFMqMiLoRikJxWcE+oB2GTJppQzMPkjtCGfonbvwVNy4UEXf9GzNtBW09EHJyzr3c3OPFgiuwrImRW1ldW9/Ibxa2tnd298z9g6aKEklZg0Yikm2PKCZ4yBrAQbB2LBkJPMFa3vA281uPTCoehQ8wipkTkH7IfU4JaMk1L2quXYJTfI2p2wWS4JqbZvc4E8tanL7K9vjH0FRbrlm0KtYUeJnYc1JEc9Rd86vbi2gSsBCoIEp1bCsGJyUSOBVsXOgmisWEDkmfdTQNScCUk073G+MTrfSwH0l9QsBT9XdHSgKlRoGnKwMCA7XoZeJ/XicB/8pJeRgnwEI6G+QnAkOEs7Bwj0tGQYw0IVRy/VdMB0QSCjrSgg7BXlx5mTTPKrZVse/Pi9WbeRx5dISOUQnZ6BJV0R2qowai6Am9oDf0bjwbr8aH8TkrzRnznkP0B8bkG170oBo=</latexit><latexit sha1_base64="as3nPk4bvzy6WE3xMtU1agQWntg=">AAACH3icbVDLSgMxFM3UV62vUZdugkWoFMqMiLoRikJxWcE+oB2GTJppQzMPkjtCGfonbvwVNy4UEXf9GzNtBW09EHJyzr3c3OPFgiuwrImRW1ldW9/Ibxa2tnd298z9g6aKEklZg0Yikm2PKCZ4yBrAQbB2LBkJPMFa3vA281uPTCoehQ8wipkTkH7IfU4JaMk1L2quXYJTfI2p2wWS4JqbZvc4E8tanL7K9vjH0FRbrlm0KtYUeJnYc1JEc9Rd86vbi2gSsBCoIEp1bCsGJyUSOBVsXOgmisWEDkmfdTQNScCUk073G+MTrfSwH0l9QsBT9XdHSgKlRoGnKwMCA7XoZeJ/XicB/8pJeRgnwEI6G+QnAkOEs7Bwj0tGQYw0IVRy/VdMB0QSCjrSgg7BXlx5mTTPKrZVse/Pi9WbeRx5dISOUQnZ6BJV0R2qowai6Am9oDf0bjwbr8aH8TkrzRnznkP0B8bkG170oBo=</latexit>

F⌧ =
1

N⌧
B

✓
⌧ � 1,

1

2
� t

4�

◆

<latexit sha1_base64="M+kmPzGIHDi+Ao3sWBoDeZXNlKY=">AAACOHicbVDLSgMxFM3Ud31VXboJFqGCLTOloBtBFMSVD7AP6JQhk2ba0MyD5I5QhvksN36GO3HjQhG3foGZtoi2Hgice8693NzjRoIrMM1nIzc3v7C4tLySX11b39gsbG03VBhLyuo0FKFsuUQxwQNWBw6CtSLJiO8K1nQH55nfvGdS8TC4g2HEOj7pBdzjlICWnML1hZPYQOIUn2Dbk4QmVppcOWPpzBbMg1JWlK3DH7ualscc0qRmC72sS1Jb8l4fDpxC0ayYI+BZYk1IEU1w4xSe7G5IY58FQAVRqm2ZEXQSIoFTwdK8HSsWETogPdbWNCA+U51kdHiK97XSxV4o9QsAj9TfEwnxlRr6ru70CfTVtJeJ/3ntGLzjTsKDKAYW0PEiLxYYQpyliLtcMgpiqAmhkuu/YtonOhPQWed1CNb0ybOkUa1YZsW6rRVPzyZxLKNdtIdKyEJH6BRdohtURxQ9oBf0ht6NR+PV+DA+x605YzKzg/7A+PoG4xitFg==</latexit><latexit sha1_base64="M+kmPzGIHDi+Ao3sWBoDeZXNlKY=">AAACOHicbVDLSgMxFM3Ud31VXboJFqGCLTOloBtBFMSVD7AP6JQhk2ba0MyD5I5QhvksN36GO3HjQhG3foGZtoi2Hgice8693NzjRoIrMM1nIzc3v7C4tLySX11b39gsbG03VBhLyuo0FKFsuUQxwQNWBw6CtSLJiO8K1nQH55nfvGdS8TC4g2HEOj7pBdzjlICWnML1hZPYQOIUn2Dbk4QmVppcOWPpzBbMg1JWlK3DH7ualscc0qRmC72sS1Jb8l4fDpxC0ayYI+BZYk1IEU1w4xSe7G5IY58FQAVRqm2ZEXQSIoFTwdK8HSsWETogPdbWNCA+U51kdHiK97XSxV4o9QsAj9TfEwnxlRr6ru70CfTVtJeJ/3ntGLzjTsKDKAYW0PEiLxYYQpyliLtcMgpiqAmhkuu/YtonOhPQWed1CNb0ybOkUa1YZsW6rRVPzyZxLKNdtIdKyEJH6BRdohtURxQ9oBf0ht6NR+PV+DA+x605YzKzg/7A+PoG4xitFg==</latexit><latexit sha1_base64="M+kmPzGIHDi+Ao3sWBoDeZXNlKY="></latexit><latexit sha1_base64="M+kmPzGIHDi+Ao3sWBoDeZXNlKY="></latexit>
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F1(t) =
X

q,⌧

eq[c⌧,qF⌧ (t) + c⌧+1,qF⌧+1(t)]
<latexit sha1_base64="SSE7B2qnkryP4YJ2RPrCZAxCBZQ="></latexit><latexit sha1_base64="SSE7B2qnkryP4YJ2RPrCZAxCBZQ=">AAACNXicbZDLSgMxFIYz9VbrrerSTbAISkuZEUE3QlEoLlwo2FpohyGTpm1o5tLkjFCGeSk3vocrXbhQxK2vYKYdQasHAl/+/xyS87uh4ApM89nIzc0vLC7llwsrq2vrG8XNraYKIklZgwYikC2XKCa4zxrAQbBWKBnxXMFu3eF56t/eMal44N/AOGS2R/o+73FKQEtO8bLuWPtwgE9xR0WeE48qHSBRgpkzalMnTi+VUYLrU0x0azmTy5Y26t+cOrZTLJlVc1L4L1gZlFBWV07xsdMNaOQxH6ggSrUtMwQ7JhI4FSwpdCLFQkKHpM/aGn3iMWXHk60TvKeVLu4FUh8f8ET9ORETT6mx5+pOj8BAzXqp+J/XjqB3YsfcDyNgPp0+1IsEhgCnEeIul4yCGGsgVHL9V0wHRBIKOuiCDsGaXfkvNA+rllm1ro9KtbMsjjzaQbtoH1noGNXQBbpCDUTRPXpCr+jNeDBejHfjY9qaM7KZbfSrjM8vlDaqIA==</latexit><latexit sha1_base64="SSE7B2qnkryP4YJ2RPrCZAxCBZQ="></latexit><latexit sha1_base64="SSE7B2qnkryP4YJ2RPrCZAxCBZQ="></latexit>
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We fit the coefficients for three cases:

i) Only the valence (τ=3) state contribution 

ii) Truncate at τ=5, including a pair of
 

iii) Truncate at τ=5, including a pair of 

uū or dd̄
<latexit sha1_base64="K75frhZ2DAotHP6X0cVh3ZLbGxw=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBbBVUlE0GXRjcsK9gFNKJPJpB06kwkzE6GEFDf+ihsXirj1J9z5N07TLLT1wIXDOfdy7z1BwqjSjvNtVVZW19Y3qpu1re2d3T17/6CjRCoxaWPBhOwFSBFGY9LWVDPSSyRBPGCkG4xvZn73gUhFRXyvJwnxORrGNKIYaSMN7KPUC5DM0nyaeZJDIfNpWChhPrDrTsMpAJeJW5I6KNEa2F9eKHDKSawxQ0r1XSfRfoakppiRvOaliiQIj9GQ9A2NESfKz4ofcnhqlBBGQpqKNSzU3xMZ4kpNeGA6OdIjtejNxP+8fqqjKz+jcZJqEuP5oihlUAs4CwSGVBKs2cQQhCU1t0I8QhJhbWKrmRDcxZeXSee84ToN9+6i3rwu46iCY3ACzoALLkET3IIWaAMMHsEzeAVv1pP1Yr1bH/PWilXOHII/sD5/AGnxmKM=</latexit><latexit sha1_base64="K75frhZ2DAotHP6X0cVh3ZLbGxw=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBbBVUlE0GXRjcsK9gFNKJPJpB06kwkzE6GEFDf+ihsXirj1J9z5N07TLLT1wIXDOfdy7z1BwqjSjvNtVVZW19Y3qpu1re2d3T17/6CjRCoxaWPBhOwFSBFGY9LWVDPSSyRBPGCkG4xvZn73gUhFRXyvJwnxORrGNKIYaSMN7KPUC5DM0nyaeZJDIfNpWChhPrDrTsMpAJeJW5I6KNEa2F9eKHDKSawxQ0r1XSfRfoakppiRvOaliiQIj9GQ9A2NESfKz4ofcnhqlBBGQpqKNSzU3xMZ4kpNeGA6OdIjtejNxP+8fqqjKz+jcZJqEuP5oihlUAs4CwSGVBKs2cQQhCU1t0I8QhJhbWKrmRDcxZeXSee84ToN9+6i3rwu46iCY3ACzoALLkET3IIWaAMMHsEzeAVv1pP1Yr1bH/PWilXOHII/sD5/AGnxmKM=</latexit><latexit sha1_base64="K75frhZ2DAotHP6X0cVh3ZLbGxw=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBbBVUlE0GXRjcsK9gFNKJPJpB06kwkzE6GEFDf+ihsXirj1J9z5N07TLLT1wIXDOfdy7z1BwqjSjvNtVVZW19Y3qpu1re2d3T17/6CjRCoxaWPBhOwFSBFGY9LWVDPSSyRBPGCkG4xvZn73gUhFRXyvJwnxORrGNKIYaSMN7KPUC5DM0nyaeZJDIfNpWChhPrDrTsMpAJeJW5I6KNEa2F9eKHDKSawxQ0r1XSfRfoakppiRvOaliiQIj9GQ9A2NESfKz4ofcnhqlBBGQpqKNSzU3xMZ4kpNeGA6OdIjtejNxP+8fqqjKz+jcZJqEuP5oihlUAs4CwSGVBKs2cQQhCU1t0I8QhJhbWKrmRDcxZeXSee84ToN9+6i3rwu46iCY3ACzoALLkET3IIWaAMMHsEzeAVv1pP1Yr1bH/PWilXOHII/sD5/AGnxmKM=</latexit><latexit sha1_base64="K75frhZ2DAotHP6X0cVh3ZLbGxw=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBbBVUlE0GXRjcsK9gFNKJPJpB06kwkzE6GEFDf+ihsXirj1J9z5N07TLLT1wIXDOfdy7z1BwqjSjvNtVVZW19Y3qpu1re2d3T17/6CjRCoxaWPBhOwFSBFGY9LWVDPSSyRBPGCkG4xvZn73gUhFRXyvJwnxORrGNKIYaSMN7KPUC5DM0nyaeZJDIfNpWChhPrDrTsMpAJeJW5I6KNEa2F9eKHDKSawxQ0r1XSfRfoakppiRvOaliiQIj9GQ9A2NESfKz4ofcnhqlBBGQpqKNSzU3xMZ4kpNeGA6OdIjtejNxP+8fqqjKz+jcZJqEuP5oihlUAs4CwSGVBKs2cQQhCU1t0I8QhJhbWKrmRDcxZeXSee84ToN9+6i3rwu46iCY3ACzoALLkET3IIWaAMMHsEzeAVv1pP1Yr1bH/PWilXOHII/sD5/AGnxmKM=</latexit>
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Match recent extraction of nucleon EM form factors: 
Z. Ye, J. Arrington, R.J. Hill, G. Lee, 
Phys. Lett. B 777, 8 (2018).
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Writing the form factor in terms of GPD at zero skewness

Express the form factor with the Euler integral representation

GPDs and LFWFs [52,55]. Shifting the FF poles to their
physical location [56] does not modify the exclusive
counting rules, but modifies the slope and intercept of
the Regge trajectory, and hence the analytic structure of the
GPDs that incorporates the Regge behavior. As a result, the
x dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present context
up to a universal reparametrization function; therefore,
imposing further physically motivated constraints is
necessary.
Generalized parton distributions in LFHQCD.—In

LFHQCD, the FF for arbitrary twist τ is expressed in
terms of Gamma functions [28,52], an expression that can
be recast in terms of the Euler Beta function Bðu; vÞ as [29]

FτðtÞ ¼
1

Nτ
B
!
τ − 1;

1

2
−

t
4λ

"
; ð1Þ

where

Bðu; vÞ ¼
Z

1

0
dyyu−1ð1 − yÞv−1; ð2Þ

and Bðu; vÞ ¼ Bðv; uÞ ¼ ½ΓðuÞΓðvÞ=Γðuþ vÞ& with Nτ ¼ffiffiffi
π

p
½Γðτ − 1Þ=Γðτ − 1

2Þ&. For fixed u and large v, we have
Bðu; vÞ ∼ ΓðuÞv−u: we thus recover, for large Q2 ¼ −t, the
hard scattering scaling behavior [53,54]

FτðQ2Þ ∼
!

1

Q2

"
τ−1

: ð3Þ

In contrast with the GPD twist that is determined by the
quark-quark correlator, twist τ in (1) and (3) refers to
the number of constituents in a given Fock component in
the Fock expansion of the hadron state. It controls the short
distance behavior of the hadronic state and thus the power-
law asymptotic behavior (3).
For integer τ Eq. (1) generates the pole structure [52]

FτðQ2Þ ¼ 1

ð1þ Q2

M2
0

Þð1þ Q2

M2
1

Þ ' ' ' ð1þ Q2

M2
τ−2
Þ
; ð4Þ

with M2
n ¼ 4λðnþ 1

2Þ; n ¼ 0; 1; 2;…; τ − 2, corresponding
to the ρ vector meson and its radial excitations [28]. Notice
that the Beta function in (1) can be rewritten as B(τ − 1;
1 − αðtÞ) with Regge trajectory

αðtÞ ¼ t
4λ

þ 1

2
; ð5Þ

slope α0 ¼ 1=4λ and intercept αð0Þ ¼ 1
2. This is just the ρ

trajectory emerging from LFHQCD. The value of the
universal scale λ is fixed from the ρ mass:

ffiffiffi
λ

p
¼ κ ¼

mρ=
ffiffiffi
2

p
¼ 0.548 GeV [28,57].

Notice that the form factor (1) can be expressed as a
Veneziano amplitude [58] B(1 − αðsÞ; 1 − αðtÞ), where the
s-channel dependence is replaced by a fixed pole,
1 − αðsÞ → τ − 1, allowed by unitarity constraints, since
no resonances are formed in the s channel [59–61]
It will be useful to rewrite (1) using the reparametrization

invariance of the Euler Beta function (2) and thus transform
the integral representation of the form factor (1) into the
invariant form

FτðtÞ ¼
1

Nτ

Z
1

0
dxw0ðxÞwðxÞ−t=4λ−1

2½1 − wðxÞ&τ−2; ð6Þ

if wðxÞ is a monotonically increasing function with fixed
values at the integration limits given by the constraints

wð0Þ ¼ 0; wð1Þ ¼ 1; w0ðxÞ ≥ 0; ð7Þ

with x ∈ ½0; 1&. Any function wðxÞ that satisfies the con-
straints (7) will give the same result for the form factor.
Writing the flavor FF in terms of the valence GPD

FqðtÞ ¼
R
1
0 dxH

q
vðx; tÞ at zero skewness, Hqðx; tÞ≡

Hqðx; ξ ¼ 0; tÞ, we obtain

Hqðx; tÞ ¼ 1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞeðt=4λÞ log½1=wðxÞ&

¼ qτðxÞ exp½tfðxÞ&; ð8Þ

where the PDF qτðxÞ and the profile function fðxÞ

qτðxÞ ¼
1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞ; ð9Þ

fðxÞ ¼ 1

4λ
log

!
1

wðxÞ

"
; ð10Þ

are expressed in terms of the function wðxÞ fulfilling
conditions (7).
If, for x ∼ 0, wðxÞ behaves as wðxÞ ∼ x, we find the

t dependence

Hq
vðx; tÞ ∼ x−t=4λqvðxÞ; ð11Þ

which is the Regge theory motivated ansatz for small x
given in Ref. [62] for α0 ¼ 1=4λ.
To study the behavior of wðxÞ at large x, we perform a

Taylor expansion near x ¼ 1

wðxÞ ¼ 1 − ð1 − xÞw0ð1Þ þ 1

2
ð1 − xÞ2w00ð1Þ þ ' ' ' : ð12Þ

Upon substitution of (12) in (9), we find that the leading
term in the expansion, which behaves as ð1 − xÞτ−2,
vanishes if w0ð1Þ ¼ 0. Hence, setting

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð13Þ
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GPDs that incorporates the Regge behavior. As a result, the
x dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present context
up to a universal reparametrization function; therefore,
imposing further physically motivated constraints is
necessary.
Generalized parton distributions in LFHQCD.—In

LFHQCD, the FF for arbitrary twist τ is expressed in
terms of Gamma functions [28,52], an expression that can
be recast in terms of the Euler Beta function Bðu; vÞ as [29]

FτðtÞ ¼
1

Nτ
B
!
τ − 1;

1

2
−

t
4λ

"
; ð1Þ

where

Bðu; vÞ ¼
Z

1

0
dyyu−1ð1 − yÞv−1; ð2Þ

and Bðu; vÞ ¼ Bðv; uÞ ¼ ½ΓðuÞΓðvÞ=Γðuþ vÞ& with Nτ ¼ffiffiffi
π

p
½Γðτ − 1Þ=Γðτ − 1

2Þ&. For fixed u and large v, we have
Bðu; vÞ ∼ ΓðuÞv−u: we thus recover, for large Q2 ¼ −t, the
hard scattering scaling behavior [53,54]

FτðQ2Þ ∼
!

1

Q2

"
τ−1

: ð3Þ

In contrast with the GPD twist that is determined by the
quark-quark correlator, twist τ in (1) and (3) refers to
the number of constituents in a given Fock component in
the Fock expansion of the hadron state. It controls the short
distance behavior of the hadronic state and thus the power-
law asymptotic behavior (3).
For integer τ Eq. (1) generates the pole structure [52]

FτðQ2Þ ¼ 1

ð1þ Q2

M2
0

Þð1þ Q2

M2
1

Þ ' ' ' ð1þ Q2

M2
τ−2
Þ
; ð4Þ

with M2
n ¼ 4λðnþ 1

2Þ; n ¼ 0; 1; 2;…; τ − 2, corresponding
to the ρ vector meson and its radial excitations [28]. Notice
that the Beta function in (1) can be rewritten as B(τ − 1;
1 − αðtÞ) with Regge trajectory

αðtÞ ¼ t
4λ

þ 1

2
; ð5Þ

slope α0 ¼ 1=4λ and intercept αð0Þ ¼ 1
2. This is just the ρ

trajectory emerging from LFHQCD. The value of the
universal scale λ is fixed from the ρ mass:

ffiffiffi
λ

p
¼ κ ¼

mρ=
ffiffiffi
2

p
¼ 0.548 GeV [28,57].

Notice that the form factor (1) can be expressed as a
Veneziano amplitude [58] B(1 − αðsÞ; 1 − αðtÞ), where the
s-channel dependence is replaced by a fixed pole,
1 − αðsÞ → τ − 1, allowed by unitarity constraints, since
no resonances are formed in the s channel [59–61]
It will be useful to rewrite (1) using the reparametrization

invariance of the Euler Beta function (2) and thus transform
the integral representation of the form factor (1) into the
invariant form

FτðtÞ ¼
1

Nτ

Z
1

0
dxw0ðxÞwðxÞ−t=4λ−1

2½1 − wðxÞ&τ−2; ð6Þ

if wðxÞ is a monotonically increasing function with fixed
values at the integration limits given by the constraints

wð0Þ ¼ 0; wð1Þ ¼ 1; w0ðxÞ ≥ 0; ð7Þ

with x ∈ ½0; 1&. Any function wðxÞ that satisfies the con-
straints (7) will give the same result for the form factor.
Writing the flavor FF in terms of the valence GPD

FqðtÞ ¼
R
1
0 dxH

q
vðx; tÞ at zero skewness, Hqðx; tÞ≡

Hqðx; ξ ¼ 0; tÞ, we obtain

Hqðx; tÞ ¼ 1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞeðt=4λÞ log½1=wðxÞ&

¼ qτðxÞ exp½tfðxÞ&; ð8Þ

where the PDF qτðxÞ and the profile function fðxÞ

qτðxÞ ¼
1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞ; ð9Þ

fðxÞ ¼ 1

4λ
log

!
1

wðxÞ

"
; ð10Þ

are expressed in terms of the function wðxÞ fulfilling
conditions (7).
If, for x ∼ 0, wðxÞ behaves as wðxÞ ∼ x, we find the

t dependence

Hq
vðx; tÞ ∼ x−t=4λqvðxÞ; ð11Þ

which is the Regge theory motivated ansatz for small x
given in Ref. [62] for α0 ¼ 1=4λ.
To study the behavior of wðxÞ at large x, we perform a

Taylor expansion near x ¼ 1

wðxÞ ¼ 1 − ð1 − xÞw0ð1Þ þ 1

2
ð1 − xÞ2w00ð1Þ þ ' ' ' : ð12Þ

Upon substitution of (12) in (9), we find that the leading
term in the expansion, which behaves as ð1 − xÞτ−2,
vanishes if w0ð1Þ ¼ 0. Hence, setting

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð13Þ
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The collinear distribution q(x) and the profile function f (x) are related 
by a universal τ-independent reparametrization function w(x).
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the Regge trajectory, and hence the analytic structure of the
GPDs that incorporates the Regge behavior. As a result, the
x dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present context
up to a universal reparametrization function; therefore,
imposing further physically motivated constraints is
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Constraints on w(x)
Mathematical constraints:

11

B(u, v) =

Z 1

0
dy yu�1(1� y)v�1 y = w(x)

GPDs and LFWFs [52,55]. Shifting the FF poles to their
physical location [56] does not modify the exclusive
counting rules, but modifies the slope and intercept of
the Regge trajectory, and hence the analytic structure of the
GPDs that incorporates the Regge behavior. As a result, the
x dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present context
up to a universal reparametrization function; therefore,
imposing further physically motivated constraints is
necessary.
Generalized parton distributions in LFHQCD.—In

LFHQCD, the FF for arbitrary twist τ is expressed in
terms of Gamma functions [28,52], an expression that can
be recast in terms of the Euler Beta function Bðu; vÞ as [29]

FτðtÞ ¼
1

Nτ
B
!
τ − 1;

1

2
−

t
4λ

"
; ð1Þ

where

Bðu; vÞ ¼
Z

1

0
dyyu−1ð1 − yÞv−1; ð2Þ

and Bðu; vÞ ¼ Bðv; uÞ ¼ ½ΓðuÞΓðvÞ=Γðuþ vÞ& with Nτ ¼ffiffiffi
π

p
½Γðτ − 1Þ=Γðτ − 1

2Þ&. For fixed u and large v, we have
Bðu; vÞ ∼ ΓðuÞv−u: we thus recover, for large Q2 ¼ −t, the
hard scattering scaling behavior [53,54]

FτðQ2Þ ∼
!

1

Q2

"
τ−1

: ð3Þ

In contrast with the GPD twist that is determined by the
quark-quark correlator, twist τ in (1) and (3) refers to
the number of constituents in a given Fock component in
the Fock expansion of the hadron state. It controls the short
distance behavior of the hadronic state and thus the power-
law asymptotic behavior (3).
For integer τ Eq. (1) generates the pole structure [52]

FτðQ2Þ ¼ 1

ð1þ Q2

M2
0

Þð1þ Q2

M2
1

Þ ' ' ' ð1þ Q2

M2
τ−2
Þ
; ð4Þ

with M2
n ¼ 4λðnþ 1

2Þ; n ¼ 0; 1; 2;…; τ − 2, corresponding
to the ρ vector meson and its radial excitations [28]. Notice
that the Beta function in (1) can be rewritten as B(τ − 1;
1 − αðtÞ) with Regge trajectory

αðtÞ ¼ t
4λ

þ 1

2
; ð5Þ

slope α0 ¼ 1=4λ and intercept αð0Þ ¼ 1
2. This is just the ρ

trajectory emerging from LFHQCD. The value of the
universal scale λ is fixed from the ρ mass:

ffiffiffi
λ

p
¼ κ ¼

mρ=
ffiffiffi
2

p
¼ 0.548 GeV [28,57].

Notice that the form factor (1) can be expressed as a
Veneziano amplitude [58] B(1 − αðsÞ; 1 − αðtÞ), where the
s-channel dependence is replaced by a fixed pole,
1 − αðsÞ → τ − 1, allowed by unitarity constraints, since
no resonances are formed in the s channel [59–61]
It will be useful to rewrite (1) using the reparametrization

invariance of the Euler Beta function (2) and thus transform
the integral representation of the form factor (1) into the
invariant form

FτðtÞ ¼
1

Nτ

Z
1

0
dxw0ðxÞwðxÞ−t=4λ−1

2½1 − wðxÞ&τ−2; ð6Þ

if wðxÞ is a monotonically increasing function with fixed
values at the integration limits given by the constraints

wð0Þ ¼ 0; wð1Þ ¼ 1; w0ðxÞ ≥ 0; ð7Þ

with x ∈ ½0; 1&. Any function wðxÞ that satisfies the con-
straints (7) will give the same result for the form factor.
Writing the flavor FF in terms of the valence GPD

FqðtÞ ¼
R
1
0 dxH

q
vðx; tÞ at zero skewness, Hqðx; tÞ≡

Hqðx; ξ ¼ 0; tÞ, we obtain

Hqðx; tÞ ¼ 1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞeðt=4λÞ log½1=wðxÞ&

¼ qτðxÞ exp½tfðxÞ&; ð8Þ

where the PDF qτðxÞ and the profile function fðxÞ

qτðxÞ ¼
1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞ; ð9Þ

fðxÞ ¼ 1

4λ
log

!
1

wðxÞ

"
; ð10Þ

are expressed in terms of the function wðxÞ fulfilling
conditions (7).
If, for x ∼ 0, wðxÞ behaves as wðxÞ ∼ x, we find the

t dependence

Hq
vðx; tÞ ∼ x−t=4λqvðxÞ; ð11Þ

which is the Regge theory motivated ansatz for small x
given in Ref. [62] for α0 ¼ 1=4λ.
To study the behavior of wðxÞ at large x, we perform a

Taylor expansion near x ¼ 1

wðxÞ ¼ 1 − ð1 − xÞw0ð1Þ þ 1

2
ð1 − xÞ2w00ð1Þ þ ' ' ' : ð12Þ

Upon substitution of (12) in (9), we find that the leading
term in the expansion, which behaves as ð1 − xÞτ−2,
vanishes if w0ð1Þ ¼ 0. Hence, setting

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð13Þ
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Physical requirements:
Small-x behavior: 

for x 2 [0, 1]

GPDs and LFWFs [52,55]. Shifting the FF poles to their
physical location [56] does not modify the exclusive
counting rules, but modifies the slope and intercept of
the Regge trajectory, and hence the analytic structure of the
GPDs that incorporates the Regge behavior. As a result, the
x dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present context
up to a universal reparametrization function; therefore,
imposing further physically motivated constraints is
necessary.
Generalized parton distributions in LFHQCD.—In

LFHQCD, the FF for arbitrary twist τ is expressed in
terms of Gamma functions [28,52], an expression that can
be recast in terms of the Euler Beta function Bðu; vÞ as [29]
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2Þ&. For fixed u and large v, we have
Bðu; vÞ ∼ ΓðuÞv−u: we thus recover, for large Q2 ¼ −t, the
hard scattering scaling behavior [53,54]
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In contrast with the GPD twist that is determined by the
quark-quark correlator, twist τ in (1) and (3) refers to
the number of constituents in a given Fock component in
the Fock expansion of the hadron state. It controls the short
distance behavior of the hadronic state and thus the power-
law asymptotic behavior (3).
For integer τ Eq. (1) generates the pole structure [52]
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with M2
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2Þ; n ¼ 0; 1; 2;…; τ − 2, corresponding
to the ρ vector meson and its radial excitations [28]. Notice
that the Beta function in (1) can be rewritten as B(τ − 1;
1 − αðtÞ) with Regge trajectory
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slope α0 ¼ 1=4λ and intercept αð0Þ ¼ 1
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trajectory emerging from LFHQCD. The value of the
universal scale λ is fixed from the ρ mass:
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Notice that the form factor (1) can be expressed as a
Veneziano amplitude [58] B(1 − αðsÞ; 1 − αðtÞ), where the
s-channel dependence is replaced by a fixed pole,
1 − αðsÞ → τ − 1, allowed by unitarity constraints, since
no resonances are formed in the s channel [59–61]
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invariance of the Euler Beta function (2) and thus transform
the integral representation of the form factor (1) into the
invariant form
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if wðxÞ is a monotonically increasing function with fixed
values at the integration limits given by the constraints

wð0Þ ¼ 0; wð1Þ ¼ 1; w0ðxÞ ≥ 0; ð7Þ

with x ∈ ½0; 1&. Any function wðxÞ that satisfies the con-
straints (7) will give the same result for the form factor.
Writing the flavor FF in terms of the valence GPD

FqðtÞ ¼
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Hqðx; ξ ¼ 0; tÞ, we obtain

Hqðx; tÞ ¼ 1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞeðt=4λÞ log½1=wðxÞ&

¼ qτðxÞ exp½tfðxÞ&; ð8Þ

where the PDF qτðxÞ and the profile function fðxÞ

qτðxÞ ¼
1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞ; ð9Þ

fðxÞ ¼ 1

4λ
log

!
1

wðxÞ

"
; ð10Þ

are expressed in terms of the function wðxÞ fulfilling
conditions (7).
If, for x ∼ 0, wðxÞ behaves as wðxÞ ∼ x, we find the

t dependence

Hq
vðx; tÞ ∼ x−t=4λqvðxÞ; ð11Þ

which is the Regge theory motivated ansatz for small x
given in Ref. [62] for α0 ¼ 1=4λ.
To study the behavior of wðxÞ at large x, we perform a

Taylor expansion near x ¼ 1

wðxÞ ¼ 1 − ð1 − xÞw0ð1Þ þ 1

2
ð1 − xÞ2w00ð1Þ þ ' ' ' : ð12Þ

Upon substitution of (12) in (9), we find that the leading
term in the expansion, which behaves as ð1 − xÞτ−2,
vanishes if w0ð1Þ ¼ 0. Hence, setting

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð13Þ
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Regge theory motivated ansatz

GPDs and LFWFs [52,55]. Shifting the FF poles to their
physical location [56] does not modify the exclusive
counting rules, but modifies the slope and intercept of
the Regge trajectory, and hence the analytic structure of the
GPDs that incorporates the Regge behavior. As a result, the
x dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present context
up to a universal reparametrization function; therefore,
imposing further physically motivated constraints is
necessary.
Generalized parton distributions in LFHQCD.—In

LFHQCD, the FF for arbitrary twist τ is expressed in
terms of Gamma functions [28,52], an expression that can
be recast in terms of the Euler Beta function Bðu; vÞ as [29]

FτðtÞ ¼
1

Nτ
B
!
τ − 1;

1

2
−

t
4λ

"
; ð1Þ

where

Bðu; vÞ ¼
Z

1

0
dyyu−1ð1 − yÞv−1; ð2Þ

and Bðu; vÞ ¼ Bðv; uÞ ¼ ½ΓðuÞΓðvÞ=Γðuþ vÞ& with Nτ ¼ffiffiffi
π

p
½Γðτ − 1Þ=Γðτ − 1

2Þ&. For fixed u and large v, we have
Bðu; vÞ ∼ ΓðuÞv−u: we thus recover, for large Q2 ¼ −t, the
hard scattering scaling behavior [53,54]

FτðQ2Þ ∼
!

1

Q2

"
τ−1

: ð3Þ

In contrast with the GPD twist that is determined by the
quark-quark correlator, twist τ in (1) and (3) refers to
the number of constituents in a given Fock component in
the Fock expansion of the hadron state. It controls the short
distance behavior of the hadronic state and thus the power-
law asymptotic behavior (3).
For integer τ Eq. (1) generates the pole structure [52]

FτðQ2Þ ¼ 1

ð1þ Q2

M2
0

Þð1þ Q2

M2
1

Þ ' ' ' ð1þ Q2

M2
τ−2
Þ
; ð4Þ

with M2
n ¼ 4λðnþ 1

2Þ; n ¼ 0; 1; 2;…; τ − 2, corresponding
to the ρ vector meson and its radial excitations [28]. Notice
that the Beta function in (1) can be rewritten as B(τ − 1;
1 − αðtÞ) with Regge trajectory

αðtÞ ¼ t
4λ

þ 1

2
; ð5Þ

slope α0 ¼ 1=4λ and intercept αð0Þ ¼ 1
2. This is just the ρ

trajectory emerging from LFHQCD. The value of the
universal scale λ is fixed from the ρ mass:

ffiffiffi
λ

p
¼ κ ¼

mρ=
ffiffiffi
2

p
¼ 0.548 GeV [28,57].

Notice that the form factor (1) can be expressed as a
Veneziano amplitude [58] B(1 − αðsÞ; 1 − αðtÞ), where the
s-channel dependence is replaced by a fixed pole,
1 − αðsÞ → τ − 1, allowed by unitarity constraints, since
no resonances are formed in the s channel [59–61]
It will be useful to rewrite (1) using the reparametrization

invariance of the Euler Beta function (2) and thus transform
the integral representation of the form factor (1) into the
invariant form

FτðtÞ ¼
1

Nτ

Z
1

0
dxw0ðxÞwðxÞ−t=4λ−1

2½1 − wðxÞ&τ−2; ð6Þ

if wðxÞ is a monotonically increasing function with fixed
values at the integration limits given by the constraints

wð0Þ ¼ 0; wð1Þ ¼ 1; w0ðxÞ ≥ 0; ð7Þ

with x ∈ ½0; 1&. Any function wðxÞ that satisfies the con-
straints (7) will give the same result for the form factor.
Writing the flavor FF in terms of the valence GPD

FqðtÞ ¼
R
1
0 dxH

q
vðx; tÞ at zero skewness, Hqðx; tÞ≡

Hqðx; ξ ¼ 0; tÞ, we obtain

Hqðx; tÞ ¼ 1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞeðt=4λÞ log½1=wðxÞ&

¼ qτðxÞ exp½tfðxÞ&; ð8Þ

where the PDF qτðxÞ and the profile function fðxÞ

qτðxÞ ¼
1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞ; ð9Þ

fðxÞ ¼ 1

4λ
log

!
1

wðxÞ

"
; ð10Þ

are expressed in terms of the function wðxÞ fulfilling
conditions (7).
If, for x ∼ 0, wðxÞ behaves as wðxÞ ∼ x, we find the

t dependence

Hq
vðx; tÞ ∼ x−t=4λqvðxÞ; ð11Þ

which is the Regge theory motivated ansatz for small x
given in Ref. [62] for α0 ¼ 1=4λ.
To study the behavior of wðxÞ at large x, we perform a

Taylor expansion near x ¼ 1

wðxÞ ¼ 1 − ð1 − xÞw0ð1Þ þ 1

2
ð1 − xÞ2w00ð1Þ þ ' ' ' : ð12Þ

Upon substitution of (12) in (9), we find that the leading
term in the expansion, which behaves as ð1 − xÞτ−2,
vanishes if w0ð1Þ ¼ 0. Hence, setting

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð13Þ
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Large-x behavior: we find qτðxÞ ∼ ð1 − xÞ2τ−3, which is precisely the Drell-
Yan inclusive counting rule at x → 1 [63–65], correspond-
ing to the form factor behavior at large Q2 (3).
From Eq. (10), it follows that the conditions (13) are

equivalent to f0ð1Þ ¼ 0 and f00ð1Þ ≠ 0. Since logðxÞ∼
1 − x for x ∼ 1, a simple ansatz for fðxÞ consistent with
(7), (11), and (13) is

fðxÞ ¼ 1

4λ

!
ð1 − xÞ log

"
1

x

#
þ að1 − xÞ2

$
; ð14Þ

with a being a flavor-independent parameter. From (10),

wðxÞ ¼ x1−xe−að1−xÞ
2
; ð15Þ

an expression that incorporates Regge behavior at small x
and inclusive counting rules at large x.
Nucleon GPDs.—The nucleon GPDs are extracted from

nucleon FF data [66–70] choosing specific x and t depend-
ences of the GPDs for each flavor. One then finds the best
fit reproducing the measured FFs and the valence PDFs. In
our analysis of nucleon FFs [56], three free parameters are
required: these are r, interpreted as an SU(6) breaking
effect for the Dirac neutron FF, and γp and γn, which
account for the probabilities of higher Fock components
(meson cloud) and are significant only for the Pauli FFs.
The hadronic scale λ is fixed by the ρ-Regge trajectory [28],
whereas the Pauli FFs are normalized to the experimental
values of the anomalous magnetic moments.
Helicity nonflip distributions: Using the results from [56]

for the Dirac flavor FFs, we write the spin nonflip valence
GPDs Hqðx; tÞ ¼ qðxÞ exp ½tfðxÞ& with

uvðxÞ ¼
"
2 −

r
3

#
qτ¼3ðxÞ þ

r
3
qτ¼4ðxÞ; ð16Þ

dvðxÞ ¼
"
1 −

2r
3

#
qτ¼3ðxÞ þ

2r
3
qτ¼4ðxÞ; ð17Þ

for the u and d PDFs normalized to the valence content of
the proton:

R
1
0 dxuvðxÞ ¼ 2 and

R
1
0 dxdvðxÞ ¼ 1. The PDF

qτðxÞ and the profile function fðxÞ are given by (9) and
(10), and wðxÞ is given by (15). Positivity of the PDFs
implies that r ≤ 3=2, which is smaller than the value r ¼
2.08 found in [56]. We shall use the maximum value
r ¼ 3=2, which does not change significantly our results
in [56].
The PDFs (16) and (17) are evolved to a higher

scale μ with the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) equation [71–73] in the M̄S scheme using
the HOPPET toolkit [74]. The initial scale is chosen at the
matching scale between LFHQCD and perturbative QCD
(pQCD) as μ0 ¼ 1.06'0.15 GeV [75] in the M̄S scheme at
next-to-next-to-leading order (NNLO). The strong cou-
pling constant αs at the scale of the Z-boson mass is set to

0.1182 [76], and the heavy quark thresholds are set with
M̄S quark masses as mc¼ 1.28 GeV and mb¼ 4.18 GeV
[76]. The PDFs are evolved to μ2 ¼ 10 GeV2 at NNLO to
compare with the global fits by the MMHT [5], CT [6], and
NNPDF [77] collaborations as shown in Fig. 1. The value
a ¼ 0.531' 0.037 is determined from the first moment of
the GPD,

R
1
0 dxxH

q
vðx; t ¼ 0Þ ¼ Aq

vð0Þ from the global data
fits with average values Au

vð0Þ ¼ 0.261' 0.005 and
Ad
vð0Þ ¼ 0.109' 0.005. The model uncertainty (red band)

includes the uncertainties in a and μ0 [78]. We also indicate
the difference between our results and global fits in Fig. 2.
The t dependence of Hq

vðx; tÞ is illustrated in Fig. 3.
Since our PDFs scale as qðxÞ ∼ x−1=2 for small x, the
Kuti-Weisskopf behavior for the nonsinglet structure
functions F2pðxÞ − F2nðxÞ ∼ x½uvðxÞ − dvðxÞ& ∼ x1=2 is
satisfied [79,80].
Helicity-flip distributions: The spin-flip GPDsEq

vðx; tÞ ¼
eqvðxÞ exp ½tfðxÞ& follow from the flavor Pauli FFs in [56]
given in terms of twist-4 and twist-6 contributions

eqvðxÞ ¼ χq½ð1 − γqÞqτ¼4ðxÞ þ γqqτ¼6ðxÞ&; ð18Þ

normalized to the flavor anomalous magnetic momentR
1
0 dxeqvðxÞ ¼ χq, with χu ¼ 2χp þ χn ¼ 1.673 and
χd ¼ 2χn þ χp ¼ −2.033. The factors γu and γd are

FIG. 1. Comparison for xqðxÞ in the proton from LFHQCD (red
bands) and global fits: MMHT2014 (blue bands) [5], CT14 [6]
(cyan bands), and NNPDF3.0 (gray bands) [77]. LFHQCD
results are evolved from the initial scale μ0 ¼ 1.06'0.15 GeV.

FIG. 2. Difference between our PDF results and global fits.
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Drell-Yan inclusive counting rule

GPDs and LFWFs [52,55]. Shifting the FF poles to their
physical location [56] does not modify the exclusive
counting rules, but modifies the slope and intercept of
the Regge trajectory, and hence the analytic structure of the
GPDs that incorporates the Regge behavior. As a result, the
x dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present context
up to a universal reparametrization function; therefore,
imposing further physically motivated constraints is
necessary.
Generalized parton distributions in LFHQCD.—In

LFHQCD, the FF for arbitrary twist τ is expressed in
terms of Gamma functions [28,52], an expression that can
be recast in terms of the Euler Beta function Bðu; vÞ as [29]

FτðtÞ ¼
1

Nτ
B
!
τ − 1;

1

2
−

t
4λ

"
; ð1Þ

where

Bðu; vÞ ¼
Z

1

0
dyyu−1ð1 − yÞv−1; ð2Þ

and Bðu; vÞ ¼ Bðv; uÞ ¼ ½ΓðuÞΓðvÞ=Γðuþ vÞ& with Nτ ¼ffiffiffi
π

p
½Γðτ − 1Þ=Γðτ − 1

2Þ&. For fixed u and large v, we have
Bðu; vÞ ∼ ΓðuÞv−u: we thus recover, for large Q2 ¼ −t, the
hard scattering scaling behavior [53,54]

FτðQ2Þ ∼
!

1

Q2

"
τ−1

: ð3Þ

In contrast with the GPD twist that is determined by the
quark-quark correlator, twist τ in (1) and (3) refers to
the number of constituents in a given Fock component in
the Fock expansion of the hadron state. It controls the short
distance behavior of the hadronic state and thus the power-
law asymptotic behavior (3).
For integer τ Eq. (1) generates the pole structure [52]

FτðQ2Þ ¼ 1

ð1þ Q2

M2
0

Þð1þ Q2

M2
1

Þ ' ' ' ð1þ Q2

M2
τ−2
Þ
; ð4Þ

with M2
n ¼ 4λðnþ 1

2Þ; n ¼ 0; 1; 2;…; τ − 2, corresponding
to the ρ vector meson and its radial excitations [28]. Notice
that the Beta function in (1) can be rewritten as B(τ − 1;
1 − αðtÞ) with Regge trajectory

αðtÞ ¼ t
4λ

þ 1

2
; ð5Þ

slope α0 ¼ 1=4λ and intercept αð0Þ ¼ 1
2. This is just the ρ

trajectory emerging from LFHQCD. The value of the
universal scale λ is fixed from the ρ mass:

ffiffiffi
λ

p
¼ κ ¼

mρ=
ffiffiffi
2

p
¼ 0.548 GeV [28,57].

Notice that the form factor (1) can be expressed as a
Veneziano amplitude [58] B(1 − αðsÞ; 1 − αðtÞ), where the
s-channel dependence is replaced by a fixed pole,
1 − αðsÞ → τ − 1, allowed by unitarity constraints, since
no resonances are formed in the s channel [59–61]
It will be useful to rewrite (1) using the reparametrization

invariance of the Euler Beta function (2) and thus transform
the integral representation of the form factor (1) into the
invariant form

FτðtÞ ¼
1

Nτ

Z
1

0
dxw0ðxÞwðxÞ−t=4λ−1

2½1 − wðxÞ&τ−2; ð6Þ

if wðxÞ is a monotonically increasing function with fixed
values at the integration limits given by the constraints

wð0Þ ¼ 0; wð1Þ ¼ 1; w0ðxÞ ≥ 0; ð7Þ

with x ∈ ½0; 1&. Any function wðxÞ that satisfies the con-
straints (7) will give the same result for the form factor.
Writing the flavor FF in terms of the valence GPD

FqðtÞ ¼
R
1
0 dxH

q
vðx; tÞ at zero skewness, Hqðx; tÞ≡

Hqðx; ξ ¼ 0; tÞ, we obtain

Hqðx; tÞ ¼ 1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞeðt=4λÞ log½1=wðxÞ&

¼ qτðxÞ exp½tfðxÞ&; ð8Þ

where the PDF qτðxÞ and the profile function fðxÞ

qτðxÞ ¼
1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞ; ð9Þ

fðxÞ ¼ 1

4λ
log

!
1

wðxÞ

"
; ð10Þ

are expressed in terms of the function wðxÞ fulfilling
conditions (7).
If, for x ∼ 0, wðxÞ behaves as wðxÞ ∼ x, we find the

t dependence

Hq
vðx; tÞ ∼ x−t=4λqvðxÞ; ð11Þ

which is the Regge theory motivated ansatz for small x
given in Ref. [62] for α0 ¼ 1=4λ.
To study the behavior of wðxÞ at large x, we perform a

Taylor expansion near x ¼ 1

wðxÞ ¼ 1 − ð1 − xÞw0ð1Þ þ 1

2
ð1 − xÞ2w00ð1Þ þ ' ' ' : ð12Þ

Upon substitution of (12) in (9), we find that the leading
term in the expansion, which behaves as ð1 − xÞτ−2,
vanishes if w0ð1Þ ¼ 0. Hence, setting

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð13Þ
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GPDs and LFWFs [52,55]. Shifting the FF poles to their
physical location [56] does not modify the exclusive
counting rules, but modifies the slope and intercept of
the Regge trajectory, and hence the analytic structure of the
GPDs that incorporates the Regge behavior. As a result, the
x dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present context
up to a universal reparametrization function; therefore,
imposing further physically motivated constraints is
necessary.
Generalized parton distributions in LFHQCD.—In

LFHQCD, the FF for arbitrary twist τ is expressed in
terms of Gamma functions [28,52], an expression that can
be recast in terms of the Euler Beta function Bðu; vÞ as [29]

FτðtÞ ¼
1

Nτ
B
!
τ − 1;

1

2
−

t
4λ

"
; ð1Þ

where

Bðu; vÞ ¼
Z

1

0
dyyu−1ð1 − yÞv−1; ð2Þ

and Bðu; vÞ ¼ Bðv; uÞ ¼ ½ΓðuÞΓðvÞ=Γðuþ vÞ& with Nτ ¼ffiffiffi
π

p
½Γðτ − 1Þ=Γðτ − 1

2Þ&. For fixed u and large v, we have
Bðu; vÞ ∼ ΓðuÞv−u: we thus recover, for large Q2 ¼ −t, the
hard scattering scaling behavior [53,54]

FτðQ2Þ ∼
!

1

Q2

"
τ−1

: ð3Þ

In contrast with the GPD twist that is determined by the
quark-quark correlator, twist τ in (1) and (3) refers to
the number of constituents in a given Fock component in
the Fock expansion of the hadron state. It controls the short
distance behavior of the hadronic state and thus the power-
law asymptotic behavior (3).
For integer τ Eq. (1) generates the pole structure [52]

FτðQ2Þ ¼ 1

ð1þ Q2

M2
0

Þð1þ Q2

M2
1

Þ ' ' ' ð1þ Q2

M2
τ−2
Þ
; ð4Þ

with M2
n ¼ 4λðnþ 1

2Þ; n ¼ 0; 1; 2;…; τ − 2, corresponding
to the ρ vector meson and its radial excitations [28]. Notice
that the Beta function in (1) can be rewritten as B(τ − 1;
1 − αðtÞ) with Regge trajectory

αðtÞ ¼ t
4λ

þ 1

2
; ð5Þ

slope α0 ¼ 1=4λ and intercept αð0Þ ¼ 1
2. This is just the ρ

trajectory emerging from LFHQCD. The value of the
universal scale λ is fixed from the ρ mass:

ffiffiffi
λ

p
¼ κ ¼

mρ=
ffiffiffi
2

p
¼ 0.548 GeV [28,57].

Notice that the form factor (1) can be expressed as a
Veneziano amplitude [58] B(1 − αðsÞ; 1 − αðtÞ), where the
s-channel dependence is replaced by a fixed pole,
1 − αðsÞ → τ − 1, allowed by unitarity constraints, since
no resonances are formed in the s channel [59–61]
It will be useful to rewrite (1) using the reparametrization

invariance of the Euler Beta function (2) and thus transform
the integral representation of the form factor (1) into the
invariant form

FτðtÞ ¼
1

Nτ

Z
1

0
dxw0ðxÞwðxÞ−t=4λ−1

2½1 − wðxÞ&τ−2; ð6Þ

if wðxÞ is a monotonically increasing function with fixed
values at the integration limits given by the constraints

wð0Þ ¼ 0; wð1Þ ¼ 1; w0ðxÞ ≥ 0; ð7Þ

with x ∈ ½0; 1&. Any function wðxÞ that satisfies the con-
straints (7) will give the same result for the form factor.
Writing the flavor FF in terms of the valence GPD

FqðtÞ ¼
R
1
0 dxH

q
vðx; tÞ at zero skewness, Hqðx; tÞ≡

Hqðx; ξ ¼ 0; tÞ, we obtain

Hqðx; tÞ ¼ 1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞeðt=4λÞ log½1=wðxÞ&

¼ qτðxÞ exp½tfðxÞ&; ð8Þ

where the PDF qτðxÞ and the profile function fðxÞ

qτðxÞ ¼
1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞ; ð9Þ

fðxÞ ¼ 1

4λ
log

!
1

wðxÞ

"
; ð10Þ

are expressed in terms of the function wðxÞ fulfilling
conditions (7).
If, for x ∼ 0, wðxÞ behaves as wðxÞ ∼ x, we find the

t dependence

Hq
vðx; tÞ ∼ x−t=4λqvðxÞ; ð11Þ

which is the Regge theory motivated ansatz for small x
given in Ref. [62] for α0 ¼ 1=4λ.
To study the behavior of wðxÞ at large x, we perform a

Taylor expansion near x ¼ 1

wðxÞ ¼ 1 − ð1 − xÞw0ð1Þ þ 1

2
ð1 − xÞ2w00ð1Þ þ ' ' ' : ð12Þ

Upon substitution of (12) in (9), we find that the leading
term in the expansion, which behaves as ð1 − xÞτ−2,
vanishes if w0ð1Þ ¼ 0. Hence, setting

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð13Þ
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we find qτðxÞ ∼ ð1 − xÞ2τ−3, which is precisely the Drell-
Yan inclusive counting rule at x → 1 [63–65], correspond-
ing to the form factor behavior at large Q2 (3).
From Eq. (10), it follows that the conditions (13) are

equivalent to f0ð1Þ ¼ 0 and f00ð1Þ ≠ 0. Since logðxÞ∼
1 − x for x ∼ 1, a simple ansatz for fðxÞ consistent with
(7), (11), and (13) is

fðxÞ ¼ 1

4λ

!
ð1 − xÞ log

"
1

x

#
þ að1 − xÞ2

$
; ð14Þ

with a being a flavor-independent parameter. From (10),

wðxÞ ¼ x1−xe−að1−xÞ
2
; ð15Þ

an expression that incorporates Regge behavior at small x
and inclusive counting rules at large x.
Nucleon GPDs.—The nucleon GPDs are extracted from

nucleon FF data [66–70] choosing specific x and t depend-
ences of the GPDs for each flavor. One then finds the best
fit reproducing the measured FFs and the valence PDFs. In
our analysis of nucleon FFs [56], three free parameters are
required: these are r, interpreted as an SU(6) breaking
effect for the Dirac neutron FF, and γp and γn, which
account for the probabilities of higher Fock components
(meson cloud) and are significant only for the Pauli FFs.
The hadronic scale λ is fixed by the ρ-Regge trajectory [28],
whereas the Pauli FFs are normalized to the experimental
values of the anomalous magnetic moments.
Helicity nonflip distributions: Using the results from [56]

for the Dirac flavor FFs, we write the spin nonflip valence
GPDs Hqðx; tÞ ¼ qðxÞ exp ½tfðxÞ& with

uvðxÞ ¼
"
2 −

r
3

#
qτ¼3ðxÞ þ

r
3
qτ¼4ðxÞ; ð16Þ

dvðxÞ ¼
"
1 −

2r
3

#
qτ¼3ðxÞ þ

2r
3
qτ¼4ðxÞ; ð17Þ

for the u and d PDFs normalized to the valence content of
the proton:

R
1
0 dxuvðxÞ ¼ 2 and

R
1
0 dxdvðxÞ ¼ 1. The PDF

qτðxÞ and the profile function fðxÞ are given by (9) and
(10), and wðxÞ is given by (15). Positivity of the PDFs
implies that r ≤ 3=2, which is smaller than the value r ¼
2.08 found in [56]. We shall use the maximum value
r ¼ 3=2, which does not change significantly our results
in [56].
The PDFs (16) and (17) are evolved to a higher

scale μ with the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) equation [71–73] in the M̄S scheme using
the HOPPET toolkit [74]. The initial scale is chosen at the
matching scale between LFHQCD and perturbative QCD
(pQCD) as μ0 ¼ 1.06'0.15 GeV [75] in the M̄S scheme at
next-to-next-to-leading order (NNLO). The strong cou-
pling constant αs at the scale of the Z-boson mass is set to

0.1182 [76], and the heavy quark thresholds are set with
M̄S quark masses as mc¼ 1.28 GeV and mb¼ 4.18 GeV
[76]. The PDFs are evolved to μ2 ¼ 10 GeV2 at NNLO to
compare with the global fits by the MMHT [5], CT [6], and
NNPDF [77] collaborations as shown in Fig. 1. The value
a ¼ 0.531' 0.037 is determined from the first moment of
the GPD,

R
1
0 dxxH

q
vðx; t ¼ 0Þ ¼ Aq

vð0Þ from the global data
fits with average values Au

vð0Þ ¼ 0.261' 0.005 and
Ad
vð0Þ ¼ 0.109' 0.005. The model uncertainty (red band)

includes the uncertainties in a and μ0 [78]. We also indicate
the difference between our results and global fits in Fig. 2.
The t dependence of Hq

vðx; tÞ is illustrated in Fig. 3.
Since our PDFs scale as qðxÞ ∼ x−1=2 for small x, the
Kuti-Weisskopf behavior for the nonsinglet structure
functions F2pðxÞ − F2nðxÞ ∼ x½uvðxÞ − dvðxÞ& ∼ x1=2 is
satisfied [79,80].
Helicity-flip distributions: The spin-flip GPDsEq

vðx; tÞ ¼
eqvðxÞ exp ½tfðxÞ& follow from the flavor Pauli FFs in [56]
given in terms of twist-4 and twist-6 contributions

eqvðxÞ ¼ χq½ð1 − γqÞqτ¼4ðxÞ þ γqqτ¼6ðxÞ&; ð18Þ

normalized to the flavor anomalous magnetic momentR
1
0 dxeqvðxÞ ¼ χq, with χu ¼ 2χp þ χn ¼ 1.673 and
χd ¼ 2χn þ χp ¼ −2.033. The factors γu and γd are

FIG. 1. Comparison for xqðxÞ in the proton from LFHQCD (red
bands) and global fits: MMHT2014 (blue bands) [5], CT14 [6]
(cyan bands), and NNPDF3.0 (gray bands) [77]. LFHQCD
results are evolved from the initial scale μ0 ¼ 1.06'0.15 GeV.

FIG. 2. Difference between our PDF results and global fits.
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GPDs and LFWFs [52,55]. Shifting the FF poles to their
physical location [56] does not modify the exclusive
counting rules, but modifies the slope and intercept of
the Regge trajectory, and hence the analytic structure of the
GPDs that incorporates the Regge behavior. As a result, the
x dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present context
up to a universal reparametrization function; therefore,
imposing further physically motivated constraints is
necessary.
Generalized parton distributions in LFHQCD.—In

LFHQCD, the FF for arbitrary twist τ is expressed in
terms of Gamma functions [28,52], an expression that can
be recast in terms of the Euler Beta function Bðu; vÞ as [29]

FτðtÞ ¼
1

Nτ
B
!
τ − 1;

1

2
−

t
4λ

"
; ð1Þ

where

Bðu; vÞ ¼
Z

1

0
dyyu−1ð1 − yÞv−1; ð2Þ

and Bðu; vÞ ¼ Bðv; uÞ ¼ ½ΓðuÞΓðvÞ=Γðuþ vÞ& with Nτ ¼ffiffiffi
π

p
½Γðτ − 1Þ=Γðτ − 1

2Þ&. For fixed u and large v, we have
Bðu; vÞ ∼ ΓðuÞv−u: we thus recover, for large Q2 ¼ −t, the
hard scattering scaling behavior [53,54]

FτðQ2Þ ∼
!

1

Q2

"
τ−1

: ð3Þ

In contrast with the GPD twist that is determined by the
quark-quark correlator, twist τ in (1) and (3) refers to
the number of constituents in a given Fock component in
the Fock expansion of the hadron state. It controls the short
distance behavior of the hadronic state and thus the power-
law asymptotic behavior (3).
For integer τ Eq. (1) generates the pole structure [52]

FτðQ2Þ ¼ 1

ð1þ Q2

M2
0

Þð1þ Q2

M2
1

Þ ' ' ' ð1þ Q2

M2
τ−2
Þ
; ð4Þ

with M2
n ¼ 4λðnþ 1

2Þ; n ¼ 0; 1; 2;…; τ − 2, corresponding
to the ρ vector meson and its radial excitations [28]. Notice
that the Beta function in (1) can be rewritten as B(τ − 1;
1 − αðtÞ) with Regge trajectory

αðtÞ ¼ t
4λ

þ 1

2
; ð5Þ

slope α0 ¼ 1=4λ and intercept αð0Þ ¼ 1
2. This is just the ρ

trajectory emerging from LFHQCD. The value of the
universal scale λ is fixed from the ρ mass:

ffiffiffi
λ

p
¼ κ ¼

mρ=
ffiffiffi
2

p
¼ 0.548 GeV [28,57].

Notice that the form factor (1) can be expressed as a
Veneziano amplitude [58] B(1 − αðsÞ; 1 − αðtÞ), where the
s-channel dependence is replaced by a fixed pole,
1 − αðsÞ → τ − 1, allowed by unitarity constraints, since
no resonances are formed in the s channel [59–61]
It will be useful to rewrite (1) using the reparametrization

invariance of the Euler Beta function (2) and thus transform
the integral representation of the form factor (1) into the
invariant form

FτðtÞ ¼
1

Nτ

Z
1

0
dxw0ðxÞwðxÞ−t=4λ−1

2½1 − wðxÞ&τ−2; ð6Þ

if wðxÞ is a monotonically increasing function with fixed
values at the integration limits given by the constraints

wð0Þ ¼ 0; wð1Þ ¼ 1; w0ðxÞ ≥ 0; ð7Þ

with x ∈ ½0; 1&. Any function wðxÞ that satisfies the con-
straints (7) will give the same result for the form factor.
Writing the flavor FF in terms of the valence GPD

FqðtÞ ¼
R
1
0 dxH

q
vðx; tÞ at zero skewness, Hqðx; tÞ≡

Hqðx; ξ ¼ 0; tÞ, we obtain

Hqðx; tÞ ¼ 1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞeðt=4λÞ log½1=wðxÞ&

¼ qτðxÞ exp½tfðxÞ&; ð8Þ

where the PDF qτðxÞ and the profile function fðxÞ

qτðxÞ ¼
1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞ; ð9Þ

fðxÞ ¼ 1

4λ
log

!
1

wðxÞ

"
; ð10Þ

are expressed in terms of the function wðxÞ fulfilling
conditions (7).
If, for x ∼ 0, wðxÞ behaves as wðxÞ ∼ x, we find the

t dependence

Hq
vðx; tÞ ∼ x−t=4λqvðxÞ; ð11Þ

which is the Regge theory motivated ansatz for small x
given in Ref. [62] for α0 ¼ 1=4λ.
To study the behavior of wðxÞ at large x, we perform a

Taylor expansion near x ¼ 1

wðxÞ ¼ 1 − ð1 − xÞw0ð1Þ þ 1

2
ð1 − xÞ2w00ð1Þ þ ' ' ' : ð12Þ

Upon substitution of (12) in (9), we find that the leading
term in the expansion, which behaves as ð1 − xÞτ−2,
vanishes if w0ð1Þ ¼ 0. Hence, setting

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð13Þ
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A parameterization form for w(x):

Evolved from the matching 
scale 1.06 ± 0.15 GeV

Red bands: the uncertainties of the matching scale.
G.F. de Téramond, TL, R.S. Sufian, H.G. Dosch, S.J. Brodsky, A. Deur, 
Phys. Rev. Lett. 120, 182001 (2018).
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one can choose other forms, but 
universal for all distributions

a = 0.48± 0.04
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Evolved from the matching scale. 
Using the same w(x).

Comparison with a new global fit 

we find qτðxÞ ∼ ð1 − xÞ2τ−3, which is precisely the Drell-
Yan inclusive counting rule at x → 1 [63–65], correspond-
ing to the form factor behavior at large Q2 (3).
From Eq. (10), it follows that the conditions (13) are

equivalent to f0ð1Þ ¼ 0 and f00ð1Þ ≠ 0. Since logðxÞ∼
1 − x for x ∼ 1, a simple ansatz for fðxÞ consistent with
(7), (11), and (13) is

fðxÞ ¼ 1

4λ

!
ð1 − xÞ log

"
1

x

#
þ að1 − xÞ2

$
; ð14Þ

with a being a flavor-independent parameter. From (10),

wðxÞ ¼ x1−xe−að1−xÞ
2
; ð15Þ

an expression that incorporates Regge behavior at small x
and inclusive counting rules at large x.
Nucleon GPDs.—The nucleon GPDs are extracted from

nucleon FF data [66–70] choosing specific x and t depend-
ences of the GPDs for each flavor. One then finds the best
fit reproducing the measured FFs and the valence PDFs. In
our analysis of nucleon FFs [56], three free parameters are
required: these are r, interpreted as an SU(6) breaking
effect for the Dirac neutron FF, and γp and γn, which
account for the probabilities of higher Fock components
(meson cloud) and are significant only for the Pauli FFs.
The hadronic scale λ is fixed by the ρ-Regge trajectory [28],
whereas the Pauli FFs are normalized to the experimental
values of the anomalous magnetic moments.
Helicity nonflip distributions: Using the results from [56]

for the Dirac flavor FFs, we write the spin nonflip valence
GPDs Hqðx; tÞ ¼ qðxÞ exp ½tfðxÞ& with

uvðxÞ ¼
"
2 −

r
3

#
qτ¼3ðxÞ þ

r
3
qτ¼4ðxÞ; ð16Þ

dvðxÞ ¼
"
1 −

2r
3

#
qτ¼3ðxÞ þ

2r
3
qτ¼4ðxÞ; ð17Þ

for the u and d PDFs normalized to the valence content of
the proton:

R
1
0 dxuvðxÞ ¼ 2 and

R
1
0 dxdvðxÞ ¼ 1. The PDF

qτðxÞ and the profile function fðxÞ are given by (9) and
(10), and wðxÞ is given by (15). Positivity of the PDFs
implies that r ≤ 3=2, which is smaller than the value r ¼
2.08 found in [56]. We shall use the maximum value
r ¼ 3=2, which does not change significantly our results
in [56].
The PDFs (16) and (17) are evolved to a higher

scale μ with the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) equation [71–73] in the M̄S scheme using
the HOPPET toolkit [74]. The initial scale is chosen at the
matching scale between LFHQCD and perturbative QCD
(pQCD) as μ0 ¼ 1.06'0.15 GeV [75] in the M̄S scheme at
next-to-next-to-leading order (NNLO). The strong cou-
pling constant αs at the scale of the Z-boson mass is set to

0.1182 [76], and the heavy quark thresholds are set with
M̄S quark masses as mc¼ 1.28 GeV and mb¼ 4.18 GeV
[76]. The PDFs are evolved to μ2 ¼ 10 GeV2 at NNLO to
compare with the global fits by the MMHT [5], CT [6], and
NNPDF [77] collaborations as shown in Fig. 1. The value
a ¼ 0.531' 0.037 is determined from the first moment of
the GPD,

R
1
0 dxxH

q
vðx; t ¼ 0Þ ¼ Aq

vð0Þ from the global data
fits with average values Au

vð0Þ ¼ 0.261' 0.005 and
Ad
vð0Þ ¼ 0.109' 0.005. The model uncertainty (red band)

includes the uncertainties in a and μ0 [78]. We also indicate
the difference between our results and global fits in Fig. 2.
The t dependence of Hq

vðx; tÞ is illustrated in Fig. 3.
Since our PDFs scale as qðxÞ ∼ x−1=2 for small x, the
Kuti-Weisskopf behavior for the nonsinglet structure
functions F2pðxÞ − F2nðxÞ ∼ x½uvðxÞ − dvðxÞ& ∼ x1=2 is
satisfied [79,80].
Helicity-flip distributions: The spin-flip GPDsEq

vðx; tÞ ¼
eqvðxÞ exp ½tfðxÞ& follow from the flavor Pauli FFs in [56]
given in terms of twist-4 and twist-6 contributions

eqvðxÞ ¼ χq½ð1 − γqÞqτ¼4ðxÞ þ γqqτ¼6ðxÞ&; ð18Þ

normalized to the flavor anomalous magnetic momentR
1
0 dxeqvðxÞ ¼ χq, with χu ¼ 2χp þ χn ¼ 1.673 and
χd ¼ 2χn þ χp ¼ −2.033. The factors γu and γd are

FIG. 1. Comparison for xqðxÞ in the proton from LFHQCD (red
bands) and global fits: MMHT2014 (blue bands) [5], CT14 [6]
(cyan bands), and NNPDF3.0 (gray bands) [77]. LFHQCD
results are evolved from the initial scale μ0 ¼ 1.06'0.15 GeV.

FIG. 2. Difference between our PDF results and global fits.
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FF with twist-τ: 

hadron state; it is equal to the number of constituents in a
given Fock component in the LF Fock expansion.
In LFHQCD [13], the EM form factors for a bound-state

hadron with twist-τ can be expressed as [14,57]

FτðtÞ ¼
1

Nτ
Bðτ − 1; 1 − αðtÞÞ; ð40Þ

where the Euler Beta function is

Bðu; vÞ ¼
Z

1

0
dy yu−1ð1 − yÞv−1; ð41Þ

with Bðu; vÞ ¼ Bðv; uÞ ¼ ΓðuÞΓðvÞ
ΓðuþvÞ , Nτ ¼ Γðτ − 1ÞΓð1 −

αð0ÞÞ=Γðτ − αð0ÞÞ a normalization factor, and αðtÞ is the
Regge trajectory of the vector meson which couples to the
EM current in the t-channel exchange.
The Beta function structure of the EM form factors

(40), which follows from the gauge/gravity structure in
LFHQCD, was obtained in the pre-QCD era by Ademollo
and Del Giudice [58] and independently by Landshoff and
Polkinghorne [59]. Their derivations were based on the
Veneziano model [60], which is an incorporation of the
concept of duality [61] in a pole model. For hadronic four-
point functions, it leads to a representation of the scattering
amplitude by Euler Beta functions. Extending these con-
siderations to current induced interactions, a structure like
(40) was derived in Refs. [58,59,62]. However, the variable
τ in the duality based derivations is a free parameter and the
Regge trajectory is a phenomenological input. In contra-
distinction, LFHQCD provides a clear physical meaning of
τ, the twist of a given Fock component of the hadron, and
also incorporates the Regge trajectory from the vector-
meson (VM) spectrum by solving the semiclassical LF
QCD Hamiltonian eigenvalue problem.
For linear Regge trajectories

αðtÞ ¼ αð0Þ þ α0t; ð42Þ

Eq. (40) incorporates the hard-scattering counting rules at
large t [63,64]. Indeed, for fixed u and large v we have
Bðu; vÞ ∼ ΓðuÞv−u, and therefore the first argument in the
Euler Beta function determines the scaling behavior of (40)

lim
Q2→∞

FτðQ2Þ ¼ Γðτ − 1Þ
!

1

α0Q2

"
τ−1

; ð43Þ

at large Q2 ¼ −t. The second argument in (40) determines
the timelike pole structure of the form factor; the analytic
structure of (40) thus leads to a nontrivial connection with
the hadron spectrum. In fact, using the expansion of the
Gamma function

ΓðN þ zÞ ¼ ðN − 1þ zÞðN − 2þ zÞ % % % ð1þ zÞΓð1þ zÞ;
ð44Þ

for integer twist N ¼ τ, with N the number of constituents
for a given Fock component, we find

FτðQ2Þ ¼ 1#
1þ Q2

M2
n¼0

$#
1þ Q2

M2
n¼1

$
% % %

#
1þ Q2

M2
n¼τ−2

$ ; ð45Þ

which is expressed as a product of τ − 1 poles located at

−Q2 ¼ M2
n ¼

1

α0
ðnþ 1 − αð0ÞÞ: ð46Þ

The form factor (45) thus generates the radial excitation
spectrum of the exchanged particles in the t-channel, while
keeping the structural form found previously in the limit of
zero quark masses [13].
For the lowest radial excitation the VM spectrum in

LFHQCD is given by [13,33] (Appendix B)

M2 ¼ 4λ

!
J −

1

2

"
þ ΔM2; ð47Þ

where the squared mass shift ΔM2 incorporates the effect
from finite light quark masses. The quantity λ ¼ κ2 is the
emergent mass scale, the only dimensional quantity appear-
ing in LFHQCD for massless quarks [13]. Its value
determined from the best fit to all radial and orbital
excitations of the light mesons and baryons is κ ¼

ffiffiffi
λ

p
¼

0.523& 0.024 GeV [33].
There is no need to introduce additional procedures to

include quark masses when using the structural form (40) to
describe form factors, since the effect of quark masses only
amounts to a shift of the Regge intercept. For example, for
the ρ, a vector mesons we obtain from Eq. (47) the leading
Regge trajectory

αρðtÞ ¼
1

2
þ t
4λ

−
ΔM2

ρ

4λ
; ð48Þ

with slope α0 ¼ 1
4λ and intercept αρð0Þ ¼ 1

2 −
ΔM2

ρ

4λ , which

differs from the conformal limit 1
2 by the mass shift ΔM2

ρ

4λ
from quark masses. Likewise, the ω, f trajectory is

αωðtÞ ¼
1

2
þ t
4λ

−
ΔM2

ω

4λ
; ð49Þ

with the same slope α0 ¼ 1
4λ and similar intercept

αωð0Þ ¼ 1
2 −

ΔM2
ω

4λ . We show in Fig. 5 the Chew-Frautschi
plot for the leading ρ − a and ω − f trajectories.
The spectrum of the exchanged particles in the t-channel

follows from (46) for the leading VM trajectory (48). We
find
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↵(t) = ↵(0) + ↵0t =
1

2
+

t

4�
� �M2

4�
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Calculate the mass shift with effective quark mass:
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transfer available on the 48I ensemble is Q2 ∼ 0.31 GeV2.
We note that the uncertainties in the extrapolation of the
nucleon strange electromagnetic form factor become very
large and the form factors are consistent with zero above
Q2 ∼ 0.7 GeV2 for the 48I ensemble and therefore the
extrapolations of the 48I ensemble electromagnetic form
factor data were constrained up to Q2 ¼ 0.5 GeV2 in the
global fit (a simultaneous fit in lattice spacing, volume and
pion mass) in Ref. [6]. It is important to note that the lattice
QCD estimate of Gs

E;MðQ2Þ in Ref. [6] is the most precise
and accurate first-principles calculation of s-quark EMFFs
to date. This is the only calculation at the physical pion
mass where the quark mass dependence, as well as finite
lattice spacing (a), volume corrections, and partial quench-
ing effect (when the valence and sea quark masses are not
the same in lattice QCD simulation) were considered.
After obtaining Q2-dependence from the z-expansion fit

to the lattice data, for a given Q2 -value, we obtain 24 data
points corresponding to different valence quark masses
from 3 different lattice spacings and volumes and 4 sea
quark masses including one at the physical point. We use
the chiral extrapolation formula from Ref. [78] and volume
correction from Ref. [79], yielding a global fit in different
quark masses, lattice spacings, volumes of the strange
quark Sachs electric form factor at a givenQ2. It is given by

Gs
Eðmπ;mK;mπ;vs;a;LÞ ¼ A0þA1m2

K þA2m2
π

þA3m2
π;vsþA4a2þA5

ffiffiffiffi
L

p
e−mπL;

ðA2Þ

where mπ=mK is the valence pion/kaon mass and mπ;vs is
the partially quenched pion mass m2

π;vs ¼ 1=2ðm2
π þm2

π;ssÞ
with mπ;ss the pion mass corresponding to the sea quark
mass. The χ2=d:o:f: for different Q2 global fits ranges
between 0.7–1.13. For example, in the continuum limit, the
global fit for Q2 ¼ 0.25 GeV2 provides the physical value
of Gs

Ejphys ¼ 0.0024ð8Þ, A1 ¼ 0.58ð30Þ, A2 ¼ −0.29ð15Þ,
A3 ¼ −0.003ð9Þ, A4 ¼ 0.001ð2Þ, and A5 ¼ −0.001ð3Þ
with χ2=d:o:f: ¼ 1.1. One could also consider a
logðmKÞ-term in the chiral extrapolation of Gs

E as shown
in [78], however our analysis shows that this term does not
have any effect on the global fit for our lattice data. A
similar vanishing difference has been observed if one
considers e−mπL instead of a

ffiffiffiffi
L

p
e−mπL term in the volume

correction, where L is the finite box size of a lattice. For
example, including the factor logðmKÞ and e−mπL instead offfiffiffiffi
L

p
e−mπL, one obtains Gs

Ejphys ¼ 0.0026 in comparison
with Gs

Ejphys ¼ 0.0024. We include these small effects in
the systematics of the global fit results. We also assign a
20% systematic uncertainty from the model-independent
z-expansion interpolation coming from adding a higher
order term a3 while fitting the Gs

EðQ2Þ data. These
uncertainties are added in quadrature to the systematics
discussed in [5].

Similarly, we calculate the strange Sachs magnetic form
factor Gs

M at a particular Q2 using the global fit formula

Gs
Mðmπ;mK;mπ;vs;a;LÞ¼A0þA1mπþA2mKþA3m2

π;vs

þA4a2þA5mπ

"
1−

2

mπL

#
e−mπL;

ðA3Þ

where we have used a chiral extrapolation linear in mπ and
mloop ¼ mK [78,80–82]. For the volume correction we refer
to Ref. [83]. From the global fit formula (A3), for example,
in the continuum limit at Q2 ¼ 0.25 GeV2, we obtain
Gs

Mjphys ¼ −0.018ð4Þ, A1 ¼ 0.04ð3Þ, A2 ¼ −0.18ð12Þ,
A3 ¼ −1.27ð84Þ, A4 ¼ 0.008ð6Þ, and A5 ¼ 0.04ð5Þ with
χ2=d:o:f: ¼ 1.13. From the values of the parameters in the
global fit formula (A3), it is seen that the quark mass
dependencies play an important role in calculatingGs

MðQ2Þ
at the physical point. A 9% systematic uncertainty from the
model-independent z–expansion and an uncertainty from
the empirical fit formula have been included as discussed in
[5]. We obtain systematics from the global fit formula by
replacing the volume correction by e−mπL only and also by
adding a mπ;vs term in the fit and include the difference in
the systematics of the global fit results.
More details about the lattice analysis can be found in

Refs. [5,7].

APPENDIX B: THE VECTOR MESON
TRAJECTORIES IN LFHQCD

The meson spectrum in LFHQCD is given by [13,33]

M2 ¼ 4λ

"
nþ Lþ J

2

#
þ ΔM2½m1; m2&; ðB1Þ

where the squared mass shift ΔM2½m1; m2& incorporates the
effect from finite light quark masses. Following the
procedure discussed in Refs. [13,33], one can add a

correction term of the invariant mass
P

i
m2

i
xi

to the LF
kinetic energy in the LF Hamiltonian, and leave, as a first
approximation, the LF transverse potential unchanged. The
resulting LF eigenfunction is then modified by the factor

e−
1
2λ

P
i

m2
i

xi by performing a Lorentz frame-invariant substi-
tution in the LFWF [84]. This leads, for a hadron with two
constituents of mass m1 and m2, to the correction of the
quadratic mass spectra by the term:

ΔM2½m1; m2& ¼
1

N

Z
1

0
dx

"
m2

1

x
þ m2

2

1 − x

#
e−

1
λð

m2
1
x þ

m2
2

1−xÞ;

Nm ¼
Z

1

0
dxe−

1
λð

m2
1
x þ

m2
2

1−xÞ; ðB2Þ

where the mi are effective quark masses.
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We note that the uncertainties in the extrapolation of the
nucleon strange electromagnetic form factor become very
large and the form factors are consistent with zero above
Q2 ∼ 0.7 GeV2 for the 48I ensemble and therefore the
extrapolations of the 48I ensemble electromagnetic form
factor data were constrained up to Q2 ¼ 0.5 GeV2 in the
global fit (a simultaneous fit in lattice spacing, volume and
pion mass) in Ref. [6]. It is important to note that the lattice
QCD estimate of Gs

E;MðQ2Þ in Ref. [6] is the most precise
and accurate first-principles calculation of s-quark EMFFs
to date. This is the only calculation at the physical pion
mass where the quark mass dependence, as well as finite
lattice spacing (a), volume corrections, and partial quench-
ing effect (when the valence and sea quark masses are not
the same in lattice QCD simulation) were considered.
After obtaining Q2-dependence from the z-expansion fit

to the lattice data, for a given Q2 -value, we obtain 24 data
points corresponding to different valence quark masses
from 3 different lattice spacings and volumes and 4 sea
quark masses including one at the physical point. We use
the chiral extrapolation formula from Ref. [78] and volume
correction from Ref. [79], yielding a global fit in different
quark masses, lattice spacings, volumes of the strange
quark Sachs electric form factor at a givenQ2. It is given by
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π
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e−mπL;
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where mπ=mK is the valence pion/kaon mass and mπ;vs is
the partially quenched pion mass m2

π;vs ¼ 1=2ðm2
π þm2

π;ssÞ
with mπ;ss the pion mass corresponding to the sea quark
mass. The χ2=d:o:f: for different Q2 global fits ranges
between 0.7–1.13. For example, in the continuum limit, the
global fit for Q2 ¼ 0.25 GeV2 provides the physical value
of Gs

Ejphys ¼ 0.0024ð8Þ, A1 ¼ 0.58ð30Þ, A2 ¼ −0.29ð15Þ,
A3 ¼ −0.003ð9Þ, A4 ¼ 0.001ð2Þ, and A5 ¼ −0.001ð3Þ
with χ2=d:o:f: ¼ 1.1. One could also consider a
logðmKÞ-term in the chiral extrapolation of Gs

E as shown
in [78], however our analysis shows that this term does not
have any effect on the global fit for our lattice data. A
similar vanishing difference has been observed if one
considers e−mπL instead of a

ffiffiffiffi
L

p
e−mπL term in the volume

correction, where L is the finite box size of a lattice. For
example, including the factor logðmKÞ and e−mπL instead offfiffiffiffi
L

p
e−mπL, one obtains Gs

Ejphys ¼ 0.0026 in comparison
with Gs

Ejphys ¼ 0.0024. We include these small effects in
the systematics of the global fit results. We also assign a
20% systematic uncertainty from the model-independent
z-expansion interpolation coming from adding a higher
order term a3 while fitting the Gs

EðQ2Þ data. These
uncertainties are added in quadrature to the systematics
discussed in [5].

Similarly, we calculate the strange Sachs magnetic form
factor Gs

M at a particular Q2 using the global fit formula

Gs
Mðmπ;mK;mπ;vs;a;LÞ¼A0þA1mπþA2mKþA3m2

π;vs

þA4a2þA5mπ

"
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2

mπL

#
e−mπL;

ðA3Þ

where we have used a chiral extrapolation linear in mπ and
mloop ¼ mK [78,80–82]. For the volume correction we refer
to Ref. [83]. From the global fit formula (A3), for example,
in the continuum limit at Q2 ¼ 0.25 GeV2, we obtain
Gs

Mjphys ¼ −0.018ð4Þ, A1 ¼ 0.04ð3Þ, A2 ¼ −0.18ð12Þ,
A3 ¼ −1.27ð84Þ, A4 ¼ 0.008ð6Þ, and A5 ¼ 0.04ð5Þ with
χ2=d:o:f: ¼ 1.13. From the values of the parameters in the
global fit formula (A3), it is seen that the quark mass
dependencies play an important role in calculatingGs

MðQ2Þ
at the physical point. A 9% systematic uncertainty from the
model-independent z–expansion and an uncertainty from
the empirical fit formula have been included as discussed in
[5]. We obtain systematics from the global fit formula by
replacing the volume correction by e−mπL only and also by
adding a mπ;vs term in the fit and include the difference in
the systematics of the global fit results.
More details about the lattice analysis can be found in

Refs. [5,7].

APPENDIX B: THE VECTOR MESON
TRAJECTORIES IN LFHQCD

The meson spectrum in LFHQCD is given by [13,33]

M2 ¼ 4λ

"
nþ Lþ J

2

#
þ ΔM2½m1; m2&; ðB1Þ

where the squared mass shift ΔM2½m1; m2& incorporates the
effect from finite light quark masses. Following the
procedure discussed in Refs. [13,33], one can add a

correction term of the invariant mass
P

i
m2

i
xi

to the LF
kinetic energy in the LF Hamiltonian, and leave, as a first
approximation, the LF transverse potential unchanged. The
resulting LF eigenfunction is then modified by the factor

e−
1
2λ

P
i

m2
i

xi by performing a Lorentz frame-invariant substi-
tution in the LFWF [84]. This leads, for a hadron with two
constituents of mass m1 and m2, to the correction of the
quadratic mass spectra by the term:

ΔM2½m1; m2& ¼
1

N

Z
1

0
dx

"
m2

1
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þ m2

2

1 − x

#
e−

1
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m2
1
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2
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1−xÞ; ðB2Þ

where the mi are effective quark masses.
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Determine the intercept α(0), or mass shift, from Regge trajectory
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hadron state; it is equal to the number of constituents in a
given Fock component in the LF Fock expansion.
In LFHQCD [13], the EM form factors for a bound-state

hadron with twist-τ can be expressed as [14,57]

FτðtÞ ¼
1

Nτ
Bðτ − 1; 1 − αðtÞÞ; ð40Þ

where the Euler Beta function is

Bðu; vÞ ¼
Z

1

0
dy yu−1ð1 − yÞv−1; ð41Þ

with Bðu; vÞ ¼ Bðv; uÞ ¼ ΓðuÞΓðvÞ
ΓðuþvÞ , Nτ ¼ Γðτ − 1ÞΓð1 −

αð0ÞÞ=Γðτ − αð0ÞÞ a normalization factor, and αðtÞ is the
Regge trajectory of the vector meson which couples to the
EM current in the t-channel exchange.
The Beta function structure of the EM form factors

(40), which follows from the gauge/gravity structure in
LFHQCD, was obtained in the pre-QCD era by Ademollo
and Del Giudice [58] and independently by Landshoff and
Polkinghorne [59]. Their derivations were based on the
Veneziano model [60], which is an incorporation of the
concept of duality [61] in a pole model. For hadronic four-
point functions, it leads to a representation of the scattering
amplitude by Euler Beta functions. Extending these con-
siderations to current induced interactions, a structure like
(40) was derived in Refs. [58,59,62]. However, the variable
τ in the duality based derivations is a free parameter and the
Regge trajectory is a phenomenological input. In contra-
distinction, LFHQCD provides a clear physical meaning of
τ, the twist of a given Fock component of the hadron, and
also incorporates the Regge trajectory from the vector-
meson (VM) spectrum by solving the semiclassical LF
QCD Hamiltonian eigenvalue problem.
For linear Regge trajectories

αðtÞ ¼ αð0Þ þ α0t; ð42Þ

Eq. (40) incorporates the hard-scattering counting rules at
large t [63,64]. Indeed, for fixed u and large v we have
Bðu; vÞ ∼ ΓðuÞv−u, and therefore the first argument in the
Euler Beta function determines the scaling behavior of (40)

lim
Q2→∞

FτðQ2Þ ¼ Γðτ − 1Þ
!

1

α0Q2

"
τ−1

; ð43Þ

at large Q2 ¼ −t. The second argument in (40) determines
the timelike pole structure of the form factor; the analytic
structure of (40) thus leads to a nontrivial connection with
the hadron spectrum. In fact, using the expansion of the
Gamma function

ΓðN þ zÞ ¼ ðN − 1þ zÞðN − 2þ zÞ % % % ð1þ zÞΓð1þ zÞ;
ð44Þ

for integer twist N ¼ τ, with N the number of constituents
for a given Fock component, we find

FτðQ2Þ ¼ 1#
1þ Q2

M2
n¼0

$#
1þ Q2

M2
n¼1

$
% % %

#
1þ Q2

M2
n¼τ−2

$ ; ð45Þ

which is expressed as a product of τ − 1 poles located at

−Q2 ¼ M2
n ¼

1

α0
ðnþ 1 − αð0ÞÞ: ð46Þ

The form factor (45) thus generates the radial excitation
spectrum of the exchanged particles in the t-channel, while
keeping the structural form found previously in the limit of
zero quark masses [13].
For the lowest radial excitation the VM spectrum in

LFHQCD is given by [13,33] (Appendix B)

M2 ¼ 4λ

!
J −

1

2

"
þ ΔM2; ð47Þ

where the squared mass shift ΔM2 incorporates the effect
from finite light quark masses. The quantity λ ¼ κ2 is the
emergent mass scale, the only dimensional quantity appear-
ing in LFHQCD for massless quarks [13]. Its value
determined from the best fit to all radial and orbital
excitations of the light mesons and baryons is κ ¼

ffiffiffi
λ

p
¼

0.523& 0.024 GeV [33].
There is no need to introduce additional procedures to

include quark masses when using the structural form (40) to
describe form factors, since the effect of quark masses only
amounts to a shift of the Regge intercept. For example, for
the ρ, a vector mesons we obtain from Eq. (47) the leading
Regge trajectory

αρðtÞ ¼
1

2
þ t
4λ

−
ΔM2

ρ

4λ
; ð48Þ

with slope α0 ¼ 1
4λ and intercept αρð0Þ ¼ 1

2 −
ΔM2

ρ

4λ , which

differs from the conformal limit 1
2 by the mass shift ΔM2

ρ

4λ
from quark masses. Likewise, the ω, f trajectory is

αωðtÞ ¼
1

2
þ t
4λ

−
ΔM2

ω

4λ
; ð49Þ

with the same slope α0 ¼ 1
4λ and similar intercept

αωð0Þ ¼ 1
2 −

ΔM2
ω

4λ . We show in Fig. 5 the Chew-Frautschi
plot for the leading ρ − a and ω − f trajectories.
The spectrum of the exchanged particles in the t-channel

follows from (46) for the leading VM trajectory (48). We
find
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−Q2 ¼ M2 ¼ 4λ

!
nþ 1

2

"
þ ΔM2

ρ; ð50Þ

which is precisely the spectrum of the ρ and its radial
excitations [13] (Appendix B). In this case the shift in
the intercept is rather small since ΔM2

ρ ¼ ΔM2
ω ¼ M2

π%

and M2
π

4λ ≃ 0.02.

A. Strange quark form factor

In contrast to the two-step convolution expansion of the
fluctuation model, Fs

1ðQ2Þ and sðxÞ − s̄ðxÞ from LFHQCD
can be obtained directly from higher-twist terms in the Fock
state expansion by matching to the quark d.o.f. To this end,
let us recall that for the up and down quark form factors the
ρ-trajectory is relevant because it dominantly couples to uū
and dd quark currents in the proton [56]. Likewise, we
compute Fs

1ðQ2Þ in the holographic framework by consid-
ering the Regge trajectory of the ϕmeson, which is nearly a
pure ss̄ state [65], and therefore couples dominantly to the
ss̄ sea current in the nucleon.
To determine the slope and intercept of the ϕ trajectory,

αϕðtÞ ¼
1

2
þ t
4λ

−
ΔM2

ϕ

4λ
; ð51Þ

we fix the ρ intercept from the pion mass and find the best
value for the universal Regge slope from the simultaneous
fit of the ρ and ϕ trajectories; this procedure determines
the ϕ intercept and the universal slope α0 ¼ 1

4λ. We obtainffiffiffi
λ

p
¼ 0.534 GeV and αϕð0Þ ¼ 0.01, or equivalently

ΔM2
ϕ ¼ 1.96λ. The ϕ − f0 trajectory is shown in Fig. 5.

One can also compute the intercept in LFHQCD with
effective quark masses, see Appendix B, the value is
αϕð0Þ ¼ 0.00% 0.04. The value of ΔM2

ϕ is significantly
larger than ΔM2

ρ due to the presence of the more massive
strange quarks in the ϕ meson.
Since the light-front holographic framework is inherently

relativistic, the LFWF for a state with twist-τ automatically
incorporates Fock state components with two different
orbital angular momenta Lz and Lz þ 1, in analogy to the
upper and lower components of a Dirac 4-component
spinor. For example, the valence quark distributions of a
nucleon correspond to a leading twist-3 effective LFWF
with orbital angular momentum Lz ¼ 0, plus a twist-4 t
erm corresponding to a three-quark effective LFWF
with Lz ¼ 1. Note that Fock states with both Lz and
Lz þ 1 are needed in order that a baryon can have a
nonzero Pauli form factor and a nonzero anomalous
magnetic moment [39].
The five-quark state juudss̄i is the lowest Fock state

which contains strangeness. Therefore, the leading con-
tributions to the strange form factor are terms with twist-5
and twist-6. Using the constraint Fs

1ð0Þ ¼ 0 from the sum
rule (1), the analytic structure of Fs

1ðQ2Þ is uniquely
determined by the holographic structure up to twist-6:

Fs
1ðQ2Þ ¼ ð1 − ηÞNs½Fϕ

τ¼5ðQ2Þ − Fϕ
τ¼6ðQ2Þ'

þ ηNs½Fω
τ¼5ðQ2Þ − Fω

τ¼6ðQ2Þ'; ð52Þ

where we have allowed for a small ϕ − ω mixing η in the
strange form factor [66]. Ns is a normalization factor and
Fω;ϕ
τ ðQ2Þ is the twist-τ form factor (40) with Regge

trajectory αω;ϕðtÞ given by (49) and (51) respectively.
The form factor can also be expressed as a product of
τ − 1 poles located at t ¼ −Q2 ¼ 4λðnþ 1

2Þ þ ΔM2
ω and

t ¼ −Q2 ¼ 4λðnþ 1
2Þ þ ΔM2

ϕ, n ¼ 0; 1; 2 ( ( ( τ − 2. One
thus obtains in this case the form factor poles at the mass
of the ω and ϕ vector meson and its radial excitations.
To illustrate the effect of the ϕ − ω mixing we show in

Fig. 6 the effect of a 10% mixing in Fs
1ðQ2Þ. The effect of

the small mixing turns out to be negligible for Fs
1ðQ2Þ. We

also show in Fig. 6 the chiral limit for massless quarks.
Since the quark mass effect is very small in the ω trajectory,
this chiral limit corresponds to a pure ω trajectory.
Note that the normalization factor Ns in (52) is not the

intrinsic strange/antistrange quark number Is, since the
strange and antistrange distributions can both have twist-5
and twist-6 contributions. However, the shape of Fs

1ðQ2Þ is
completely determined from the structure of LFHQCD.
The result is shown in Fig. 2, together with predictions from
the fluctuation model and lattice QCD. The value of

ffiffiffi
λ

p
¼

0.534 GeV and the mass shift ΔM2
ϕ ¼ 1.96λ are obtained

from the ϕ trajectory depicted in Fig. 5. The value of

FIG. 5. Chew-Frautschi plot for the leading ρ and ω (gray
dashed) and ϕ (red continuous) trajectories in LFHQCD. At
values t ¼ M2 where αðtÞ is an integer, there is a hadron with
mass squaredM2 and spin J ¼ αðM2Þ. The ρ and ω intercepts are
fixed by the pion mass from the relation ΔM2

ρ ¼ ΔM2
ω ¼ M2

π%

and the mass scale λ is fixed by the best fit to the slopes of
both trajectories: This fixes the intercept of the ϕ trajectory.
We find

ffiffiffi
λ

p
¼ 0.534 GeV, αρð0Þ ¼ αωð0Þ ¼ 1

2 −
ΔM2

π
4λ ¼ 0.483

and αϕð0Þ ¼ 0.01. Solid triangles represent the ω trajectory.
The data is from Ref. [54].
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ϕ is nearly a pure ss state–

Ns ¼ 0.047 in Fig. 2 is determined by a best fit to lattice
QCD predictions. As in the case of the fluctuation model,
we also fit the lattice QCD data, taking

ffiffiffi
λ

p
and Ns as free

parameters. The result is shown in Fig. 3 with parameter
values

ffiffiffi
λ

p
¼ 0.52ð17Þ GeV and Ns ¼ 0.046ð17Þ. This

value of
ffiffiffi
λ

p
agrees with that determined from the Regge

trajectory. The conformal limit results, ΔM2 ¼ 0, are also
shown in the figures for comparison. The strange form
factor (52) has the large-Q2 behavior Q8Fs

1ðQ2Þ → Const,
with Const ¼ 1680Nsλ4 ≃ 0.5 GeV8, consistent with the
scaling predicted from the hard-scattering counting
rules [63,64].

B. Strange quark distribution functions

To describe the quark distribution functions in the
holographic formalism it is convenient to express the
Beta function (41) in a reparametrization invariant form

Bðu; vÞ ¼
Z

1

0
dxw0ðxÞwðxÞu−1ð1 − wðxÞÞv−1; ð53Þ

provided that wðxÞ satisfies the constraints [14]

wð0Þ ¼ 0; wð1Þ ¼ 1; w0ðxÞ ≥ 0: ð54Þ

Therefore, using (53) and the Regge trajectory, (48), (49) or
(51), the EM form factor (40) for twist-τ can be written in
the invariant form

FτðtÞ ¼
1

Nτ

Z
1

0
dxw0ðxÞwðxÞ− t

4λ−
1
2½1 − wðxÞ%τ−2e−

ΔM2

4λ logð 1
wðxÞÞ:

ð55Þ

The EM form factor can also be expressed by
the exclusive-inclusive connection as the integrated
expression of the t-evolved PDF, namely, the generalized
parton distribution (GPD) at zero skewness, Hq

τ ðx; tÞ≡
Hq

τ ðx; ξ ¼ 0; tÞ,

Fq
τ ðtÞ ¼

Z
1

0
dxðHq

τ ðx; tÞ −Hq̄
τ ðx; tÞÞ

¼
Z

1

0
dxqτðxÞ exp½tfðxÞ%; ð56Þ

where fðxÞ is the profile function and qτðxÞ is the collinear
PDF of twist-τ. Comparing (56) with the holographic
expression (55) we find that both functions, fðxÞ and
qτðxÞ, are determined in terms of the reparametrization
function of the Beta function, wðxÞ, by

fðxÞ ¼ 1

4λ
log

"
1

wðxÞ

#
; ð57Þ

qτðxÞ ¼
1

Nτ
½1 − wðxÞ%τ−2wðxÞ−1

2w0ðxÞe−
ΔM2

4λ logð 1
wðxÞÞ; ð58Þ

where qτðxÞ is normalized by
R
1
0 dxqτðxÞ ¼ 1. In the

conformal limit where the quark masses vanish,
ΔM2 → 0, we recover the results given in Ref. [14].
The specific function wðxÞ, taken from Ref. [14], is

effectively determined by Regge behavior at small-x and
the local power-law counting rule at x → 1. At x → 0, wðxÞ
scales as wðxÞ ∼ x to recover Regge behavior [67]. At
x → 1 the additional constraints

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð59Þ

yield the Drell-Yan counting rule qτðxÞ ∼ ð1 − xÞ2τ−3 at
large x [40]. Since wð1Þ ¼ 1, it follows that logð 1

wðxÞÞ → 0

in the limit x → 1, which implies that the local counting
rules at large-x are unmodified by the introduction of quark
masses in the holographic structural framework. However,
the squared mass shift induced by finite quark masses does
modify the small-x behavior by a factor xΔM

2=4λ, therefore
softening the Regge behavior of the PDFs at small-x

qτðxÞ ∼ x−αð0Þ ∼ x−
1
2þ

ΔM2

4λ ; ð60Þ

since wðxÞ in (58) scales as wðxÞ ∼ x at small-x. SinceΔM2

is considerably larger for strange quarks than for the up and
down quarks, the predicted behavior of the strange sea
distributions is less singular at x → 0 than the nonstrange
light quarks.

FIG. 6. Effect of ϕ − ω mixing in Fs
1ðQ2Þ and the sðxÞ − s̄ðxÞ

asymmetry. The effect of the mixing is negligible even for 10%
mixing, i.e., for η ¼ 0.1.
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Ns ¼ 0.047 in Fig. 2 is determined by a best fit to lattice
QCD predictions. As in the case of the fluctuation model,
we also fit the lattice QCD data, taking

ffiffiffi
λ

p
and Ns as free

parameters. The result is shown in Fig. 3 with parameter
values

ffiffiffi
λ

p
¼ 0.52ð17Þ GeV and Ns ¼ 0.046ð17Þ. This

value of
ffiffiffi
λ

p
agrees with that determined from the Regge

trajectory. The conformal limit results, ΔM2 ¼ 0, are also
shown in the figures for comparison. The strange form
factor (52) has the large-Q2 behavior Q8Fs

1ðQ2Þ → Const,
with Const ¼ 1680Nsλ4 ≃ 0.5 GeV8, consistent with the
scaling predicted from the hard-scattering counting
rules [63,64].

B. Strange quark distribution functions

To describe the quark distribution functions in the
holographic formalism it is convenient to express the
Beta function (41) in a reparametrization invariant form

Bðu; vÞ ¼
Z

1

0
dxw0ðxÞwðxÞu−1ð1 − wðxÞÞv−1; ð53Þ

provided that wðxÞ satisfies the constraints [14]

wð0Þ ¼ 0; wð1Þ ¼ 1; w0ðxÞ ≥ 0: ð54Þ

Therefore, using (53) and the Regge trajectory, (48), (49) or
(51), the EM form factor (40) for twist-τ can be written in
the invariant form

FτðtÞ ¼
1

Nτ

Z
1

0
dxw0ðxÞwðxÞ− t

4λ−
1
2½1 − wðxÞ%τ−2e−

ΔM2

4λ logð 1
wðxÞÞ:

ð55Þ

The EM form factor can also be expressed by
the exclusive-inclusive connection as the integrated
expression of the t-evolved PDF, namely, the generalized
parton distribution (GPD) at zero skewness, Hq

τ ðx; tÞ≡
Hq

τ ðx; ξ ¼ 0; tÞ,

Fq
τ ðtÞ ¼

Z
1

0
dxðHq

τ ðx; tÞ −Hq̄
τ ðx; tÞÞ

¼
Z

1

0
dxqτðxÞ exp½tfðxÞ%; ð56Þ

where fðxÞ is the profile function and qτðxÞ is the collinear
PDF of twist-τ. Comparing (56) with the holographic
expression (55) we find that both functions, fðxÞ and
qτðxÞ, are determined in terms of the reparametrization
function of the Beta function, wðxÞ, by

fðxÞ ¼ 1

4λ
log

"
1

wðxÞ

#
; ð57Þ

qτðxÞ ¼
1

Nτ
½1 − wðxÞ%τ−2wðxÞ−1

2w0ðxÞe−
ΔM2

4λ logð 1
wðxÞÞ; ð58Þ

where qτðxÞ is normalized by
R
1
0 dxqτðxÞ ¼ 1. In the

conformal limit where the quark masses vanish,
ΔM2 → 0, we recover the results given in Ref. [14].
The specific function wðxÞ, taken from Ref. [14], is

effectively determined by Regge behavior at small-x and
the local power-law counting rule at x → 1. At x → 0, wðxÞ
scales as wðxÞ ∼ x to recover Regge behavior [67]. At
x → 1 the additional constraints

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð59Þ

yield the Drell-Yan counting rule qτðxÞ ∼ ð1 − xÞ2τ−3 at
large x [40]. Since wð1Þ ¼ 1, it follows that logð 1

wðxÞÞ → 0

in the limit x → 1, which implies that the local counting
rules at large-x are unmodified by the introduction of quark
masses in the holographic structural framework. However,
the squared mass shift induced by finite quark masses does
modify the small-x behavior by a factor xΔM

2=4λ, therefore
softening the Regge behavior of the PDFs at small-x

qτðxÞ ∼ x−αð0Þ ∼ x−
1
2þ

ΔM2

4λ ; ð60Þ

since wðxÞ in (58) scales as wðxÞ ∼ x at small-x. SinceΔM2

is considerably larger for strange quarks than for the up and
down quarks, the predicted behavior of the strange sea
distributions is less singular at x → 0 than the nonstrange
light quarks.

FIG. 6. Effect of ϕ − ω mixing in Fs
1ðQ2Þ and the sðxÞ − s̄ðxÞ

asymmetry. The effect of the mixing is negligible even for 10%
mixing, i.e., for η ¼ 0.1.
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Ns ¼ 0.047 in Fig. 2 is determined by a best fit to lattice
QCD predictions. As in the case of the fluctuation model,
we also fit the lattice QCD data, taking

ffiffiffi
λ

p
and Ns as free

parameters. The result is shown in Fig. 3 with parameter
values

ffiffiffi
λ

p
¼ 0.52ð17Þ GeV and Ns ¼ 0.046ð17Þ. This

value of
ffiffiffi
λ

p
agrees with that determined from the Regge

trajectory. The conformal limit results, ΔM2 ¼ 0, are also
shown in the figures for comparison. The strange form
factor (52) has the large-Q2 behavior Q8Fs

1ðQ2Þ → Const,
with Const ¼ 1680Nsλ4 ≃ 0.5 GeV8, consistent with the
scaling predicted from the hard-scattering counting
rules [63,64].

B. Strange quark distribution functions

To describe the quark distribution functions in the
holographic formalism it is convenient to express the
Beta function (41) in a reparametrization invariant form

Bðu; vÞ ¼
Z

1

0
dxw0ðxÞwðxÞu−1ð1 − wðxÞÞv−1; ð53Þ

provided that wðxÞ satisfies the constraints [14]

wð0Þ ¼ 0; wð1Þ ¼ 1; w0ðxÞ ≥ 0: ð54Þ

Therefore, using (53) and the Regge trajectory, (48), (49) or
(51), the EM form factor (40) for twist-τ can be written in
the invariant form

FτðtÞ ¼
1

Nτ

Z
1

0
dxw0ðxÞwðxÞ− t

4λ−
1
2½1 − wðxÞ%τ−2e−

ΔM2

4λ logð 1
wðxÞÞ:

ð55Þ

The EM form factor can also be expressed by
the exclusive-inclusive connection as the integrated
expression of the t-evolved PDF, namely, the generalized
parton distribution (GPD) at zero skewness, Hq

τ ðx; tÞ≡
Hq

τ ðx; ξ ¼ 0; tÞ,

Fq
τ ðtÞ ¼

Z
1

0
dxðHq

τ ðx; tÞ −Hq̄
τ ðx; tÞÞ

¼
Z

1

0
dxqτðxÞ exp½tfðxÞ%; ð56Þ

where fðxÞ is the profile function and qτðxÞ is the collinear
PDF of twist-τ. Comparing (56) with the holographic
expression (55) we find that both functions, fðxÞ and
qτðxÞ, are determined in terms of the reparametrization
function of the Beta function, wðxÞ, by

fðxÞ ¼ 1

4λ
log

"
1

wðxÞ

#
; ð57Þ

qτðxÞ ¼
1

Nτ
½1 − wðxÞ%τ−2wðxÞ−1

2w0ðxÞe−
ΔM2

4λ logð 1
wðxÞÞ; ð58Þ

where qτðxÞ is normalized by
R
1
0 dxqτðxÞ ¼ 1. In the

conformal limit where the quark masses vanish,
ΔM2 → 0, we recover the results given in Ref. [14].
The specific function wðxÞ, taken from Ref. [14], is

effectively determined by Regge behavior at small-x and
the local power-law counting rule at x → 1. At x → 0, wðxÞ
scales as wðxÞ ∼ x to recover Regge behavior [67]. At
x → 1 the additional constraints

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð59Þ

yield the Drell-Yan counting rule qτðxÞ ∼ ð1 − xÞ2τ−3 at
large x [40]. Since wð1Þ ¼ 1, it follows that logð 1

wðxÞÞ → 0

in the limit x → 1, which implies that the local counting
rules at large-x are unmodified by the introduction of quark
masses in the holographic structural framework. However,
the squared mass shift induced by finite quark masses does
modify the small-x behavior by a factor xΔM

2=4λ, therefore
softening the Regge behavior of the PDFs at small-x

qτðxÞ ∼ x−αð0Þ ∼ x−
1
2þ

ΔM2

4λ ; ð60Þ

since wðxÞ in (58) scales as wðxÞ ∼ x at small-x. SinceΔM2

is considerably larger for strange quarks than for the up and
down quarks, the predicted behavior of the strange sea
distributions is less singular at x → 0 than the nonstrange
light quarks.
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we also fit the lattice QCD data, taking
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agrees with that determined from the Regge

trajectory. The conformal limit results, ΔM2 ¼ 0, are also
shown in the figures for comparison. The strange form
factor (52) has the large-Q2 behavior Q8Fs

1ðQ2Þ → Const,
with Const ¼ 1680Nsλ4 ≃ 0.5 GeV8, consistent with the
scaling predicted from the hard-scattering counting
rules [63,64].

B. Strange quark distribution functions

To describe the quark distribution functions in the
holographic formalism it is convenient to express the
Beta function (41) in a reparametrization invariant form

Bðu; vÞ ¼
Z

1

0
dxw0ðxÞwðxÞu−1ð1 − wðxÞÞv−1; ð53Þ

provided that wðxÞ satisfies the constraints [14]

wð0Þ ¼ 0; wð1Þ ¼ 1; w0ðxÞ ≥ 0: ð54Þ
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1
2½1 − wðxÞ%τ−2e−

ΔM2

4λ logð 1
wðxÞÞ:

ð55Þ

The EM form factor can also be expressed by
the exclusive-inclusive connection as the integrated
expression of the t-evolved PDF, namely, the generalized
parton distribution (GPD) at zero skewness, Hq
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Fq
τ ðtÞ ¼
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τ ðx; tÞÞ

¼
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dxqτðxÞ exp½tfðxÞ%; ð56Þ

where fðxÞ is the profile function and qτðxÞ is the collinear
PDF of twist-τ. Comparing (56) with the holographic
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where qτðxÞ is normalized by
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1
0 dxqτðxÞ ¼ 1. In the

conformal limit where the quark masses vanish,
ΔM2 → 0, we recover the results given in Ref. [14].
The specific function wðxÞ, taken from Ref. [14], is

effectively determined by Regge behavior at small-x and
the local power-law counting rule at x → 1. At x → 0, wðxÞ
scales as wðxÞ ∼ x to recover Regge behavior [67]. At
x → 1 the additional constraints

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð59Þ

yield the Drell-Yan counting rule qτðxÞ ∼ ð1 − xÞ2τ−3 at
large x [40]. Since wð1Þ ¼ 1, it follows that logð 1

wðxÞÞ → 0

in the limit x → 1, which implies that the local counting
rules at large-x are unmodified by the introduction of quark
masses in the holographic structural framework. However,
the squared mass shift induced by finite quark masses does
modify the small-x behavior by a factor xΔM

2=4λ, therefore
softening the Regge behavior of the PDFs at small-x

qτðxÞ ∼ x−αð0Þ ∼ x−
1
2þ

ΔM2

4λ ; ð60Þ

since wðxÞ in (58) scales as wðxÞ ∼ x at small-x. SinceΔM2

is considerably larger for strange quarks than for the up and
down quarks, the predicted behavior of the strange sea
distributions is less singular at x → 0 than the nonstrange
light quarks.
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agrees with that determined from the Regge

trajectory. The conformal limit results, ΔM2 ¼ 0, are also
shown in the figures for comparison. The strange form
factor (52) has the large-Q2 behavior Q8Fs

1ðQ2Þ → Const,
with Const ¼ 1680Nsλ4 ≃ 0.5 GeV8, consistent with the
scaling predicted from the hard-scattering counting
rules [63,64].

B. Strange quark distribution functions

To describe the quark distribution functions in the
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Beta function (41) in a reparametrization invariant form
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4λ logð 1
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The EM form factor can also be expressed by
the exclusive-inclusive connection as the integrated
expression of the t-evolved PDF, namely, the generalized
parton distribution (GPD) at zero skewness, Hq

τ ðx; tÞ≡
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τ ðtÞ ¼

Z
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¼
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1

0
dxqτðxÞ exp½tfðxÞ%; ð56Þ

where fðxÞ is the profile function and qτðxÞ is the collinear
PDF of twist-τ. Comparing (56) with the holographic
expression (55) we find that both functions, fðxÞ and
qτðxÞ, are determined in terms of the reparametrization
function of the Beta function, wðxÞ, by
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4λ logð 1
wðxÞÞ; ð58Þ

where qτðxÞ is normalized by
R
1
0 dxqτðxÞ ¼ 1. In the

conformal limit where the quark masses vanish,
ΔM2 → 0, we recover the results given in Ref. [14].
The specific function wðxÞ, taken from Ref. [14], is

effectively determined by Regge behavior at small-x and
the local power-law counting rule at x → 1. At x → 0, wðxÞ
scales as wðxÞ ∼ x to recover Regge behavior [67]. At
x → 1 the additional constraints

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð59Þ

yield the Drell-Yan counting rule qτðxÞ ∼ ð1 − xÞ2τ−3 at
large x [40]. Since wð1Þ ¼ 1, it follows that logð 1

wðxÞÞ → 0

in the limit x → 1, which implies that the local counting
rules at large-x are unmodified by the introduction of quark
masses in the holographic structural framework. However,
the squared mass shift induced by finite quark masses does
modify the small-x behavior by a factor xΔM

2=4λ, therefore
softening the Regge behavior of the PDFs at small-x

qτðxÞ ∼ x−αð0Þ ∼ x−
1
2þ

ΔM2

4λ ; ð60Þ

since wðxÞ in (58) scales as wðxÞ ∼ x at small-x. SinceΔM2

is considerably larger for strange quarks than for the up and
down quarks, the predicted behavior of the strange sea
distributions is less singular at x → 0 than the nonstrange
light quarks.
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with the same w(x) that satisfies

Large-x:

GPDs and LFWFs [52,55]. Shifting the FF poles to their
physical location [56] does not modify the exclusive
counting rules, but modifies the slope and intercept of
the Regge trajectory, and hence the analytic structure of the
GPDs that incorporates the Regge behavior. As a result, the
x dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present context
up to a universal reparametrization function; therefore,
imposing further physically motivated constraints is
necessary.
Generalized parton distributions in LFHQCD.—In

LFHQCD, the FF for arbitrary twist τ is expressed in
terms of Gamma functions [28,52], an expression that can
be recast in terms of the Euler Beta function Bðu; vÞ as [29]

FτðtÞ ¼
1

Nτ
B
!
τ − 1;

1

2
−

t
4λ

"
; ð1Þ

where

Bðu; vÞ ¼
Z

1

0
dyyu−1ð1 − yÞv−1; ð2Þ

and Bðu; vÞ ¼ Bðv; uÞ ¼ ½ΓðuÞΓðvÞ=Γðuþ vÞ& with Nτ ¼ffiffiffi
π

p
½Γðτ − 1Þ=Γðτ − 1

2Þ&. For fixed u and large v, we have
Bðu; vÞ ∼ ΓðuÞv−u: we thus recover, for large Q2 ¼ −t, the
hard scattering scaling behavior [53,54]

FτðQ2Þ ∼
!

1

Q2

"
τ−1

: ð3Þ

In contrast with the GPD twist that is determined by the
quark-quark correlator, twist τ in (1) and (3) refers to
the number of constituents in a given Fock component in
the Fock expansion of the hadron state. It controls the short
distance behavior of the hadronic state and thus the power-
law asymptotic behavior (3).
For integer τ Eq. (1) generates the pole structure [52]

FτðQ2Þ ¼ 1

ð1þ Q2

M2
0

Þð1þ Q2

M2
1

Þ ' ' ' ð1þ Q2

M2
τ−2
Þ
; ð4Þ

with M2
n ¼ 4λðnþ 1

2Þ; n ¼ 0; 1; 2;…; τ − 2, corresponding
to the ρ vector meson and its radial excitations [28]. Notice
that the Beta function in (1) can be rewritten as B(τ − 1;
1 − αðtÞ) with Regge trajectory

αðtÞ ¼ t
4λ

þ 1

2
; ð5Þ

slope α0 ¼ 1=4λ and intercept αð0Þ ¼ 1
2. This is just the ρ

trajectory emerging from LFHQCD. The value of the
universal scale λ is fixed from the ρ mass:

ffiffiffi
λ

p
¼ κ ¼

mρ=
ffiffiffi
2

p
¼ 0.548 GeV [28,57].

Notice that the form factor (1) can be expressed as a
Veneziano amplitude [58] B(1 − αðsÞ; 1 − αðtÞ), where the
s-channel dependence is replaced by a fixed pole,
1 − αðsÞ → τ − 1, allowed by unitarity constraints, since
no resonances are formed in the s channel [59–61]
It will be useful to rewrite (1) using the reparametrization

invariance of the Euler Beta function (2) and thus transform
the integral representation of the form factor (1) into the
invariant form

FτðtÞ ¼
1

Nτ

Z
1

0
dxw0ðxÞwðxÞ−t=4λ−1

2½1 − wðxÞ&τ−2; ð6Þ

if wðxÞ is a monotonically increasing function with fixed
values at the integration limits given by the constraints

wð0Þ ¼ 0; wð1Þ ¼ 1; w0ðxÞ ≥ 0; ð7Þ

with x ∈ ½0; 1&. Any function wðxÞ that satisfies the con-
straints (7) will give the same result for the form factor.
Writing the flavor FF in terms of the valence GPD

FqðtÞ ¼
R
1
0 dxH

q
vðx; tÞ at zero skewness, Hqðx; tÞ≡

Hqðx; ξ ¼ 0; tÞ, we obtain

Hqðx; tÞ ¼ 1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞeðt=4λÞ log½1=wðxÞ&

¼ qτðxÞ exp½tfðxÞ&; ð8Þ

where the PDF qτðxÞ and the profile function fðxÞ

qτðxÞ ¼
1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞ; ð9Þ

fðxÞ ¼ 1

4λ
log

!
1

wðxÞ

"
; ð10Þ

are expressed in terms of the function wðxÞ fulfilling
conditions (7).
If, for x ∼ 0, wðxÞ behaves as wðxÞ ∼ x, we find the

t dependence

Hq
vðx; tÞ ∼ x−t=4λqvðxÞ; ð11Þ

which is the Regge theory motivated ansatz for small x
given in Ref. [62] for α0 ¼ 1=4λ.
To study the behavior of wðxÞ at large x, we perform a

Taylor expansion near x ¼ 1

wðxÞ ¼ 1 − ð1 − xÞw0ð1Þ þ 1

2
ð1 − xÞ2w00ð1Þ þ ' ' ' : ð12Þ

Upon substitution of (12) in (9), we find that the leading
term in the expansion, which behaves as ð1 − xÞτ−2,
vanishes if w0ð1Þ ¼ 0. Hence, setting

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð13Þ
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for x 2 [0, 1]

GPDs and LFWFs [52,55]. Shifting the FF poles to their
physical location [56] does not modify the exclusive
counting rules, but modifies the slope and intercept of
the Regge trajectory, and hence the analytic structure of the
GPDs that incorporates the Regge behavior. As a result, the
x dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present context
up to a universal reparametrization function; therefore,
imposing further physically motivated constraints is
necessary.
Generalized parton distributions in LFHQCD.—In

LFHQCD, the FF for arbitrary twist τ is expressed in
terms of Gamma functions [28,52], an expression that can
be recast in terms of the Euler Beta function Bðu; vÞ as [29]

FτðtÞ ¼
1

Nτ
B
!
τ − 1;

1

2
−

t
4λ

"
; ð1Þ

where

Bðu; vÞ ¼
Z

1

0
dyyu−1ð1 − yÞv−1; ð2Þ

and Bðu; vÞ ¼ Bðv; uÞ ¼ ½ΓðuÞΓðvÞ=Γðuþ vÞ& with Nτ ¼ffiffiffi
π

p
½Γðτ − 1Þ=Γðτ − 1

2Þ&. For fixed u and large v, we have
Bðu; vÞ ∼ ΓðuÞv−u: we thus recover, for large Q2 ¼ −t, the
hard scattering scaling behavior [53,54]

FτðQ2Þ ∼
!

1

Q2

"
τ−1

: ð3Þ

In contrast with the GPD twist that is determined by the
quark-quark correlator, twist τ in (1) and (3) refers to
the number of constituents in a given Fock component in
the Fock expansion of the hadron state. It controls the short
distance behavior of the hadronic state and thus the power-
law asymptotic behavior (3).
For integer τ Eq. (1) generates the pole structure [52]

FτðQ2Þ ¼ 1

ð1þ Q2

M2
0

Þð1þ Q2

M2
1

Þ ' ' ' ð1þ Q2

M2
τ−2
Þ
; ð4Þ

with M2
n ¼ 4λðnþ 1

2Þ; n ¼ 0; 1; 2;…; τ − 2, corresponding
to the ρ vector meson and its radial excitations [28]. Notice
that the Beta function in (1) can be rewritten as B(τ − 1;
1 − αðtÞ) with Regge trajectory

αðtÞ ¼ t
4λ

þ 1

2
; ð5Þ

slope α0 ¼ 1=4λ and intercept αð0Þ ¼ 1
2. This is just the ρ

trajectory emerging from LFHQCD. The value of the
universal scale λ is fixed from the ρ mass:

ffiffiffi
λ

p
¼ κ ¼

mρ=
ffiffiffi
2

p
¼ 0.548 GeV [28,57].

Notice that the form factor (1) can be expressed as a
Veneziano amplitude [58] B(1 − αðsÞ; 1 − αðtÞ), where the
s-channel dependence is replaced by a fixed pole,
1 − αðsÞ → τ − 1, allowed by unitarity constraints, since
no resonances are formed in the s channel [59–61]
It will be useful to rewrite (1) using the reparametrization

invariance of the Euler Beta function (2) and thus transform
the integral representation of the form factor (1) into the
invariant form

FτðtÞ ¼
1

Nτ

Z
1

0
dxw0ðxÞwðxÞ−t=4λ−1

2½1 − wðxÞ&τ−2; ð6Þ

if wðxÞ is a monotonically increasing function with fixed
values at the integration limits given by the constraints

wð0Þ ¼ 0; wð1Þ ¼ 1; w0ðxÞ ≥ 0; ð7Þ

with x ∈ ½0; 1&. Any function wðxÞ that satisfies the con-
straints (7) will give the same result for the form factor.
Writing the flavor FF in terms of the valence GPD

FqðtÞ ¼
R
1
0 dxH

q
vðx; tÞ at zero skewness, Hqðx; tÞ≡

Hqðx; ξ ¼ 0; tÞ, we obtain

Hqðx; tÞ ¼ 1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞeðt=4λÞ log½1=wðxÞ&

¼ qτðxÞ exp½tfðxÞ&; ð8Þ

where the PDF qτðxÞ and the profile function fðxÞ

qτðxÞ ¼
1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞ; ð9Þ

fðxÞ ¼ 1

4λ
log

!
1

wðxÞ

"
; ð10Þ

are expressed in terms of the function wðxÞ fulfilling
conditions (7).
If, for x ∼ 0, wðxÞ behaves as wðxÞ ∼ x, we find the

t dependence

Hq
vðx; tÞ ∼ x−t=4λqvðxÞ; ð11Þ

which is the Regge theory motivated ansatz for small x
given in Ref. [62] for α0 ¼ 1=4λ.
To study the behavior of wðxÞ at large x, we perform a

Taylor expansion near x ¼ 1

wðxÞ ¼ 1 − ð1 − xÞw0ð1Þ þ 1

2
ð1 − xÞ2w00ð1Þ þ ' ' ' : ð12Þ

Upon substitution of (12) in (9), we find that the leading
term in the expansion, which behaves as ð1 − xÞτ−2,
vanishes if w0ð1Þ ¼ 0. Hence, setting

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð13Þ
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at small-x,     and 

GPDs and LFWFs [52,55]. Shifting the FF poles to their
physical location [56] does not modify the exclusive
counting rules, but modifies the slope and intercept of
the Regge trajectory, and hence the analytic structure of the
GPDs that incorporates the Regge behavior. As a result, the
x dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present context
up to a universal reparametrization function; therefore,
imposing further physically motivated constraints is
necessary.
Generalized parton distributions in LFHQCD.—In

LFHQCD, the FF for arbitrary twist τ is expressed in
terms of Gamma functions [28,52], an expression that can
be recast in terms of the Euler Beta function Bðu; vÞ as [29]
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4λ

"
; ð1Þ

where
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1
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and Bðu; vÞ ¼ Bðv; uÞ ¼ ½ΓðuÞΓðvÞ=Γðuþ vÞ& with Nτ ¼ffiffiffi
π

p
½Γðτ − 1Þ=Γðτ − 1

2Þ&. For fixed u and large v, we have
Bðu; vÞ ∼ ΓðuÞv−u: we thus recover, for large Q2 ¼ −t, the
hard scattering scaling behavior [53,54]

FτðQ2Þ ∼
!

1
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"
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: ð3Þ

In contrast with the GPD twist that is determined by the
quark-quark correlator, twist τ in (1) and (3) refers to
the number of constituents in a given Fock component in
the Fock expansion of the hadron state. It controls the short
distance behavior of the hadronic state and thus the power-
law asymptotic behavior (3).
For integer τ Eq. (1) generates the pole structure [52]
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τ−2
Þ
; ð4Þ

with M2
n ¼ 4λðnþ 1

2Þ; n ¼ 0; 1; 2;…; τ − 2, corresponding
to the ρ vector meson and its radial excitations [28]. Notice
that the Beta function in (1) can be rewritten as B(τ − 1;
1 − αðtÞ) with Regge trajectory

αðtÞ ¼ t
4λ

þ 1

2
; ð5Þ

slope α0 ¼ 1=4λ and intercept αð0Þ ¼ 1
2. This is just the ρ

trajectory emerging from LFHQCD. The value of the
universal scale λ is fixed from the ρ mass:

ffiffiffi
λ

p
¼ κ ¼

mρ=
ffiffiffi
2

p
¼ 0.548 GeV [28,57].

Notice that the form factor (1) can be expressed as a
Veneziano amplitude [58] B(1 − αðsÞ; 1 − αðtÞ), where the
s-channel dependence is replaced by a fixed pole,
1 − αðsÞ → τ − 1, allowed by unitarity constraints, since
no resonances are formed in the s channel [59–61]
It will be useful to rewrite (1) using the reparametrization

invariance of the Euler Beta function (2) and thus transform
the integral representation of the form factor (1) into the
invariant form

FτðtÞ ¼
1

Nτ

Z
1

0
dxw0ðxÞwðxÞ−t=4λ−1

2½1 − wðxÞ&τ−2; ð6Þ

if wðxÞ is a monotonically increasing function with fixed
values at the integration limits given by the constraints

wð0Þ ¼ 0; wð1Þ ¼ 1; w0ðxÞ ≥ 0; ð7Þ

with x ∈ ½0; 1&. Any function wðxÞ that satisfies the con-
straints (7) will give the same result for the form factor.
Writing the flavor FF in terms of the valence GPD

FqðtÞ ¼
R
1
0 dxH

q
vðx; tÞ at zero skewness, Hqðx; tÞ≡

Hqðx; ξ ¼ 0; tÞ, we obtain

Hqðx; tÞ ¼ 1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞeðt=4λÞ log½1=wðxÞ&

¼ qτðxÞ exp½tfðxÞ&; ð8Þ

where the PDF qτðxÞ and the profile function fðxÞ

qτðxÞ ¼
1

Nτ
½1 − wðxÞ&τ−2wðxÞ−1

2w0ðxÞ; ð9Þ

fðxÞ ¼ 1

4λ
log

!
1

wðxÞ

"
; ð10Þ

are expressed in terms of the function wðxÞ fulfilling
conditions (7).
If, for x ∼ 0, wðxÞ behaves as wðxÞ ∼ x, we find the

t dependence

Hq
vðx; tÞ ∼ x−t=4λqvðxÞ; ð11Þ

which is the Regge theory motivated ansatz for small x
given in Ref. [62] for α0 ¼ 1=4λ.
To study the behavior of wðxÞ at large x, we perform a

Taylor expansion near x ¼ 1

wðxÞ ¼ 1 − ð1 − xÞw0ð1Þ þ 1

2
ð1 − xÞ2w00ð1Þ þ ' ' ' : ð12Þ

Upon substitution of (12) in (9), we find that the leading
term in the expansion, which behaves as ð1 − xÞτ−2,
vanishes if w0ð1Þ ¼ 0. Hence, setting

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð13Þ
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Small-x:

Ns ¼ 0.047 in Fig. 2 is determined by a best fit to lattice
QCD predictions. As in the case of the fluctuation model,
we also fit the lattice QCD data, taking

ffiffiffi
λ

p
and Ns as free

parameters. The result is shown in Fig. 3 with parameter
values

ffiffiffi
λ

p
¼ 0.52ð17Þ GeV and Ns ¼ 0.046ð17Þ. This

value of
ffiffiffi
λ

p
agrees with that determined from the Regge

trajectory. The conformal limit results, ΔM2 ¼ 0, are also
shown in the figures for comparison. The strange form
factor (52) has the large-Q2 behavior Q8Fs

1ðQ2Þ → Const,
with Const ¼ 1680Nsλ4 ≃ 0.5 GeV8, consistent with the
scaling predicted from the hard-scattering counting
rules [63,64].

B. Strange quark distribution functions

To describe the quark distribution functions in the
holographic formalism it is convenient to express the
Beta function (41) in a reparametrization invariant form

Bðu; vÞ ¼
Z

1

0
dxw0ðxÞwðxÞu−1ð1 − wðxÞÞv−1; ð53Þ

provided that wðxÞ satisfies the constraints [14]

wð0Þ ¼ 0; wð1Þ ¼ 1; w0ðxÞ ≥ 0: ð54Þ

Therefore, using (53) and the Regge trajectory, (48), (49) or
(51), the EM form factor (40) for twist-τ can be written in
the invariant form

FτðtÞ ¼
1

Nτ

Z
1

0
dxw0ðxÞwðxÞ− t

4λ−
1
2½1 − wðxÞ%τ−2e−

ΔM2

4λ logð 1
wðxÞÞ:

ð55Þ

The EM form factor can also be expressed by
the exclusive-inclusive connection as the integrated
expression of the t-evolved PDF, namely, the generalized
parton distribution (GPD) at zero skewness, Hq

τ ðx; tÞ≡
Hq

τ ðx; ξ ¼ 0; tÞ,

Fq
τ ðtÞ ¼

Z
1

0
dxðHq

τ ðx; tÞ −Hq̄
τ ðx; tÞÞ

¼
Z

1

0
dxqτðxÞ exp½tfðxÞ%; ð56Þ

where fðxÞ is the profile function and qτðxÞ is the collinear
PDF of twist-τ. Comparing (56) with the holographic
expression (55) we find that both functions, fðxÞ and
qτðxÞ, are determined in terms of the reparametrization
function of the Beta function, wðxÞ, by

fðxÞ ¼ 1

4λ
log

"
1

wðxÞ

#
; ð57Þ

qτðxÞ ¼
1

Nτ
½1 − wðxÞ%τ−2wðxÞ−1

2w0ðxÞe−
ΔM2

4λ logð 1
wðxÞÞ; ð58Þ

where qτðxÞ is normalized by
R
1
0 dxqτðxÞ ¼ 1. In the

conformal limit where the quark masses vanish,
ΔM2 → 0, we recover the results given in Ref. [14].
The specific function wðxÞ, taken from Ref. [14], is

effectively determined by Regge behavior at small-x and
the local power-law counting rule at x → 1. At x → 0, wðxÞ
scales as wðxÞ ∼ x to recover Regge behavior [67]. At
x → 1 the additional constraints

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð59Þ

yield the Drell-Yan counting rule qτðxÞ ∼ ð1 − xÞ2τ−3 at
large x [40]. Since wð1Þ ¼ 1, it follows that logð 1

wðxÞÞ → 0

in the limit x → 1, which implies that the local counting
rules at large-x are unmodified by the introduction of quark
masses in the holographic structural framework. However,
the squared mass shift induced by finite quark masses does
modify the small-x behavior by a factor xΔM

2=4λ, therefore
softening the Regge behavior of the PDFs at small-x

qτðxÞ ∼ x−αð0Þ ∼ x−
1
2þ

ΔM2

4λ ; ð60Þ

since wðxÞ in (58) scales as wðxÞ ∼ x at small-x. SinceΔM2

is considerably larger for strange quarks than for the up and
down quarks, the predicted behavior of the strange sea
distributions is less singular at x → 0 than the nonstrange
light quarks.

FIG. 6. Effect of ϕ − ω mixing in Fs
1ðQ2Þ and the sðxÞ − s̄ðxÞ

asymmetry. The effect of the mixing is negligible even for 10%
mixing, i.e., for η ¼ 0.1.
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expression of the t-evolved PDF, namely, the generalized
parton distribution (GPD) at zero skewness, Hq

τ ðx; tÞ≡
Hq

τ ðx; ξ ¼ 0; tÞ,

Fq
τ ðtÞ ¼

Z
1

0
dxðHq

τ ðx; tÞ −Hq̄
τ ðx; tÞÞ

¼
Z

1

0
dxqτðxÞ exp½tfðxÞ%; ð56Þ

where fðxÞ is the profile function and qτðxÞ is the collinear
PDF of twist-τ. Comparing (56) with the holographic
expression (55) we find that both functions, fðxÞ and
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x → 1 the additional constraints

w0ð1Þ ¼ 0 and w00ð1Þ ≠ 0; ð59Þ

yield the Drell-Yan counting rule qτðxÞ ∼ ð1 − xÞ2τ−3 at
large x [40]. Since wð1Þ ¼ 1, it follows that logð 1
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in the limit x → 1, which implies that the local counting
rules at large-x are unmodified by the introduction of quark
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the squared mass shift induced by finite quark masses does
modify the small-x behavior by a factor xΔM

2=4λ, therefore
softening the Regge behavior of the PDFs at small-x
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since wðxÞ in (58) scales as wðxÞ ∼ x at small-x. SinceΔM2

is considerably larger for strange quarks than for the up and
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distributions is less singular at x → 0 than the nonstrange
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It has been noted in the pre-QCD era that the behavior of
parton distributions near x → 0 is governed by the Regge
intercept [59]. This is again in agreement with LFHQCD
even including the finite quark mass correction. The
t-dependence of GPDs, instead, is not influenced by the
introduction of quark masses, since the Regge slope is
universal for light hadrons [33].
The expression for the strange-antistrange PDF asym-

metry sðxÞ − s̄ðxÞ corresponding to (52) is

sðxÞ − s̄ðxÞ ¼ ð1 − ηÞNs½qϕτ¼5ðxÞ − qϕτ¼6ðxÞ%
þ ηNs½qωτ¼5ðxÞ − qωτ¼6ðxÞ%; ð61Þ

with qω;ϕτ ðxÞ given by (58) for ΔM2
ω and ΔM2

ϕ respectively.
For the universal reparametrization function wðxÞ we use
the form in Ref. [14],

wðxÞ ¼ x1−xe−að1−xÞ
2
; ð62Þ

with a ¼ 0.531 determined from the first moment of proton
valence quark distributions. The effect of the ϕ − ω mixing
for the sðxÞ − s̄ðxÞ asymmetry also turns out to be negli-
gible for a mixing of the order of 10% (Fig. 6) and will be
neglected.
The PDF predictions for the asymmetry sðxÞ − s̄ðxÞ

are shown in Fig. 4 and compared with the fluctuation
model and global fits for Ns ¼ 0.046ð17Þ and

ffiffiffi
λ

p
¼

0.52ð17Þ GeV obtained from the lattice form factor results.
The actual computations are carried out with the universal
function wðxÞ given by (62). In contrast to the baryon-
meson fluctuation model, which has the small-x behavior
sðxÞ − s̄ðxÞ → 0, the holographic model has the Regge
behavior sðxÞ − s̄ðxÞ ≃ −0.044x−0.01 in the limit x → 0.
This can be compared with the global data fit results, shown
in Fig. 4 at the initial scale μ ¼ 1 GeV.
The sign and the magnitude of hS−i, Eq. (2), play a

significant role in understanding the NuTeV anomaly
[68–73]; namely, that the Weinberg angle θW extracted
from deep inelastic neutrino/antineutrino scatterings by
NuTeV deviates by about 3σ from the standard model value
sin2 θW ¼ 0.23129ð5Þ [54]. A positive hS−i will reduce the
NuTeV anomaly, whereas a negative hS−i will increase it
[20,69,71]. Assuming a single source for the NuTeV
anomaly, hS−i ∼ 0.005 is required.
From our analysis, the lattice QCD result favors a

positive hS−i. However, the fits with the fluctuation model
and LFHQCD yield hS−i ¼ 0.0011ð4Þ, which is not
sufficient to solely explain the NuTeV anomaly; other
sources are needed. Although the value for hS−i is model
dependent, we emphasize that more precise determinations
of Fs

1ðQ2Þ from first-principle lattice QCD calculations
and/or future experiments will provide important con-
straints on the strange-antistrange asymmetry.

C. Separation of strange and antistrange asymmetric
quark distributions

Light-front holographic QCD predicts the structural
behavior of the strange asymmetry (61) up to twist-6,
but it does not directly predict the individual distributions
sðxÞ and s̄ðxÞwhich together determine the intrinsic strange
contribution to the quark sea in the nucleon

Z
dx sðxÞ ¼

Z
dx s̄ðxÞ ¼ Is: ð63Þ

We will show, however, how one can uniquely determine
the minimum strange probability Is in the proton and then
give constraints on the separate sðxÞ and s̄ðxÞ distributions.
We expand the longitudinal quark distributions sðxÞ and

s̄ðxÞ into their twist-5 and twist-6 components

sðxÞ ¼ αqτ¼5ðxÞ þ βqτ¼6ðxÞ; ð64Þ

s̄ðxÞ ¼ γqτ¼5ðxÞ þ δqτ¼6ðxÞ; ð65Þ

corresponding to Lz ¼ 0 and Lz ¼ 1, respectively.
Comparing with (61) and using the sum rule (1), we find

αþ β ¼ Is; ð66Þ

γ þ δ ¼ Is; ð67Þ

α − γ ¼ Ns; ð68Þ

δ − β ¼ Ns; ð69Þ

with the general solution

β ¼ Is − α; ð70Þ

γ ¼ α − Ns; ð71Þ

δ ¼ Is − αþ Ns: ð72Þ

We can thus write

sðxÞ ¼ αqτ¼5ðxÞ þ ðIs − αÞqτ¼6ðxÞ; ð73Þ

s̄ðxÞ ¼ ðα − NsÞqτ¼5ðxÞ þ ðIs − αþ NsÞqτ¼6ðxÞ; ð74Þ

with α an arbitrary parameter constrained by the conditions
sðxÞ ≥ 0 and s̄ðxÞ ≥ 0. Since the twist-5 term dominates at
large-x we require α ≥ 0 and γ ≥ 0. For positive Ns, the
positivity constraints lead to α ≥ Ns. At small-x we have
the behavior

lim
x→0

qτ¼5ðxÞ
qτ¼6ðxÞ

¼ Nτ¼6

Nτ¼5

≡ R; ð75Þ
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Fig. 1. Two-state fits of the 32I and 48I ensembles 3pt/2pt summed ratio data for 
Gc

E,M (Q 2) matrix elements at the unitary points. The colored bands show the fit 
results. The upper panel shows the fit to matrix elements for Gc

E (Q 2) and the lower 
panel shows that for Gc

M (Q 2).

Fig. 2. Gc
E,M (Q 2) matrix elements obtained from the 48I, 32I, and 24I ensembles. 

Corresponding legends for different pion masses are included in the lower panel 
of the figure. The numbers in the legends, such as m139, m251 represent the data 
points corresponding to pion mass 139 MeV and 251 MeV, respectively at differ-
ent Q 2-values. The cyan band indicates Gc

E,M (Q 2)|physical . The outer (lighter tinted) 
cyan margins represent an estimate of systematic uncertainty. Matrix elements at 
the same Q 2-value but at different pion masses are shown with small offsets for 
better visibility.

Gc
E(Q 2,mπ ,mπ ,vs,m J/ψ ,a, L) =

kmax∑

k=0

λkzk ×
(

1 + A1m2
π+

A2m2
π ,vs + A3m2

J/ψ + A4a2 + A5
√

L e−mπ L
)

, (3)

where z =
√

tcut + Q 2 − √
tcut√

tcut + Q 2 + √
tcut

. (4)

In fit Eq. (3), mπ ,vs is the partially quenched pion mass m2
π ,vs =

1/2(m2
π + m2

π ,ss) with mπ ,ss the pion mass corresponding to the 
sea quark mass. The m J/ψ masses for the lattice ensembles are 
obtained in [63] and extrapolated to the physical value m J/ψ =
3.097 GeV [68]. A4 includes the mixed-action parameter $mix [69]. 
The volume correction in fit (3) has been adopted from [70] to 
best describe the data. We use tcut = m2

J/ψ , the pole of cc̄ pair 
production. We note that this choice is different from the fit to the 
strange quark form factor where the tcut is chosen at 4m2

K , because 
the mass of two kaons is less than the mass of φ, while the mass 
of two D mesons is greater than the mass of J/ψ . One may also 
consider ηc , which is a bit lighter, but J/ψ is more likely to be 
produced from a vector current.

The inclusion of higher-order terms beyond kmax = 4 has no 
statistical significance and is not considered in the z-expansion 
fit (3). We obtain χ2/d.o.f. = 1.17 for the fit (3) and the fit 
parameters are λ0 = 0, λ1 = 0.084(15), λ2 = −2.38(60), λ3 =
6.04(9.79), λ4 = −0.13(5.79), A1 = −1.05(52), A2 = −0.18(84), 
A3 = 0.025(86), A4 = −0.24(60), A5 = −0.02(34). Replacing the 
correction term A1m2

π by A1mπ results in negligible change in 
the final result. A faster decreasing volume correction exp(−mD0 L)

correction gives A5 = 0.008(21) which is a smaller correction 
compared to exp(−mπ L) as expected and they are in statisti-
cal agreement. The significant increase of the uncertainty in the 
physical value of Gc

E(Q 2) at larger Q 2 is due to the fact that 
the data points on the 24I and 32I ensembles are at much heav-
ier pion mass compared to the matrix element at the physical 
mπ = 139 MeV on the 48I ensemble and there exist no LQCD 
data points at Q 2 ≥ 0.31 GeV2 on the 48I ensemble. We also 
see a similar feature for Gc

M(Q 2) shown in the lower panel of 
Fig. 2. The cyan band in Fig. 2 represents Gc

E (Q 2)|physical in the 
physical limit after the quark mass, finite lattice spacing and 
volume corrections have been implemented using the fit pa-
rameters listed above. Since most of the Ai corrections do not 
have statistical significance, we explore the above fit with sepa-
rate combinations of Ai , for example, with A1&A4, A1&A5, and 
A1, A4, &A5 correction terms. For these fits, we obtain {A1, A4} =
{−0.77(18), −0.23(37)}, {A1, A5} = {−0.89(22), −0.28(36)}, and 
{A1, A4, A5} = {−0.86(22), −0.26(37), −0.24(35)}, while the phys-
ical Gc

E (Q 2) remains essentially unchanged with slightly smaller 
final uncertainties compared to when all Ai corrections are in-
cluded. A similar investigation for the Gc

M(Q 2) fit results in a 
similar conclusion.

The systematic uncertainty is estimated by calculating the dif-
ferences between Gc

E (Q 2)|physical and Gc
E (Q 2) obtained from the fit 

Eq. (3) by considering the corrections of the A3, A4, A5 terms from 
the m J/ψ -value on the 24I ensemble obtained in [63], the small-
est lattice spacing from the 32I ensemble, and the 48I ensemble 
with the largest volume, respectively. The systematic uncertainty 
has been added as lighter-tinted margins to the statistical uncer-
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To obtain Gc
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GeV2 momentum transfer region, we adopt the following empirical 
fit form with the volume correction term adopted from [71]:
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Fig. 1. Two-state fits of the 32I and 48I ensembles 3pt/2pt summed ratio data for 
Gc

E,M (Q 2) matrix elements at the unitary points. The colored bands show the fit 
results. The upper panel shows the fit to matrix elements for Gc

E (Q 2) and the lower 
panel shows that for Gc

M (Q 2).

Fig. 2. Gc
E,M (Q 2) matrix elements obtained from the 48I, 32I, and 24I ensembles. 

Corresponding legends for different pion masses are included in the lower panel 
of the figure. The numbers in the legends, such as m139, m251 represent the data 
points corresponding to pion mass 139 MeV and 251 MeV, respectively at differ-
ent Q 2-values. The cyan band indicates Gc

E,M (Q 2)|physical . The outer (lighter tinted) 
cyan margins represent an estimate of systematic uncertainty. Matrix elements at 
the same Q 2-value but at different pion masses are shown with small offsets for 
better visibility.
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A2m2
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J/ψ + A4a2 + A5
√

L e−mπ L
)
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tcut√

tcut + Q 2 + √
tcut

. (4)
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First LQCD computation of 
charm quark EM form factors 
with three ensembles 
(one at physical pion mass)
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to incorporate quark mass corrections. For small quark masses (up, 
down and strange) the latter can be treated perturbatively, leaving 
the Regge slope unchanged and leading to a moderate change of 
the intercept. The resulting spectra are in very good agreement 
with experiment [51,79]. The situation is more intricate for the 
case of heavy quarks, like c quarks, since now conformal symmetry 
is strongly broken and the occurrence of linear trajectories is far 
from obvious. It has been shown, however, that the formalism can 
indeed be extended to heavy quark bound states [80,81], leading to 
a fair agreement with the data. In this case, the Regge trajectories 
are still linear, but the slope depends on the heavy quark mass. 
The intercept changes quite drastically with the quark mass.

The J/ψ Regge trajectory obtained in [81] is

α(t) J/ψ = t

4κ2
c

− 2.066, (14)

where κc = 0.874 GeV. This result agrees with the one obtained in 
a phenomenological potential model [82]. The large change of the 
intercept as compared to light quarks removes the small-x singu-
larity of quark distribution functions while keeping the counting 
rules at large Q 2 and at large x unchanged. The change of the 
slope affects only the generalized parton distribution function. The 
quark distribution difference [c(x) − c̄(x)] is not sensitive to the 
choice of the mass correction procedure, since the quark mass af-
fects equally charm and anticharm distributions.

In practice, one needs to truncate the expansion in Eq. (8) to 
have numerical results. For simplicity, we only keep the lowest 
Fock state containing the charm quark components, i.e., τ = 5. The 
coefficient cτ is determined, through Eqs. (8) and (9) by the lattice 
results of Gc

E (Q 2) and Gc
M(Q 2) at the physical limit. We perform 

a fit to the extracted results of Gc
E (Q 2)|physical and Gc

M(Q 2)|physical, 
i.e., the bands in Figs. 2. Since the lattice data from different 
ensembles are evaluated at different Q 2 values, and have been 
utilized to determine the quark mass, lattice spacing, and finite 
volume effects, the effective number of data points in the physical 
limit is 6 for Gc

E (Q 2)|physical and 6 for Gc
M(Q 2)|physical.1 To really 

capture the uncertainty, we create 200 replicas from the extracted 
bands. Each replica is firstly generated by randomly sampling 6 
data points of Gc

E (Q 2)|physical and 6 data points of Gc
M (Q 2)|physical

from the extracted bands within 0 < Q 2 < 1.4 GeV2, which are 
covered by the lattice data. Then for each data point, the cen-
tral value is resampled with a Gaussian distribution according to 
its uncertainty. In addition, we also randomly shift the value of 
κc within ±5% in each single fit of one replica to incorporate the 
theoretical uncertainty. The coefficient determined from the fit is 
cτ=5 = 0.018(3).

Having obtained the charm coefficient cτ=5 from the lattice 
computation, we use Eq. (12), to obtain the asymmetric charm-
anticharm distribution function x[c(x) − c̄(x)] shown in Fig. 3. The 
result from the fit is in agreement with the qualitative analysis 
at the beginning of this section, namely, that the charm quark 
tends to carry larger momentum than the anticharm quark based 
on the lattice results for the charm quark form factors. From the 
x[c(x) − c̄(x)] distribution obtained by combining LQCD results 
from Gc

E,M(Q 2) and the LFHQCD formalism, we can calculate the 
first moment of the difference of c(x) and c̄(x) PDFs to be

〈x〉c−c̄ =
1∫

0

dx x [c(x) − c̄(x)] = 0.00047(15), (15)

1 For each ensemble we have data points at 6 different Q 2. A simultaneous fit 
of the data from three ensembles (48I, 32I, 24I) with different quark masses, lattice 
spacings, and volumes leads to the results in the physical limit.

Fig. 3. The distribution function x[c(x) − c̄(x)] obtained from the LFHQCD formalism 
using the lattice QCD input of charm electromagnetic form factors Gc

E,M (Q 2). The 
outer (lighter tinted) cyan margins represent an estimate of systematic uncertainty 
in the x[c(x) − c̄(x)] distribution obtained from a variation of the hadron scale κc
by 5%.

where the total uncertainty is obtained from the fitting error in 
cτ=5 and 5% variation in κc . The [c(x) − c̄(x)] distribution re-
sult is about 3 times smaller in magnitude than the s(x) − s̄(x)
distribution obtained with the same formalism [48]. Although a 
small asymmetry could be a result of the cancellation of two rel-
atively large c(x) and c̄(x) distributions, it is possible that the 
intrinsic charm and anticharm distributions are both small. Fur-
thermore, the charm and anticharm distributions at high energy 
scales are dominated by the extrinsic sea from perturbative radi-
ation. The experimental observation and isolation of the intrinsic 
charm effect are extremely challenging in such cases. Thus it is 
not surprising that the recent measurement of J/ψ and D0 pro-
ductions by the LHCb collaboration [15] found no intrinsic charm 
effect. An ideal place to investigate intrinsic charm would be the 
J/ψ or open charm productions at relatively low energies, e.g., 
at JLab, although it is also possible to see intrinsic charm effects 
in very accurate measurements of high energy reactions. In addi-
tion, lepton-nucleon scattering may provide a cleaner probe than 
nucleon-nucleon scattering to help reduce backgrounds and in-
crease the chance to observe the intrinsic charm effect, and there-
fore the future EIC will provide such opportunities.

The nonzero value of Gc
E (Q 2) can also originate from the in-

terference of the q → gq → cc̄q and q → ggq → cc̄q sub-processes, 
without the existence of IC. However, as mentioned earlier, this ex-
trinsic [c(x) − c̄(x)] asymmetry which arises at the next-to-next-to-
leading order level is negligible [40]. Moreover, according to [40], 
this extrinsic asymmetry would result in a much smaller and neg-
ative value of the first moment of [c(x) − c̄(x)] distribution 〈x〉c−c̄
compared to 〈x〉c−c̄ = 0.00047(15) obtained in this calculation. A 
negative value for 〈x〉c−c̄ would also result in a positive [c(x) − c̄(x)]
distribution at small x and a negative distribution at large x, in 
contrast to the [c(x) − c̄(x)] distribution we have obtained here. 
But the evidence based on the [s(x) − s̄(x)] distribution in [48], the 
EMC measurement [10], and perturbative QCD computation [40]
seem to indicate extremely small values of extrinsic charm for 
x > 0.1. The present determination of the [c(x) − c̄(x)] distribu-
tion from LQCD supports the existence of nonperturbative intrinsic 
heavy quarks in the nucleon wavefunction at large x ∼ 0.3 − 0.5
with a magnitude consistent with experimental signals. A conse-
quence of this result is Higgs production at large xF > 0.8 in pp
collisions at the LHC from the direct coupling of the Higgs to the 
intrinsic heavy quark pair [84].

4. Conclusion and outlook

In this article, we have presented the first lattice QCD cal-
culation of the charm quark electromagnetic form factors in the 
physical limit. This first lattice QCD calculation indicates that a 

Intrinsic charm-anticharm asymmetry with 
normalization constrained by LQCD data
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the Dirac form factor is given by [19, 51]

F1(t) = cV,⌧FV,⌧ (t) + cV,⌧+1FV,⌧+1(t), (1)

with

FV,⌧ (t) =
1

NV,⌧
B

⇣
⌧ � 1,

1

2
�

t

4�

⌘
. (2)

The subscript V indicates the coupling to a vector cur-
rent. � is the universal mass scale in LFHQCD, which
can be fixed by hadron spectroscopy, and a fitting to
the ⇢/! trajectory gives

p
� = 0.534GeV. The cV,⌧

and cV,⌧+1 are coe�cients to be determined, NV,⌧ is
a normalization factor, and B(x, y) is the Euler beta
function. The two terms in Eq. (1) correspond to the
contribution from two chiral components,  + and  �,
of the bulk field solution [19]. Eq. (2) has the same
structure as a generalization of the Veneziano amplitude
B
�
1 � ↵(s), 1 � ↵(t)

�
[20] to non-strong process [52, 53],

here electron-nucleon scattering. This amounts to re-
place the s-dependence 1 � ↵(s) by a constant, which
determines the asymptotic behaviour of the form factor
for large negative values of t [52, 53]. Our framework thus
incorporates nonpertubative analytic structures found in
pre-QCD studies, such as Regge trajectories and gener-
alized Veneziano amplitudes.

The t-dependence in Eq. (2) can be rewritten as 1 �

↵V (t) with the Regge trajectory [50]

↵V (t) =
t

4�
+

1

2
. (3)

This is just the ⇢/! trajectory emerging from LFHQCD
for vector mesons with massless quarks [30]. The quark
mass correction is negligible for u and d quarks, while for
the strange quark contribution one should replace it by
the � trajectory, which shifts the intercept to ↵�(0) ⇡

0.01 [54].
The GPDs at zero skewness ⇠, obtained from the inte-

gral representation of B(x, y), are [50]

H⌧ (x, ⇠ = 0, t) = q⌧ (x) exp[tf(x)], (4)

where the unpolarized PDF q⌧ (x) and the profile func-
tion f(x) are related by a universal reparameterization
function w(x),

q⌧ (x) =
1

NV,⌧
w(x)�

1
2 [1 � w(x)]⌧�2

w
0(x), (5)

f(x) =
1

4�
log

⇣ 1

w(x)

⌘
. (6)

The function w(x) obeys the boundary conditions:

w(0) = 0, w(1) = 1, w
0(x) > 0, (7)

w
0(1) = 0, w

00(1) 6= 0. (8)

Then for a twist-⌧ state, the unpolarized PDF is

q(x) = cV,⌧q⌧ (x) + cV,⌧+1q⌧+1(x). (9)

Now, we turn to the polarized distributions, for which
the coupling of an axial current –rather than a vector
current– is needed. Since the current operator only dif-
fers by a �5, the axial form factor follows Eq. (1) but
with a sign flip from the contribution of the chiral-odd
component,

FA(t) = cA,⌧FA,⌧ (t) � cA,⌧+1FA,⌧+1(t), (10)

where

FA,⌧ (t) =
1

NA,⌧
B(⌧ � 1, 1 �

t

4�
), (11)

with the subscript A indicating the coupling to an axial
current. FA,⌧ (t) has the same structure as FV,⌧ (t), but
with the Regge trajectory replaced by the axial one:

↵A(t) =
t

4�
, (12)

emerging from LFHQCD [30]. The coe�cients in (10)
and those in (1) are related since they correspond to the
same state. Hence, apart from the sign flip in the second
term in (10), they should have the same value relative to
the normalization factors as given by

cV,⌧

NV,⌧
=

cA,⌧

NA,⌧
. (13)

Since the normalization convention is arbitrary, we set
NV,⌧ = NA,⌧ = N⌧ , and therefore identify the coe�cients
as cV,⌧ = cA,⌧ = c⌧ [55].
Following the same procedure, we express the �q(x)

for a twist-⌧ state as

�q(x) = c⌧�q⌧ (x) � c⌧+1�q⌧+1(x), (14)

where

�q⌧ (x) =
1

N⌧
[1 � w(x)]⌧�2

w
0(x). (15)

At large-x, we expand w(x) near x = 1 according to
the boundary conditions (7) and (8),

w(x) = 1 +
1

2
w

00(1)(1 � x)2 + O
�
(1 � x)3

�
, (16)

and find that q⌧ (x) and �q⌧ (x) have the same behavior,

q⌧ (x) = �q⌧ (x) =
[�w

00(1)]⌧�1

2⌧�2N⌧
(1 � x)2⌧�3 + · · · , (17)

where higher powers of (1� x) are suppressed. For both
the q(x) (9) and the �q(x) (14), the function is domi-
nated by the first term at large-x, unless its coe�cient
c⌧ = 0. Then the helicity asymmetry at x ! 1 is

lim
x!1

�q(x)

q(x)
= 1, (18)

2

the Dirac form factor is given by [19, 51]

F1(t) = cV,⌧FV,⌧ (t) + cV,⌧+1FV,⌧+1(t), (1)

with

FV,⌧ (t) =
1

NV,⌧
B

⇣
⌧ � 1,

1

2
�

t

4�

⌘
. (2)

The subscript V indicates the coupling to a vector cur-
rent. � is the universal mass scale in LFHQCD, which
can be fixed by hadron spectroscopy, and a fitting to
the ⇢/! trajectory gives

p
� = 0.534GeV. The cV,⌧

and cV,⌧+1 are coe�cients to be determined, NV,⌧ is
a normalization factor, and B(x, y) is the Euler beta
function. The two terms in Eq. (1) correspond to the
contribution from two chiral components,  + and  �,
of the bulk field solution [19]. Eq. (2) has the same
structure as a generalization of the Veneziano amplitude
B
�
1 � ↵(s), 1 � ↵(t)

�
[20] to non-strong process [52, 53],

here electron-nucleon scattering. This amounts to re-
place the s-dependence 1 � ↵(s) by a constant, which
determines the asymptotic behaviour of the form factor
for large negative values of t [52, 53]. Our framework thus
incorporates nonpertubative analytic structures found in
pre-QCD studies, such as Regge trajectories and gener-
alized Veneziano amplitudes.

The t-dependence in Eq. (2) can be rewritten as 1 �

↵V (t) with the Regge trajectory [50]

↵V (t) =
t

4�
+

1

2
. (3)

This is just the ⇢/! trajectory emerging from LFHQCD
for vector mesons with massless quarks [30]. The quark
mass correction is negligible for u and d quarks, while for
the strange quark contribution one should replace it by
the � trajectory, which shifts the intercept to ↵�(0) ⇡

0.01 [54].
The GPDs at zero skewness ⇠, obtained from the inte-

gral representation of B(x, y), are [50]

H⌧ (x, ⇠ = 0, t) = q⌧ (x) exp[tf(x)], (4)

where the unpolarized PDF q⌧ (x) and the profile func-
tion f(x) are related by a universal reparameterization
function w(x),

q⌧ (x) =
1

NV,⌧
w(x)�

1
2 [1 � w(x)]⌧�2

w
0(x), (5)

f(x) =
1

4�
log

⇣ 1

w(x)

⌘
. (6)

The function w(x) obeys the boundary conditions:

w(0) = 0, w(1) = 1, w
0(x) > 0, (7)

w
0(1) = 0, w

00(1) 6= 0. (8)

Then for a twist-⌧ state, the unpolarized PDF is

q(x) = cV,⌧q⌧ (x) + cV,⌧+1q⌧+1(x). (9)

Now, we turn to the polarized distributions, for which
the coupling of an axial current –rather than a vector
current– is needed. Since the current operator only dif-
fers by a �5, the axial form factor follows Eq. (1) but
with a sign flip from the contribution of the chiral-odd
component,

FA(t) = cA,⌧FA,⌧ (t) � cA,⌧+1FA,⌧+1(t), (10)

where

FA,⌧ (t) =
1

NA,⌧
B(⌧ � 1, 1 �

t

4�
), (11)

with the subscript A indicating the coupling to an axial
current. FA,⌧ (t) has the same structure as FV,⌧ (t), but
with the Regge trajectory replaced by the axial one:

↵A(t) =
t

4�
, (12)

emerging from LFHQCD [30]. The coe�cients in (10)
and those in (1) are related since they correspond to the
same state. Hence, apart from the sign flip in the second
term in (10), they should have the same value relative to
the normalization factors as given by

cV,⌧

NV,⌧
=

cA,⌧

NA,⌧
. (13)

Since the normalization convention is arbitrary, we set
NV,⌧ = NA,⌧ = N⌧ , and therefore identify the coe�cients
as cV,⌧ = cA,⌧ = c⌧ [55].
Following the same procedure, we express the �q(x)

for a twist-⌧ state as

�q(x) = c⌧�q⌧ (x) � c⌧+1�q⌧+1(x), (14)

where

�q⌧ (x) =
1

N⌧
[1 � w(x)]⌧�2

w
0(x). (15)

At large-x, we expand w(x) near x = 1 according to
the boundary conditions (7) and (8),

w(x) = 1 +
1

2
w

00(1)(1 � x)2 + O
�
(1 � x)3

�
, (16)

and find that q⌧ (x) and �q⌧ (x) have the same behavior,

q⌧ (x) = �q⌧ (x) =
[�w

00(1)]⌧�1

2⌧�2N⌧
(1 � x)2⌧�3 + · · · , (17)

where higher powers of (1� x) are suppressed. For both
the q(x) (9) and the �q(x) (14), the function is domi-
nated by the first term at large-x, unless its coe�cient
c⌧ = 0. Then the helicity asymmetry at x ! 1 is

lim
x!1

�q(x)

q(x)
= 1, (18)

The “–” sign for the second 
term is due to the γ5

2

the Dirac form factor is given by [19, 51]

F1(t) = cV,⌧FV,⌧ (t) + cV,⌧+1FV,⌧+1(t), (1)

with

FV,⌧ (t) =
1

NV,⌧
B

⇣
⌧ � 1,

1

2
�

t

4�

⌘
. (2)

The subscript V indicates the coupling to a vector cur-
rent. � is the universal mass scale in LFHQCD, which
can be fixed by hadron spectroscopy, and a fitting to
the ⇢/! trajectory gives

p
� = 0.534GeV. The cV,⌧

and cV,⌧+1 are coe�cients to be determined, NV,⌧ is
a normalization factor, and B(x, y) is the Euler beta
function. The two terms in Eq. (1) correspond to the
contribution from two chiral components,  + and  �,
of the bulk field solution [19]. Eq. (2) has the same
structure as a generalization of the Veneziano amplitude
B
�
1 � ↵(s), 1 � ↵(t)

�
[20] to non-strong process [52, 53],

here electron-nucleon scattering. This amounts to re-
place the s-dependence 1 � ↵(s) by a constant, which
determines the asymptotic behaviour of the form factor
for large negative values of t [52, 53]. Our framework thus
incorporates nonpertubative analytic structures found in
pre-QCD studies, such as Regge trajectories and gener-
alized Veneziano amplitudes.

The t-dependence in Eq. (2) can be rewritten as 1 �

↵V (t) with the Regge trajectory [50]

↵V (t) =
t

4�
+

1

2
. (3)

This is just the ⇢/! trajectory emerging from LFHQCD
for vector mesons with massless quarks [30]. The quark
mass correction is negligible for u and d quarks, while for
the strange quark contribution one should replace it by
the � trajectory, which shifts the intercept to ↵�(0) ⇡

0.01 [54].
The GPDs at zero skewness ⇠, obtained from the inte-

gral representation of B(x, y), are [50]

H⌧ (x, ⇠ = 0, t) = q⌧ (x) exp[tf(x)], (4)

where the unpolarized PDF q⌧ (x) and the profile func-
tion f(x) are related by a universal reparameterization
function w(x),

q⌧ (x) =
1

NV,⌧
w(x)�

1
2 [1 � w(x)]⌧�2

w
0(x), (5)

f(x) =
1

4�
log

⇣ 1

w(x)

⌘
. (6)

The function w(x) obeys the boundary conditions:

w(0) = 0, w(1) = 1, w
0(x) > 0, (7)

w
0(1) = 0, w

00(1) 6= 0. (8)

Then for a twist-⌧ state, the unpolarized PDF is

q(x) = cV,⌧q⌧ (x) + cV,⌧+1q⌧+1(x). (9)

Now, we turn to the polarized distributions, for which
the coupling of an axial current –rather than a vector
current– is needed. Since the current operator only dif-
fers by a �5, the axial form factor follows Eq. (1) but
with a sign flip from the contribution of the chiral-odd
component,

FA(t) = cA,⌧FA,⌧ (t) � cA,⌧+1FA,⌧+1(t), (10)

where

FA,⌧ (t) =
1

NA,⌧
B(⌧ � 1, 1 �

t

4�
), (11)

with the subscript A indicating the coupling to an axial
current. FA,⌧ (t) has the same structure as FV,⌧ (t), but
with the Regge trajectory replaced by the axial one:

↵A(t) =
t

4�
, (12)

emerging from LFHQCD [30]. The coe�cients in (10)
and those in (1) are related since they correspond to the
same state. Hence, apart from the sign flip in the second
term in (10), they should have the same value relative to
the normalization factors as given by

cV,⌧

NV,⌧
=

cA,⌧

NA,⌧
. (13)

Since the normalization convention is arbitrary, we set
NV,⌧ = NA,⌧ = N⌧ , and therefore identify the coe�cients
as cV,⌧ = cA,⌧ = c⌧ [55].
Following the same procedure, we express the �q(x)

for a twist-⌧ state as

�q(x) = c⌧�q⌧ (x) � c⌧+1�q⌧+1(x), (14)

where

�q⌧ (x) =
1

N⌧
[1 � w(x)]⌧�2

w
0(x). (15)

At large-x, we expand w(x) near x = 1 according to
the boundary conditions (7) and (8),

w(x) = 1 +
1

2
w

00(1)(1 � x)2 + O
�
(1 � x)3

�
, (16)

and find that q⌧ (x) and �q⌧ (x) have the same behavior,

q⌧ (x) = �q⌧ (x) =
[�w

00(1)]⌧�1

2⌧�2N⌧
(1 � x)2⌧�3 + · · · , (17)

where higher powers of (1� x) are suppressed. For both
the q(x) (9) and the �q(x) (14), the function is domi-
nated by the first term at large-x, unless its coe�cient
c⌧ = 0. Then the helicity asymmetry at x ! 1 is

lim
x!1

�q(x)

q(x)
= 1, (18)

2

the Dirac form factor is given by [19, 51]

F1(t) = cV,⌧FV,⌧ (t) + cV,⌧+1FV,⌧+1(t), (1)

with

FV,⌧ (t) =
1

NV,⌧
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⇣
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⌘
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The subscript V indicates the coupling to a vector cur-
rent. � is the universal mass scale in LFHQCD, which
can be fixed by hadron spectroscopy, and a fitting to
the ⇢/! trajectory gives

p
� = 0.534GeV. The cV,⌧

and cV,⌧+1 are coe�cients to be determined, NV,⌧ is
a normalization factor, and B(x, y) is the Euler beta
function. The two terms in Eq. (1) correspond to the
contribution from two chiral components,  + and  �,
of the bulk field solution [19]. Eq. (2) has the same
structure as a generalization of the Veneziano amplitude
B
�
1 � ↵(s), 1 � ↵(t)

�
[20] to non-strong process [52, 53],

here electron-nucleon scattering. This amounts to re-
place the s-dependence 1 � ↵(s) by a constant, which
determines the asymptotic behaviour of the form factor
for large negative values of t [52, 53]. Our framework thus
incorporates nonpertubative analytic structures found in
pre-QCD studies, such as Regge trajectories and gener-
alized Veneziano amplitudes.

The t-dependence in Eq. (2) can be rewritten as 1 �

↵V (t) with the Regge trajectory [50]

↵V (t) =
t

4�
+

1

2
. (3)

This is just the ⇢/! trajectory emerging from LFHQCD
for vector mesons with massless quarks [30]. The quark
mass correction is negligible for u and d quarks, while for
the strange quark contribution one should replace it by
the � trajectory, which shifts the intercept to ↵�(0) ⇡

0.01 [54].
The GPDs at zero skewness ⇠, obtained from the inte-

gral representation of B(x, y), are [50]

H⌧ (x, ⇠ = 0, t) = q⌧ (x) exp[tf(x)], (4)

where the unpolarized PDF q⌧ (x) and the profile func-
tion f(x) are related by a universal reparameterization
function w(x),

q⌧ (x) =
1

NV,⌧
w(x)�

1
2 [1 � w(x)]⌧�2

w
0(x), (5)

f(x) =
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. (6)

The function w(x) obeys the boundary conditions:

w(0) = 0, w(1) = 1, w
0(x) > 0, (7)

w
0(1) = 0, w

00(1) 6= 0. (8)

Then for a twist-⌧ state, the unpolarized PDF is

q(x) = cV,⌧q⌧ (x) + cV,⌧+1q⌧+1(x). (9)

Now, we turn to the polarized distributions, for which
the coupling of an axial current –rather than a vector
current– is needed. Since the current operator only dif-
fers by a �5, the axial form factor follows Eq. (1) but
with a sign flip from the contribution of the chiral-odd
component,

FA(t) = cA,⌧FA,⌧ (t) � cA,⌧+1FA,⌧+1(t), (10)

where

FA,⌧ (t) =
1

NA,⌧
B(⌧ � 1, 1 �

t

4�
), (11)

with the subscript A indicating the coupling to an axial
current. FA,⌧ (t) has the same structure as FV,⌧ (t), but
with the Regge trajectory replaced by the axial one:

↵A(t) =
t

4�
, (12)

emerging from LFHQCD [30]. The coe�cients in (10)
and those in (1) are related since they correspond to the
same state. Hence, apart from the sign flip in the second
term in (10), they should have the same value relative to
the normalization factors as given by

cV,⌧

NV,⌧
=

cA,⌧

NA,⌧
. (13)

Since the normalization convention is arbitrary, we set
NV,⌧ = NA,⌧ = N⌧ , and therefore identify the coe�cients
as cV,⌧ = cA,⌧ = c⌧ [55].
Following the same procedure, we express the �q(x)

for a twist-⌧ state as

�q(x) = c⌧�q⌧ (x) � c⌧+1�q⌧+1(x), (14)

where

�q⌧ (x) =
1

N⌧
[1 � w(x)]⌧�2

w
0(x). (15)

At large-x, we expand w(x) near x = 1 according to
the boundary conditions (7) and (8),

w(x) = 1 +
1

2
w

00(1)(1 � x)2 + O
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(1 � x)3
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, (16)

and find that q⌧ (x) and �q⌧ (x) have the same behavior,

q⌧ (x) = �q⌧ (x) =
[�w

00(1)]⌧�1

2⌧�2N⌧
(1 � x)2⌧�3 + · · · , (17)

where higher powers of (1� x) are suppressed. For both
the q(x) (9) and the �q(x) (14), the function is domi-
nated by the first term at large-x, unless its coe�cient
c⌧ = 0. Then the helicity asymmetry at x ! 1 is

lim
x!1

�q(x)

q(x)
= 1, (18)

It just replaces the trajectory by the axial one:

Coefficients are related:
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The subscript V indicates the coupling to a vector cur-
rent. � is the universal mass scale in LFHQCD, which
can be fixed by hadron spectroscopy, and a fitting to
the ⇢/! trajectory gives

p
� = 0.534GeV. The cV,⌧

and cV,⌧+1 are coe�cients to be determined, NV,⌧ is
a normalization factor, and B(x, y) is the Euler beta
function. The two terms in Eq. (1) correspond to the
contribution from two chiral components,  + and  �,
of the bulk field solution [19]. Eq. (2) has the same
structure as a generalization of the Veneziano amplitude
B
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1 � ↵(s), 1 � ↵(t)
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[20] to non-strong process [52, 53],

here electron-nucleon scattering. This amounts to re-
place the s-dependence 1 � ↵(s) by a constant, which
determines the asymptotic behaviour of the form factor
for large negative values of t [52, 53]. Our framework thus
incorporates nonpertubative analytic structures found in
pre-QCD studies, such as Regge trajectories and gener-
alized Veneziano amplitudes.

The t-dependence in Eq. (2) can be rewritten as 1 �

↵V (t) with the Regge trajectory [50]

↵V (t) =
t

4�
+

1

2
. (3)

This is just the ⇢/! trajectory emerging from LFHQCD
for vector mesons with massless quarks [30]. The quark
mass correction is negligible for u and d quarks, while for
the strange quark contribution one should replace it by
the � trajectory, which shifts the intercept to ↵�(0) ⇡

0.01 [54].
The GPDs at zero skewness ⇠, obtained from the inte-

gral representation of B(x, y), are [50]

H⌧ (x, ⇠ = 0, t) = q⌧ (x) exp[tf(x)], (4)

where the unpolarized PDF q⌧ (x) and the profile func-
tion f(x) are related by a universal reparameterization
function w(x),

q⌧ (x) =
1
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w(x)�

1
2 [1 � w(x)]⌧�2

w
0(x), (5)

f(x) =
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The function w(x) obeys the boundary conditions:

w(0) = 0, w(1) = 1, w
0(x) > 0, (7)

w
0(1) = 0, w

00(1) 6= 0. (8)

Then for a twist-⌧ state, the unpolarized PDF is

q(x) = cV,⌧q⌧ (x) + cV,⌧+1q⌧+1(x). (9)

Now, we turn to the polarized distributions, for which
the coupling of an axial current –rather than a vector
current– is needed. Since the current operator only dif-
fers by a �5, the axial form factor follows Eq. (1) but
with a sign flip from the contribution of the chiral-odd
component,

FA(t) = cA,⌧FA,⌧ (t) � cA,⌧+1FA,⌧+1(t), (10)

where

FA,⌧ (t) =
1

NA,⌧
B(⌧ � 1, 1 �

t

4�
), (11)

with the subscript A indicating the coupling to an axial
current. FA,⌧ (t) has the same structure as FV,⌧ (t), but
with the Regge trajectory replaced by the axial one:

↵A(t) =
t

4�
, (12)

emerging from LFHQCD [30]. The coe�cients in (10)
and those in (1) are related since they correspond to the
same state. Hence, apart from the sign flip in the second
term in (10), they should have the same value relative to
the normalization factors as given by

cV,⌧

NV,⌧
=

cA,⌧

NA,⌧
. (13)

Since the normalization convention is arbitrary, we set
NV,⌧ = NA,⌧ = N⌧ , and therefore identify the coe�cients
as cV,⌧ = cA,⌧ = c⌧ [55].
Following the same procedure, we express the �q(x)

for a twist-⌧ state as

�q(x) = c⌧�q⌧ (x) � c⌧+1�q⌧+1(x), (14)

where

�q⌧ (x) =
1

N⌧
[1 � w(x)]⌧�2

w
0(x). (15)

At large-x, we expand w(x) near x = 1 according to
the boundary conditions (7) and (8),

w(x) = 1 +
1

2
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00(1)(1 � x)2 + O
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(1 � x)3
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, (16)

and find that q⌧ (x) and �q⌧ (x) have the same behavior,

q⌧ (x) = �q⌧ (x) =
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2⌧�2N⌧
(1 � x)2⌧�3 + · · · , (17)

where higher powers of (1� x) are suppressed. For both
the q(x) (9) and the �q(x) (14), the function is domi-
nated by the first term at large-x, unless its coe�cient
c⌧ = 0. Then the helicity asymmetry at x ! 1 is

lim
x!1

�q(x)

q(x)
= 1, (18)

A convenient convention for this work:
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Compare the vector and axial FFs:
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the Dirac form factor is given by [19, 51]

F1(t) = cV,⌧FV,⌧ (t) + cV,⌧+1FV,⌧+1(t), (1)

with
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1

NV,⌧
B

⇣
⌧ � 1,

1

2
�

t

4�

⌘
. (2)

The subscript V indicates the coupling to a vector cur-
rent. � is the universal mass scale in LFHQCD, which
can be fixed by hadron spectroscopy, and a fitting to
the ⇢/! trajectory gives

p
� = 0.534GeV. The cV,⌧

and cV,⌧+1 are coe�cients to be determined, NV,⌧ is
a normalization factor, and B(x, y) is the Euler beta
function. The two terms in Eq. (1) correspond to the
contribution from two chiral components,  + and  �,
of the bulk field solution [19]. Eq. (2) has the same
structure as a generalization of the Veneziano amplitude
B
�
1 � ↵(s), 1 � ↵(t)

�
[20] to non-strong process [52, 53],

here electron-nucleon scattering. This amounts to re-
place the s-dependence 1 � ↵(s) by a constant, which
determines the asymptotic behaviour of the form factor
for large negative values of t [52, 53]. Our framework thus
incorporates nonpertubative analytic structures found in
pre-QCD studies, such as Regge trajectories and gener-
alized Veneziano amplitudes.

The t-dependence in Eq. (2) can be rewritten as 1 �

↵V (t) with the Regge trajectory [50]

↵V (t) =
t
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+

1

2
. (3)

This is just the ⇢/! trajectory emerging from LFHQCD
for vector mesons with massless quarks [30]. The quark
mass correction is negligible for u and d quarks, while for
the strange quark contribution one should replace it by
the � trajectory, which shifts the intercept to ↵�(0) ⇡

0.01 [54].
The GPDs at zero skewness ⇠, obtained from the inte-

gral representation of B(x, y), are [50]

H⌧ (x, ⇠ = 0, t) = q⌧ (x) exp[tf(x)], (4)

where the unpolarized PDF q⌧ (x) and the profile func-
tion f(x) are related by a universal reparameterization
function w(x),
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The function w(x) obeys the boundary conditions:

w(0) = 0, w(1) = 1, w
0(x) > 0, (7)

w
0(1) = 0, w

00(1) 6= 0. (8)

Then for a twist-⌧ state, the unpolarized PDF is

q(x) = cV,⌧q⌧ (x) + cV,⌧+1q⌧+1(x). (9)

Now, we turn to the polarized distributions, for which
the coupling of an axial current –rather than a vector
current– is needed. Since the current operator only dif-
fers by a �5, the axial form factor follows Eq. (1) but
with a sign flip from the contribution of the chiral-odd
component,

FA(t) = cA,⌧FA,⌧ (t) � cA,⌧+1FA,⌧+1(t), (10)

where
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with the subscript A indicating the coupling to an axial
current. FA,⌧ (t) has the same structure as FV,⌧ (t), but
with the Regge trajectory replaced by the axial one:

↵A(t) =
t
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, (12)

emerging from LFHQCD [30]. The coe�cients in (10)
and those in (1) are related since they correspond to the
same state. Hence, apart from the sign flip in the second
term in (10), they should have the same value relative to
the normalization factors as given by

cV,⌧
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=

cA,⌧

NA,⌧
. (13)

Since the normalization convention is arbitrary, we set
NV,⌧ = NA,⌧ = N⌧ , and therefore identify the coe�cients
as cV,⌧ = cA,⌧ = c⌧ [55].
Following the same procedure, we express the �q(x)

for a twist-⌧ state as

�q(x) = c⌧�q⌧ (x) � c⌧+1�q⌧+1(x), (14)

where
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At large-x, we expand w(x) near x = 1 according to
the boundary conditions (7) and (8),
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and find that q⌧ (x) and �q⌧ (x) have the same behavior,
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where higher powers of (1� x) are suppressed. For both
the q(x) (9) and the �q(x) (14), the function is domi-
nated by the first term at large-x, unless its coe�cient
c⌧ = 0. Then the helicity asymmetry at x ! 1 is

lim
x!1
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= 1, (18)
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the Dirac form factor is given by [19, 51]
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The subscript V indicates the coupling to a vector cur-
rent. � is the universal mass scale in LFHQCD, which
can be fixed by hadron spectroscopy, and a fitting to
the ⇢/! trajectory gives

p
� = 0.534GeV. The cV,⌧
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a normalization factor, and B(x, y) is the Euler beta
function. The two terms in Eq. (1) correspond to the
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of the bulk field solution [19]. Eq. (2) has the same
structure as a generalization of the Veneziano amplitude
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[20] to non-strong process [52, 53],

here electron-nucleon scattering. This amounts to re-
place the s-dependence 1 � ↵(s) by a constant, which
determines the asymptotic behaviour of the form factor
for large negative values of t [52, 53]. Our framework thus
incorporates nonpertubative analytic structures found in
pre-QCD studies, such as Regge trajectories and gener-
alized Veneziano amplitudes.

The t-dependence in Eq. (2) can be rewritten as 1 �

↵V (t) with the Regge trajectory [50]

↵V (t) =
t
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. (3)

This is just the ⇢/! trajectory emerging from LFHQCD
for vector mesons with massless quarks [30]. The quark
mass correction is negligible for u and d quarks, while for
the strange quark contribution one should replace it by
the � trajectory, which shifts the intercept to ↵�(0) ⇡

0.01 [54].
The GPDs at zero skewness ⇠, obtained from the inte-

gral representation of B(x, y), are [50]

H⌧ (x, ⇠ = 0, t) = q⌧ (x) exp[tf(x)], (4)

where the unpolarized PDF q⌧ (x) and the profile func-
tion f(x) are related by a universal reparameterization
function w(x),
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The function w(x) obeys the boundary conditions:

w(0) = 0, w(1) = 1, w
0(x) > 0, (7)

w
0(1) = 0, w

00(1) 6= 0. (8)

Then for a twist-⌧ state, the unpolarized PDF is

q(x) = cV,⌧q⌧ (x) + cV,⌧+1q⌧+1(x). (9)

Now, we turn to the polarized distributions, for which
the coupling of an axial current –rather than a vector
current– is needed. Since the current operator only dif-
fers by a �5, the axial form factor follows Eq. (1) but
with a sign flip from the contribution of the chiral-odd
component,

FA(t) = cA,⌧FA,⌧ (t) � cA,⌧+1FA,⌧+1(t), (10)

where

FA,⌧ (t) =
1

NA,⌧
B

⇣
⌧ � 1, 1 �

t

4�

⌘
, (11)

with the subscript A indicating the coupling to an axial
current. FA,⌧ (t) has the same structure as FV,⌧ (t), but
with the Regge trajectory replaced by the axial one:

↵A(t) =
t

4�
, (12)

emerging from LFHQCD [30]. The coe�cients in (10)
and those in (1) are related since they correspond to the
same state. Hence, apart from the sign flip in the second
term in (10), they should have the same value relative to
the normalization factors as given by

cV,⌧

NV,⌧
=

cA,⌧

NA,⌧
. (13)

Since the normalization convention is arbitrary, we set
NV,⌧ = NA,⌧ = N⌧ , and therefore identify the coe�cients
as cV,⌧ = cA,⌧ = c⌧ [55].
Following the same procedure, we express the �q(x)

for a twist-⌧ state as

�q(x) = c⌧�q⌧ (x) � c⌧+1�q⌧+1(x), (14)

where

�q⌧ (x) =
1

N⌧
[1 � w(x)]⌧�2

w
0(x). (15)

At large-x, we expand w(x) near x = 1 according to
the boundary conditions (7) and (8),

w(x) = 1 +
1

2
w

00(1)(1 � x)2 + O
�
(1 � x)3

�
, (16)

and find that q⌧ (x) and �q⌧ (x) have the same behavior,

q⌧ (x) = �q⌧ (x) =
[�w

00(1)]⌧�1

2⌧�2N⌧
(1 � x)2⌧�3 + · · · , (17)

where higher powers of (1� x) are suppressed. For both
the q(x) (9) and the �q(x) (14), the function is domi-
nated by the first term at large-x, unless its coe�cient
c⌧ = 0. Then the helicity asymmetry at x ! 1 is

lim
x!1

�q(x)

q(x)
= 1, (18)

2

the Dirac form factor is given by [19, 51]

F1(t) = cV,⌧FV,⌧ (t) + cV,⌧+1FV,⌧+1(t), (1)

with

FV,⌧ (t) =
1

NV,⌧
B

⇣
⌧ � 1,

1

2
�

t

4�

⌘
. (2)

The subscript V indicates the coupling to a vector cur-
rent. � is the universal mass scale in LFHQCD, which
can be fixed by hadron spectroscopy, and a fitting to
the ⇢/! trajectory gives

p
� = 0.534GeV. The cV,⌧

and cV,⌧+1 are coe�cients to be determined, NV,⌧ is
a normalization factor, and B(x, y) is the Euler beta
function. The two terms in Eq. (1) correspond to the
contribution from two chiral components,  + and  �,
of the bulk field solution [19]. Eq. (2) has the same
structure as a generalization of the Veneziano amplitude
B
�
1 � ↵(s), 1 � ↵(t)

�
[20] to non-strong process [52, 53],

here electron-nucleon scattering. This amounts to re-
place the s-dependence 1 � ↵(s) by a constant, which
determines the asymptotic behaviour of the form factor
for large negative values of t [52, 53]. Our framework thus
incorporates nonpertubative analytic structures found in
pre-QCD studies, such as Regge trajectories and gener-
alized Veneziano amplitudes.

The t-dependence in Eq. (2) can be rewritten as 1 �

↵V (t) with the Regge trajectory [50]

↵V (t) =
t

4�
+

1

2
. (3)

This is just the ⇢/! trajectory emerging from LFHQCD
for vector mesons with massless quarks [30]. The quark
mass correction is negligible for u and d quarks, while for
the strange quark contribution one should replace it by
the � trajectory, which shifts the intercept to ↵�(0) ⇡

0.01 [54].
The GPDs at zero skewness ⇠, obtained from the inte-

gral representation of B(x, y), are [50]

H⌧ (x, ⇠ = 0, t) = q⌧ (x) exp[tf(x)], (4)

where the unpolarized PDF q⌧ (x) and the profile func-
tion f(x) are related by a universal reparameterization
function w(x),

q⌧ (x) =
1

NV,⌧
w(x)�

1
2 [1 � w(x)]⌧�2

w
0(x), (5)

f(x) =
1

4�
log

⇣ 1

w(x)

⌘
. (6)

The function w(x) obeys the boundary conditions:

w(0) = 0, w(1) = 1, w
0(x) > 0, (7)

w
0(1) = 0, w

00(1) 6= 0. (8)

Then for a twist-⌧ state, the unpolarized PDF is

q(x) = cV,⌧q⌧ (x) + cV,⌧+1q⌧+1(x). (9)

Now, we turn to the polarized distributions, for which
the coupling of an axial current –rather than a vector
current– is needed. Since the current operator only dif-
fers by a �5, the axial form factor follows Eq. (1) but
with a sign flip from the contribution of the chiral-odd
component,

FA(t) = cA,⌧FA,⌧ (t) � cA,⌧+1FA,⌧+1(t), (10)

where

FA,⌧ (t) =
1

NA,⌧
B

⇣
⌧ � 1, 1 �

t

4�

⌘
, (11)

with the subscript A indicating the coupling to an axial
current. FA,⌧ (t) has the same structure as FV,⌧ (t), but
with the Regge trajectory replaced by the axial one:

↵A(t) =
t

4�
, (12)

emerging from LFHQCD [30]. The coe�cients in (10)
and those in (1) are related since they correspond to the
same state. Hence, apart from the sign flip in the second
term in (10), they should have the same value relative to
the normalization factors as given by

cV,⌧

NV,⌧
=

cA,⌧

NA,⌧
. (13)

Since the normalization convention is arbitrary, we set
NV,⌧ = NA,⌧ = N⌧ , and therefore identify the coe�cients
as cV,⌧ = cA,⌧ = c⌧ [55].
Following the same procedure, we express the �q(x)

for a twist-⌧ state as

�q(x) = c⌧�q⌧ (x) � c⌧+1�q⌧+1(x), (14)

where

�q⌧ (x) =
1

N⌧
[1 � w(x)]⌧�2

w
0(x). (15)

At large-x, we expand w(x) near x = 1 according to
the boundary conditions (7) and (8),

w(x) = 1 +
1

2
w

00(1)(1 � x)2 + O
�
(1 � x)3

�
, (16)

and find that q⌧ (x) and �q⌧ (x) have the same behavior,

q⌧ (x) = �q⌧ (x) =
[�w

00(1)]⌧�1

2⌧�2N⌧
(1 � x)2⌧�3 + · · · , (17)

where higher powers of (1� x) are suppressed. For both
the q(x) (9) and the �q(x) (14), the function is domi-
nated by the first term at large-x, unless its coe�cient
c⌧ = 0. Then the helicity asymmetry at x ! 1 is

lim
x!1

�q(x)

q(x)
= 1, (18)

One can also choose other normalization conventions.
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For a twist-τ state：

2

the Dirac form factor is given by [19, 51]

F1(t) = cV,⌧FV,⌧ (t) + cV,⌧+1FV,⌧+1(t), (1)

with

FV,⌧ (t) =
1

NV,⌧
B

⇣
⌧ � 1,

1

2
�

t

4�

⌘
. (2)

The subscript V indicates the coupling to a vector cur-
rent. � is the universal mass scale in LFHQCD, which
can be fixed by hadron spectroscopy, and a fitting to
the ⇢/! trajectory gives

p
� = 0.534GeV. The cV,⌧

and cV,⌧+1 are coe�cients to be determined, NV,⌧ is
a normalization factor, and B(x, y) is the Euler beta
function. The two terms in Eq. (1) correspond to the
contribution from two chiral components,  + and  �,
of the bulk field solution [19]. Eq. (2) has the same
structure as a generalization of the Veneziano amplitude
B
�
1 � ↵(s), 1 � ↵(t)

�
[20] to non-strong process [52, 53],

here electron-nucleon scattering. This amounts to re-
place the s-dependence 1 � ↵(s) by a constant, which
determines the asymptotic behaviour of the form factor
for large negative values of t [52, 53]. Our framework thus
incorporates nonpertubative analytic structures found in
pre-QCD studies, such as Regge trajectories and gener-
alized Veneziano amplitudes.

The t-dependence in Eq. (2) can be rewritten as 1 �

↵V (t) with the Regge trajectory [50]

↵V (t) =
t

4�
+

1

2
. (3)

This is just the ⇢/! trajectory emerging from LFHQCD
for vector mesons with massless quarks [30]. The quark
mass correction is negligible for u and d quarks, while for
the strange quark contribution one should replace it by
the � trajectory, which shifts the intercept to ↵�(0) ⇡

0.01 [54].
The GPDs at zero skewness ⇠, obtained from the inte-

gral representation of B(x, y), are [50]

H⌧ (x, ⇠ = 0, t) = q⌧ (x) exp[tf(x)], (4)

where the unpolarized PDF q⌧ (x) and the profile func-
tion f(x) are related by a universal reparameterization
function w(x),

q⌧ (x) =
1

NV,⌧
w(x)�

1
2 [1 � w(x)]⌧�2

w
0(x), (5)

f(x) =
1

4�
log

⇣ 1

w(x)

⌘
. (6)

The function w(x) obeys the boundary conditions:

w(0) = 0, w(1) = 1, w
0(x) > 0, (7)

w
0(1) = 0, w

00(1) 6= 0. (8)

Then for a twist-⌧ state, the unpolarized PDF is

q(x) = cV,⌧q⌧ (x) + cV,⌧+1q⌧+1(x). (9)

Now, we turn to the polarized distributions, for which
the coupling of an axial current –rather than a vector
current– is needed. Since the current operator only dif-
fers by a �5, the axial form factor follows Eq. (1) but
with a sign flip from the contribution of the chiral-odd
component,

FA(t) = cA,⌧FA,⌧ (t) � cA,⌧+1FA,⌧+1(t), (10)

where

FA,⌧ (t) =
1

NA,⌧
B

⇣
⌧ � 1, 1 �

t

4�

⌘
, (11)

with the subscript A indicating the coupling to an axial
current. FA,⌧ (t) has the same structure as FV,⌧ (t), but
with the Regge trajectory replaced by the axial one:

↵A(t) =
t

4�
, (12)

emerging from LFHQCD [30]. The coe�cients in (10)
and those in (1) are related since they correspond to the
same state. Hence, apart from the sign flip in the second
term in (10), they should have the same value relative to
the normalization factors as given by

cV,⌧

NV,⌧
=

cA,⌧

NA,⌧
. (13)

Since the normalization convention is arbitrary, we set
NV,⌧ = NA,⌧ = N⌧ , and therefore identify the coe�cients
as cV,⌧ = cA,⌧ = c⌧ [55].
Following the same procedure, we express the �q(x)

for a twist-⌧ state as

�q(x) = c⌧�q⌧ (x) � c⌧+1�q⌧+1(x), (14)

where

�q⌧ (x) =
1

N⌧
[1 � w(x)]⌧�2

w
0(x). (15)

At large-x, we expand w(x) near x = 1 according to
the boundary conditions (7) and (8),

w(x) = 1 +
1

2
w

00(1)(1 � x)2 + O
�
(1 � x)3

�
, (16)

and find that q⌧ (x) and �q⌧ (x) have the same behavior,

q⌧ (x) = �q⌧ (x) =
[�w

00(1)]⌧�1

2⌧�2N⌧
(1 � x)2⌧�3 + · · · , (17)

where higher powers of (1� x) are suppressed. For both
the q(x) (9) and the �q(x) (14), the function is domi-
nated by the first term at large-x, unless its coe�cient
c⌧ = 0. Then the helicity asymmetry at x ! 1 is

lim
x!1

�q(x)

q(x)
= 1, (18)

2

the Dirac form factor is given by [19, 51]

F1(t) = cV,⌧FV,⌧ (t) + cV,⌧+1FV,⌧+1(t), (1)

with

FV,⌧ (t) =
1

NV,⌧
B

⇣
⌧ � 1,

1

2
�

t

4�

⌘
. (2)

The subscript V indicates the coupling to a vector cur-
rent. � is the universal mass scale in LFHQCD, which
can be fixed by hadron spectroscopy, and a fitting to
the ⇢/! trajectory gives

p
� = 0.534GeV. The cV,⌧

and cV,⌧+1 are coe�cients to be determined, NV,⌧ is
a normalization factor, and B(x, y) is the Euler beta
function. The two terms in Eq. (1) correspond to the
contribution from two chiral components,  + and  �,
of the bulk field solution [19]. Eq. (2) has the same
structure as a generalization of the Veneziano amplitude
B
�
1 � ↵(s), 1 � ↵(t)

�
[20] to non-strong process [52, 53],

here electron-nucleon scattering. This amounts to re-
place the s-dependence 1 � ↵(s) by a constant, which
determines the asymptotic behaviour of the form factor
for large negative values of t [52, 53]. Our framework thus
incorporates nonpertubative analytic structures found in
pre-QCD studies, such as Regge trajectories and gener-
alized Veneziano amplitudes.

The t-dependence in Eq. (2) can be rewritten as 1 �

↵V (t) with the Regge trajectory [50]

↵V (t) =
t

4�
+

1

2
. (3)

This is just the ⇢/! trajectory emerging from LFHQCD
for vector mesons with massless quarks [30]. The quark
mass correction is negligible for u and d quarks, while for
the strange quark contribution one should replace it by
the � trajectory, which shifts the intercept to ↵�(0) ⇡

0.01 [54].
The GPDs at zero skewness ⇠, obtained from the inte-

gral representation of B(x, y), are [50]

H⌧ (x, ⇠ = 0, t) = q⌧ (x) exp[tf(x)], (4)

where the unpolarized PDF q⌧ (x) and the profile func-
tion f(x) are related by a universal reparameterization
function w(x),

q⌧ (x) =
1

NV,⌧
w(x)�

1
2 [1 � w(x)]⌧�2

w
0(x), (5)

f(x) =
1

4�
log

⇣ 1

w(x)

⌘
. (6)

The function w(x) obeys the boundary conditions:

w(0) = 0, w(1) = 1, w
0(x) > 0, (7)

w
0(1) = 0, w

00(1) 6= 0. (8)

Then for a twist-⌧ state, the unpolarized PDF is

q(x) = cV,⌧q⌧ (x) + cV,⌧+1q⌧+1(x). (9)

Now, we turn to the polarized distributions, for which
the coupling of an axial current –rather than a vector
current– is needed. Since the current operator only dif-
fers by a �5, the axial form factor follows Eq. (1) but
with a sign flip from the contribution of the chiral-odd
component,

FA(t) = cA,⌧FA,⌧ (t) � cA,⌧+1FA,⌧+1(t), (10)

where

FA,⌧ (t) =
1

NA,⌧
B

⇣
⌧ � 1, 1 �

t

4�

⌘
, (11)

with the subscript A indicating the coupling to an axial
current. FA,⌧ (t) has the same structure as FV,⌧ (t), but
with the Regge trajectory replaced by the axial one:

↵A(t) =
t

4�
, (12)

emerging from LFHQCD [30]. The coe�cients in (10)
and those in (1) are related since they correspond to the
same state. Hence, apart from the sign flip in the second
term in (10), they should have the same value relative to
the normalization factors as given by

cV,⌧

NV,⌧
=

cA,⌧

NA,⌧
. (13)

Since the normalization convention is arbitrary, we set
NV,⌧ = NA,⌧ = N⌧ , and therefore identify the coe�cients
as cV,⌧ = cA,⌧ = c⌧ [55].
Following the same procedure, we express the �q(x)

for a twist-⌧ state as

�q(x) = c⌧�q⌧ (x) � c⌧+1�q⌧+1(x), (14)

where

�q⌧ (x) =
1

N⌧
[1 � w(x)]⌧�2

w
0(x). (15)

At large-x, we expand w(x) near x = 1 according to
the boundary conditions (7) and (8),

w(x) = 1 +
1

2
w

00(1)(1 � x)2 + O
�
(1 � x)3

�
, (16)

and find that q⌧ (x) and �q⌧ (x) have the same behavior,

q⌧ (x) = �q⌧ (x) =
[�w

00(1)]⌧�1

2⌧�2N⌧
(1 � x)2⌧�3 + · · · , (17)

where higher powers of (1� x) are suppressed. For both
the q(x) (9) and the �q(x) (14), the function is domi-
nated by the first term at large-x, unless its coe�cient
c⌧ = 0. Then the helicity asymmetry at x ! 1 is

lim
x!1

�q(x)

q(x)
= 1, (18)

Large x:

2

the Dirac form factor is given by [19, 51]

F1(t) = cV,⌧FV,⌧ (t) + cV,⌧+1FV,⌧+1(t), (1)

with

FV,⌧ (t) =
1

NV,⌧
B

⇣
⌧ � 1,

1

2
�

t

4�

⌘
. (2)

The subscript V indicates the coupling to a vector cur-
rent. � is the universal mass scale in LFHQCD, which
can be fixed by hadron spectroscopy, and a fitting to
the ⇢/! trajectory gives

p
� = 0.534GeV. The cV,⌧

and cV,⌧+1 are coe�cients to be determined, NV,⌧ is
a normalization factor, and B(x, y) is the Euler beta
function. The two terms in Eq. (1) correspond to the
contribution from two chiral components,  + and  �,
of the bulk field solution [19]. Eq. (2) has the same
structure as a generalization of the Veneziano amplitude
B
�
1 � ↵(s), 1 � ↵(t)

�
[20] to non-strong process [52, 53],

here electron-nucleon scattering. This amounts to re-
place the s-dependence 1 � ↵(s) by a constant, which
determines the asymptotic behaviour of the form factor
for large negative values of t [52, 53]. Our framework thus
incorporates nonpertubative analytic structures found in
pre-QCD studies, such as Regge trajectories and gener-
alized Veneziano amplitudes.

The t-dependence in Eq. (2) can be rewritten as 1 �

↵V (t) with the Regge trajectory [50]

↵V (t) =
t

4�
+

1

2
. (3)

This is just the ⇢/! trajectory emerging from LFHQCD
for vector mesons with massless quarks [30]. The quark
mass correction is negligible for u and d quarks, while for
the strange quark contribution one should replace it by
the � trajectory, which shifts the intercept to ↵�(0) ⇡

0.01 [54].
The GPDs at zero skewness ⇠, obtained from the inte-

gral representation of B(x, y), are [50]

H⌧ (x, ⇠ = 0, t) = q⌧ (x) exp[tf(x)], (4)

where the unpolarized PDF q⌧ (x) and the profile func-
tion f(x) are related by a universal reparameterization
function w(x),

q⌧ (x) =
1

NV,⌧
w(x)�

1
2 [1 � w(x)]⌧�2

w
0(x), (5)

f(x) =
1

4�
log

⇣ 1

w(x)

⌘
. (6)

The function w(x) obeys the boundary conditions:

w(0) = 0, w(1) = 1, w
0(x) > 0, (7)

w
0(1) = 0, w

00(1) 6= 0. (8)

Then for a twist-⌧ state, the unpolarized PDF is

q(x) = cV,⌧q⌧ (x) + cV,⌧+1q⌧+1(x). (9)

Now, we turn to the polarized distributions, for which
the coupling of an axial current –rather than a vector
current– is needed. Since the current operator only dif-
fers by a �5, the axial form factor follows Eq. (1) but
with a sign flip from the contribution of the chiral-odd
component,

FA(t) = cA,⌧FA,⌧ (t) � cA,⌧+1FA,⌧+1(t), (10)

where

FA,⌧ (t) =
1

NA,⌧
B

⇣
⌧ � 1, 1 �

t

4�

⌘
, (11)

with the subscript A indicating the coupling to an axial
current. FA,⌧ (t) has the same structure as FV,⌧ (t), but
with the Regge trajectory replaced by the axial one:

↵A(t) =
t

4�
, (12)

emerging from LFHQCD [30]. The coe�cients in (10)
and those in (1) are related since they correspond to the
same state. Hence, apart from the sign flip in the second
term in (10), they should have the same value relative to
the normalization factors as given by

cV,⌧

NV,⌧
=

cA,⌧

NA,⌧
. (13)

Since the normalization convention is arbitrary, we set
NV,⌧ = NA,⌧ = N⌧ , and therefore identify the coe�cients
as cV,⌧ = cA,⌧ = c⌧ [55].
Following the same procedure, we express the �q(x)

for a twist-⌧ state as

�q(x) = c⌧�q⌧ (x) � c⌧+1�q⌧+1(x), (14)

where

�q⌧ (x) =
1

N⌧
[1 � w(x)]⌧�2

w
0(x). (15)

At large-x, we expand w(x) near x = 1 according to
the boundary conditions (7) and (8),

w(x) = 1 +
1

2
w

00(1)(1 � x)2 + O
�
(1 � x)3

�
, (16)

and find that q⌧ (x) and �q⌧ (x) have the same behavior,

q⌧ (x) = �q⌧ (x) =
[�w

00(1)]⌧�1

2⌧�2N⌧
(1 � x)2⌧�3 + · · · , (17)

where higher powers of (1� x) are suppressed. For both
the q(x) (9) and the �q(x) (14), the function is domi-
nated by the first term at large-x, unless its coe�cient
c⌧ = 0. Then the helicity asymmetry at x ! 1 is

lim
x!1

�q(x)

q(x)
= 1, (18)
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<latexit sha1_base64="FlOiESyUf3K7t+bQjXBPzHk6Xr8="></latexit><latexit sha1_base64="FlOiESyUf3K7t+bQjXBPzHk6Xr8=">AAACYnicbVFNTxsxFPQupYXQQoAjPVhEFRtFjdYICS5ICHrghKhEACmbrrzO28SK96P2WyBa7Z/kxolLfwjeJKpa4Em2RzPz/DGOciUN+v6T4y59WP74aWW1sfb5y/pGc3Pr2mSFFtATmcr0bcQNKJlCDyUquM018CRScBNNzmr95g60kVl6hdMcBgkfpTKWgqOlwuY0iDUXZfADFHL623toV+VspseU0Q4NFMTozU2sKg+qzhyLsAyQFx1WXYQ1qCxTr/Tir1AFWo7G2L7f2/NYm3rs+0P71369pxhmaMJmy+/6s6JvAVuAFlnUZdh8DIaZKBJIUShuTJ/5OQ5KrlEKBVUjKAzkXEz4CPoWpjwBMyhnEVX0m2WGNM60HSnSGftvR8kTY6ZJZJ0Jx7F5rdXke1q/wPhoUMo0LxBSMT8oLhTFjNZ506HUIFBNLeBCS3tXKsbcRoj2Vxo2BPb6yW/B9X6X+V3286B1crqIY4XskF3iEUYOyQk5J5ekRwR5dpaddWfD+eM23E13e251nUXPNvmv3K8v1JqzuQ==</latexit><latexit sha1_base64="FlOiESyUf3K7t+bQjXBPzHk6Xr8="></latexit><latexit sha1_base64="FlOiESyUf3K7t+bQjXBPzHk6Xr8="></latexit>

helicity retention prediction by pQCD

Small x:
�q(x)

q(x)
⇠ x

1
2

<latexit sha1_base64="nrDSvGPLhUeTYUaE8c6R/FKtD2o=">AAACFXicbVDLSsNAFJ3UV62vqEs3g0WoICUpgi6LunBZwT6giWUynbRDJ5M4M5GWkJ9w46+4caGIW8Gdf+M0zUJbD9zL4Zx7mbnHixiVyrK+jcLS8srqWnG9tLG5tb1j7u61ZBgLTJo4ZKHoeEgSRjlpKqoY6USCoMBjpO2NLqd++4EISUN+qyYRcQM04NSnGCkt9cwTxxcIJ84VYQrB+8r4OE2y7kgawPFdMvPtNKmlac8sW1UrA1wkdk7KIEejZ345/RDHAeEKMyRl17Yi5SZIKIoZSUtOLEmE8AgNSFdTjgIi3SS7KoVHWulDPxS6uIKZ+nsjQYGUk8DTkwFSQznvTcX/vG6s/HM3oTyKFeF49pAfM6hCOI0I9qkgWLGJJggLqv8K8RDpGJQOsqRDsOdPXiStWtW2qvbNabl+kcdRBAfgEFSADc5AHVyDBmgCDB7BM3gFb8aT8WK8Gx+z0YKR7+yDPzA+fwB5Sp8D</latexit><latexit sha1_base64="nrDSvGPLhUeTYUaE8c6R/FKtD2o=">AAACFXicbVDLSsNAFJ3UV62vqEs3g0WoICUpgi6LunBZwT6giWUynbRDJ5M4M5GWkJ9w46+4caGIW8Gdf+M0zUJbD9zL4Zx7mbnHixiVyrK+jcLS8srqWnG9tLG5tb1j7u61ZBgLTJo4ZKHoeEgSRjlpKqoY6USCoMBjpO2NLqd++4EISUN+qyYRcQM04NSnGCkt9cwTxxcIJ84VYQrB+8r4OE2y7kgawPFdMvPtNKmlac8sW1UrA1wkdk7KIEejZ345/RDHAeEKMyRl17Yi5SZIKIoZSUtOLEmE8AgNSFdTjgIi3SS7KoVHWulDPxS6uIKZ+nsjQYGUk8DTkwFSQznvTcX/vG6s/HM3oTyKFeF49pAfM6hCOI0I9qkgWLGJJggLqv8K8RDpGJQOsqRDsOdPXiStWtW2qvbNabl+kcdRBAfgEFSADc5AHVyDBmgCDB7BM3gFb8aT8WK8Gx+z0YKR7+yDPzA+fwB5Sp8D</latexit><latexit sha1_base64="nrDSvGPLhUeTYUaE8c6R/FKtD2o=">AAACFXicbVDLSsNAFJ3UV62vqEs3g0WoICUpgi6LunBZwT6giWUynbRDJ5M4M5GWkJ9w46+4caGIW8Gdf+M0zUJbD9zL4Zx7mbnHixiVyrK+jcLS8srqWnG9tLG5tb1j7u61ZBgLTJo4ZKHoeEgSRjlpKqoY6USCoMBjpO2NLqd++4EISUN+qyYRcQM04NSnGCkt9cwTxxcIJ84VYQrB+8r4OE2y7kgawPFdMvPtNKmlac8sW1UrA1wkdk7KIEejZ345/RDHAeEKMyRl17Yi5SZIKIoZSUtOLEmE8AgNSFdTjgIi3SS7KoVHWulDPxS6uIKZ+nsjQYGUk8DTkwFSQznvTcX/vG6s/HM3oTyKFeF49pAfM6hCOI0I9qkgWLGJJggLqv8K8RDpGJQOsqRDsOdPXiStWtW2qvbNabl+kcdRBAfgEFSADc5AHVyDBmgCDB7BM3gFb8aT8WK8Gx+z0YKR7+yDPzA+fwB5Sp8D</latexit><latexit sha1_base64="nrDSvGPLhUeTYUaE8c6R/FKtD2o=">AAACFXicbVDLSsNAFJ3UV62vqEs3g0WoICUpgi6LunBZwT6giWUynbRDJ5M4M5GWkJ9w46+4caGIW8Gdf+M0zUJbD9zL4Zx7mbnHixiVyrK+jcLS8srqWnG9tLG5tb1j7u61ZBgLTJo4ZKHoeEgSRjlpKqoY6USCoMBjpO2NLqd++4EISUN+qyYRcQM04NSnGCkt9cwTxxcIJ84VYQrB+8r4OE2y7kgawPFdMvPtNKmlac8sW1UrA1wkdk7KIEejZ345/RDHAeEKMyRl17Yi5SZIKIoZSUtOLEmE8AgNSFdTjgIi3SS7KoVHWulDPxS6uIKZ+nsjQYGUk8DTkwFSQznvTcX/vG6s/HM3oTyKFeF49pAfM6hCOI0I9qkgWLGJJggLqv8K8RDpGJQOsqRDsOdPXiStWtW2qvbNabl+kcdRBAfgEFSADc5AHVyDBmgCDB7BM3gFb8aT8WK8Gx+z0YKR7+yDPzA+fwB5Sp8D</latexit>

lim
x!1

�q(x)

q(x)
= 1

<latexit sha1_base64="iIrk8qJxnnTYd9N6vzzGfo2xlJY=">AAACD3icbVDLSsNAFJ34rPUVdelmsCh1UxIRdCMUdeGygn1AU8JkOmmHTh7O3EhLyB+48VfcuFDErVt3/o3TNgttPXAvh3PuZeYeLxZcgWV9GwuLS8srq4W14vrG5ta2ubPbUFEiKavTSESy5RHFBA9ZHTgI1oolI4EnWNMbXI395gOTikfhHYxi1glIL+Q+pwS05JpHjuCBmw4diOzM8SWhqXPNBBB8Xx4eZ+mkX9iuWbIq1gR4ntg5KaEcNdf8croRTQIWAhVEqbZtxdBJiQROBcuKTqJYTOiA9Fhb05AETHXSyT0ZPtRKF/uR1BUCnqi/N1ISKDUKPD0ZEOirWW8s/ue1E/DPOykP4wRYSKcP+YnAEOFxOLjLJaMgRpoQKrn+K6Z9okMBHWFRh2DPnjxPGicV26rYt6el6mUeRwHtowNURjY6Q1V0g2qojih6RM/oFb0ZT8aL8W58TEcXjHxnD/2B8fkDZMycNA==</latexit><latexit sha1_base64="iIrk8qJxnnTYd9N6vzzGfo2xlJY=">AAACD3icbVDLSsNAFJ34rPUVdelmsCh1UxIRdCMUdeGygn1AU8JkOmmHTh7O3EhLyB+48VfcuFDErVt3/o3TNgttPXAvh3PuZeYeLxZcgWV9GwuLS8srq4W14vrG5ta2ubPbUFEiKavTSESy5RHFBA9ZHTgI1oolI4EnWNMbXI395gOTikfhHYxi1glIL+Q+pwS05JpHjuCBmw4diOzM8SWhqXPNBBB8Xx4eZ+mkX9iuWbIq1gR4ntg5KaEcNdf8croRTQIWAhVEqbZtxdBJiQROBcuKTqJYTOiA9Fhb05AETHXSyT0ZPtRKF/uR1BUCnqi/N1ISKDUKPD0ZEOirWW8s/ue1E/DPOykP4wRYSKcP+YnAEOFxOLjLJaMgRpoQKrn+K6Z9okMBHWFRh2DPnjxPGicV26rYt6el6mUeRwHtowNURjY6Q1V0g2qojih6RM/oFb0ZT8aL8W58TEcXjHxnD/2B8fkDZMycNA==</latexit><latexit sha1_base64="iIrk8qJxnnTYd9N6vzzGfo2xlJY=">AAACD3icbVDLSsNAFJ34rPUVdelmsCh1UxIRdCMUdeGygn1AU8JkOmmHTh7O3EhLyB+48VfcuFDErVt3/o3TNgttPXAvh3PuZeYeLxZcgWV9GwuLS8srq4W14vrG5ta2ubPbUFEiKavTSESy5RHFBA9ZHTgI1oolI4EnWNMbXI395gOTikfhHYxi1glIL+Q+pwS05JpHjuCBmw4diOzM8SWhqXPNBBB8Xx4eZ+mkX9iuWbIq1gR4ntg5KaEcNdf8croRTQIWAhVEqbZtxdBJiQROBcuKTqJYTOiA9Fhb05AETHXSyT0ZPtRKF/uR1BUCnqi/N1ISKDUKPD0ZEOirWW8s/ue1E/DPOykP4wRYSKcP+YnAEOFxOLjLJaMgRpoQKrn+K6Z9okMBHWFRh2DPnjxPGicV26rYt6el6mUeRwHtowNURjY6Q1V0g2qojih6RM/oFb0ZT8aL8W58TEcXjHxnD/2B8fkDZMycNA==</latexit><latexit sha1_base64="iIrk8qJxnnTYd9N6vzzGfo2xlJY=">AAACD3icbVDLSsNAFJ34rPUVdelmsCh1UxIRdCMUdeGygn1AU8JkOmmHTh7O3EhLyB+48VfcuFDErVt3/o3TNgttPXAvh3PuZeYeLxZcgWV9GwuLS8srq4W14vrG5ta2ubPbUFEiKavTSESy5RHFBA9ZHTgI1oolI4EnWNMbXI395gOTikfhHYxi1glIL+Q+pwS05JpHjuCBmw4diOzM8SWhqXPNBBB8Xx4eZ+mkX9iuWbIq1gR4ntg5KaEcNdf8croRTQIWAhVEqbZtxdBJiQROBcuKTqJYTOiA9Fhb05AETHXSyT0ZPtRKF/uR1BUCnqi/N1ISKDUKPD0ZEOirWW8s/ue1E/DPOykP4wRYSKcP+YnAEOFxOLjLJaMgRpoQKrn+K6Z9okMBHWFRh2DPnjxPGicV26rYt6el6mUeRwHtowNURjY6Q1V0g2qojih6RM/oFb0ZT8aL8W58TEcXjHxnD/2B8fkDZMycNA==</latexit>

lim
x!0

�q(x)

q(x)
= 0

<latexit sha1_base64="Am0AOnS5evKMTy2Je8B+Gs7DB9c=">AAACD3icbVDLSsNAFJ34rPUVdelmsCh1UxIRdCMUdeGygn1AU8JkOmmHTh7O3EhLyB+48VfcuFDErVt3/o3TNgttPXAvh3PuZeYeLxZcgWV9GwuLS8srq4W14vrG5ta2ubPbUFEiKavTSESy5RHFBA9ZHTgI1oolI4EnWNMbXI395gOTikfhHYxi1glIL+Q+pwS05JpHjuCBmw4diKzM8SWhqXPNBBB8Xx4eZ+mkX1iuWbIq1gR4ntg5KaEcNdf8croRTQIWAhVEqbZtxdBJiQROBcuKTqJYTOiA9Fhb05AETHXSyT0ZPtRKF/uR1BUCnqi/N1ISKDUKPD0ZEOirWW8s/ue1E/DPOykP4wRYSKcP+YnAEOFxOLjLJaMgRpoQKrn+K6Z9okMBHWFRh2DPnjxPGicV26rYt6el6mUeRwHtowNURjY6Q1V0g2qojih6RM/oFb0ZT8aL8W58TEcXjHxnD/2B8fkDYamcMg==</latexit><latexit sha1_base64="Am0AOnS5evKMTy2Je8B+Gs7DB9c=">AAACD3icbVDLSsNAFJ34rPUVdelmsCh1UxIRdCMUdeGygn1AU8JkOmmHTh7O3EhLyB+48VfcuFDErVt3/o3TNgttPXAvh3PuZeYeLxZcgWV9GwuLS8srq4W14vrG5ta2ubPbUFEiKavTSESy5RHFBA9ZHTgI1oolI4EnWNMbXI395gOTikfhHYxi1glIL+Q+pwS05JpHjuCBmw4diKzM8SWhqXPNBBB8Xx4eZ+mkX1iuWbIq1gR4ntg5KaEcNdf8croRTQIWAhVEqbZtxdBJiQROBcuKTqJYTOiA9Fhb05AETHXSyT0ZPtRKF/uR1BUCnqi/N1ISKDUKPD0ZEOirWW8s/ue1E/DPOykP4wRYSKcP+YnAEOFxOLjLJaMgRpoQKrn+K6Z9okMBHWFRh2DPnjxPGicV26rYt6el6mUeRwHtowNURjY6Q1V0g2qojih6RM/oFb0ZT8aL8W58TEcXjHxnD/2B8fkDYamcMg==</latexit><latexit sha1_base64="Am0AOnS5evKMTy2Je8B+Gs7DB9c=">AAACD3icbVDLSsNAFJ34rPUVdelmsCh1UxIRdCMUdeGygn1AU8JkOmmHTh7O3EhLyB+48VfcuFDErVt3/o3TNgttPXAvh3PuZeYeLxZcgWV9GwuLS8srq4W14vrG5ta2ubPbUFEiKavTSESy5RHFBA9ZHTgI1oolI4EnWNMbXI395gOTikfhHYxi1glIL+Q+pwS05JpHjuCBmw4diKzM8SWhqXPNBBB8Xx4eZ+mkX1iuWbIq1gR4ntg5KaEcNdf8croRTQIWAhVEqbZtxdBJiQROBcuKTqJYTOiA9Fhb05AETHXSyT0ZPtRKF/uR1BUCnqi/N1ISKDUKPD0ZEOirWW8s/ue1E/DPOykP4wRYSKcP+YnAEOFxOLjLJaMgRpoQKrn+K6Z9okMBHWFRh2DPnjxPGicV26rYt6el6mUeRwHtowNURjY6Q1V0g2qojih6RM/oFb0ZT8aL8W58TEcXjHxnD/2B8fkDYamcMg==</latexit><latexit sha1_base64="Am0AOnS5evKMTy2Je8B+Gs7DB9c=">AAACD3icbVDLSsNAFJ34rPUVdelmsCh1UxIRdCMUdeGygn1AU8JkOmmHTh7O3EhLyB+48VfcuFDErVt3/o3TNgttPXAvh3PuZeYeLxZcgWV9GwuLS8srq4W14vrG5ta2ubPbUFEiKavTSESy5RHFBA9ZHTgI1oolI4EnWNMbXI395gOTikfhHYxi1glIL+Q+pwS05JpHjuCBmw4diKzM8SWhqXPNBBB8Xx4eZ+mkX1iuWbIq1gR4ntg5KaEcNdf8croRTQIWAhVEqbZtxdBJiQROBcuKTqJYTOiA9Fhb05AETHXSyT0ZPtRKF/uR1BUCnqi/N1ISKDUKPD0ZEOirWW8s/ue1E/DPOykP4wRYSKcP+YnAEOFxOLjLJaMgRpoQKrn+K6Z9okMBHWFRh2DPnjxPGicV26rYt6el6mUeRwHtowNURjY6Q1V0g2qojih6RM/oFb0ZT8aL8W58TEcXjHxnD/2B8fkDYamcMg==</latexit>

helicity correlation disappears at x ~ 0
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Numerical Results of Quark Polarized PDFs
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Bands: different ways to saturate the axial charge.

sign-flip 
x ~ 0.8

Dashed curve: only valence state, without saturating the axial charge.

The same w(x) as in the unpolarized distributions.
TL, R.S. Sufian, G.F. de Téramond, H.G. Dosch, S.J. Brodsky, A. Deur,  
Phys. Rev. Lett. 124, 082003 (2020).
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Graviton and Pomeron

SG[g] = �1

4

Z
d5x

p
ge'g(z)(R� ⇤)

<latexit sha1_base64="kkByCvFKDpfF04wDRyeXjm0DM40=">AAACPHicbVC7bhNBFJ1NAgTzMklJM4qFZBe2diNbpIkUhQIKioDjh+Rdr+7Oztojzz6YmY1wRvNhafgIOiqaFEGIljrjRwE2RxrpzLn36p57ooIzqVz3u7Ozu/fg4aP9x5UnT589f1F9edCXeSkI7ZGc52IYgaScZbSnmOJ0WAgKacTpIJq9XdQHV1RIlmeXal7QIIVJxhJGQFkprHa7oX5nRpPgtOknAoj2jG4b7LNM4XisOwZ/wb78LJSeGEzH2r8CUUxZaL/164ap+ymoKQGuP5mm/8HujaERVmtuy10CbxNvTWpojYuw+s2Pc1KmNFOEg5Qjzy1UoEEoRjg1Fb+UtAAygwkdWZpBSmWgl8cb/NoqMU5yYZ81vVT/ntCQSjlPI9u58Co3awvxf7VRqZKTQLOsKBXNyGpRUnKscrxIEsdMUKL43BIgglmvmEzBZqhs3hUbgrd58jbpH7e8dqvzsV07O1/HsY9eoSNURx56g87Qe3SBeoigG/QD3aGfzlfn1vnl/F617jjrmUP0D5w/9yK2rrA=</latexit>

AdS gravity action

performing a small deformation: gMN ! gMN + hMN

<latexit sha1_base64="Ndd5sRoICKE+uNVy3HxqLPr1GPQ=">AAACDHicbVDLSgMxFL3js9ZX1aWbYBEEocxIRZdFN26UCvYB7VAyaWYmNJMZkoxShn6AG3/FjQtF3PoB7vwb03YW2nog5HDOuST3eAlnStv2t7WwuLS8slpYK65vbG5tl3Z2mypOJaENEvNYtj2sKGeCNjTTnLYTSXHkcdryBpdjv3VPpWKxuNPDhLoRDgTzGcHaSL1SOehl1+hmhLqSBaHGUsYPKNeOw+ltUnbFngDNEycnZchR75W+uv2YpBEVmnCsVMexE+1mWGpGOB0Vu6miCSYDHNCOoQJHVLnZZJkROjRKH/mxNEdoNFF/T2Q4UmoYeSYZYR2qWW8s/ud1Uu2fuxkTSaqpINOH/JQjHaNxM6jPJCWaDw3BRDLzV0RCLDHRpr+iKcGZXXmeNE8qTrVyelst1y7yOgqwDwdwBA6cQQ2uoA4NIPAIz/AKb9aT9WK9Wx/T6IKVz+zBH1ifP1xwmo0=</latexit>

effective action: Se↵ [h,�] = Sg[h] + Si[h,�]

<latexit sha1_base64="i8y2bcd3xr/15tlMJddzh7oWgrk=">AAACGnicbVBLS8NAGNzUV62vqEcvi0UQlJJIRS9C0YvHivYBSQib7aZZunmwuxFKyO/w4l/x4kERb+LFf+OmDaitAwuzM9/H7oyXMCqkYXxplYXFpeWV6mptbX1jc0vf3umKOOWYdHDMYt73kCCMRqQjqWSkn3CCQo+Rnje6KvzePeGCxtGdHCfECdEwoj7FSCrJ1c1bN7NDJAMeZsT389wKjqHdDqhzoZyhujpHitAf3dXrRsOYAM4TsyR1UKLt6h/2IMZpSCKJGRLCMo1EOhnikmJG8pqdCpIgPEJDYikaoZAIJ5tEy+GBUgbQj7k6kYQT9fdGhkIhxqGnJosUYtYrxP88K5X+uZPRKEklifD0IT9lUMaw6AkOKCdYsrEiCHOq/gpxgDjCUrVZUyWYs5HnSfekYTYbpzfNeuuyrKMK9sA+OAQmOAMtcA3aoAMweABP4AW8ao/as/amvU9HK1q5swv+QPv8BgGUoNM=</latexit>

Sg[h] =� 1

4

Z
d5x

p
ge'g(z)

✓
@Lh

MN@LhMN � 1

2
@Lh@

Lh

◆

<latexit sha1_base64="zW4FTYNCOEzkxrgLQGZ3ds0R7RI=">AAACinicbVFdb9MwFHXCYKMM1sEjLxYVqHtYlVTdB0JIE+yBB4aGoNukOo0c12msOR+zb6Z1Vn4Mf4m3/RucNNKg40qWjs495177OCqk0OB5d477aO3xk/WNp51nm89fbHW3X57pvFSMj1kuc3URUc2lyPgYBEh+UShO00jy8+jyc90/v+ZKizz7CYuCBymdZyIWjIKlwu6vH6GZV5Mk+Phul8SKMuNXZlRhIjLAs6nZq/ANJvpKgZVhPjXkmqoiEbWrf7tTEclj6JOCKhBUhuZrhZOpOcHf7IiWnDZk2JCd+yXDe8XStmIgSswT2OmE3Z438JrCD4Hfgh5q6zTs/iaznJUpz4BJqvXE9woITD2bSV51SKl5QdklnfOJhRlNuQ5ME2WF31pmhuNc2WMTaNi/HYamWi/SyCpTCole7dXk/3qTEuLDwIisKIFnbLkoLiWGHNf/gmdCcQZyYQFlSti7YpZQmxXY36tD8Fef/BCcDQf+aLD3fdQ7+tTGsYFeozeoj3x0gI7QF3SKxog5686us+8cuJvu0H3vflhKXaf1vEL/lHv8Bxo5xSA=</latexit>

Si[h,�] =
1

2

Z
d5x

p
ghMNTMN (�)

<latexit sha1_base64="I8tkj8r/gli0tWwnOPF75OxpEFw="></latexit>

@Lh
L
M =

1

2
@Mh, h ⌘ hL

L

<latexit sha1_base64="7dZZWeR7Z6jX0uADiJP79lnCaeg=">AAACNXicbVDLSsNAFJ34rPFVdelmsAgupCSlohuh6MZFCxXsA5oaJtNJO3Ty6MykUEJ+yo3/4UoXLhRx6y84SQtq64GBw7nncOceJ2RUSMN40ZaWV1bX1nMb+ubW9s5ufm+/KYKIY9LAAQt420GCMOqThqSSkXbICfIcRlrO8Dqdt8aECxr4d3ISkq6H+j51KUZSSXa+aoWIS4qYHVcTOLDjWnKv2KXlcoRjM4lLCfyx1JTlFOrWKEI9fQAtMoroOE1Vs5SdLxhFIwNcJOaMFMAMdTv/ZPUCHHnEl5ghITqmEcpunK7DjCS6FQkSIjxEfdJR1EceEd04uzqBx0rpQTfg6vkSZurvRIw8ISaeo5wekgMxP0vF/2adSLoX3Zj6YSSJj6eL3IhBGcC0QtijnGDJJoogzKn6K8QDpPqSqmhdlWDOn7xImqWiWS6e3ZYLlatZHTlwCI7ACTDBOaiAG1AHDYDBA3gGb+Bde9RetQ/tc2pd0maZA/AH2tc3YjWrxA==</latexit>

in the harmonic gauge

identify the gravity probe in AdS with the Pomeron, JPC=2++ bound state of gluons

effective trajectory: ↵P (t) = ↵P (0) + ↵0
P t

<latexit sha1_base64="zJZnE+xVepniZFk3/Ky4DIjkIn8=">AAACGnicbVDLSgMxFM34rPU16tJNsAgtQpmRim6EohuXFewDOrVk0kwbmnmQ3BHKMN/hxl9x40IRd+LGvzFtB6ytBwLnnnMvN/e4keAKLOvbWFpeWV1bz23kN7e2d3bNvf2GCmNJWZ2GIpQtlygmeMDqwEGwViQZ8V3Bmu7weuw3H5hUPAzuYBSxjk/6Afc4JaClrmk7REQD0k1qaRFKlzOVVTr5re4TJ5LcZymGrlmwytYEeJHYGSmgDLWu+en0Qhr7LAAqiFJt24qgkxAJnAqW5p1YsYjQIemztqYB8ZnqJJPTUnyslR72QqlfAHiizk4kxFdq5Lu60ycwUPPeWPzPa8fgXXQSHkQxsIBOF3mxwBDicU64xyWjIEaaECq5/iumAyIJBZ1mXodgz5+8SBqnZbtSPrutFKpXWRw5dIiOUBHZ6BxV0Q2qoTqi6BE9o1f0ZjwZL8a78TFtXTKymQP0B8bXD92poMk=</latexit>

↵P (0) ' 1.08

<latexit sha1_base64="AJmO5oaNirWl4HGD3ItNo4U16OM=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1iEugmJVOyy6MZlBfuAJoTJdNoOnZnEmYlQQnHjr7hxoYhbv8Kdf+O0zUJbD1w4nHMv994TJYwq7brfVmFldW19o7hZ2tre2d2z9w9aKk4lJk0cs1h2IqQIo4I0NdWMdBJJEI8YaUej66nffiBS0Vjc6XFCAo4GgvYpRtpIoX3kI5YMUZg1JhX3DPqKcnIPPcethXbZddwZ4DLxclIGORqh/eX3YpxyIjRmSKmu5yY6yJDUFDMyKfmpIgnCIzQgXUMF4kQF2eyFCTw1Sg/2Y2lKaDhTf09kiCs15pHp5EgP1aI3Ff/zuqnu14KMiiTVROD5on7KoI7hNA/Yo5JgzcaGICypuRXiIZIIa5NayYTgLb68TFrnjld1Lm6r5fpVHkcRHIMTUAEeuAR1cAMaoAkweATP4BW8WU/Wi/VufcxbC1Y+cwj+wPr8AcDWlbk=</latexit>

↵0
P ' 0.25GeV�2

<latexit sha1_base64="42IxfNJ7pOG0PKFrIRj+YIjvPUk=">AAACGnicbVDLSgMxFM34rPU16tJNsAhuLDOlRZdFF7qsYB/QqSWT3rahycyYZIQyzHe48VfcuFDEnbjxb8y0XWjrhZDDOedy7z1+xJnSjvNtLS2vrK6t5zbym1vbO7v23n5DhbGkUKchD2XLJwo4C6CumebQiiQQ4XNo+qPLTG8+gFQsDG71OIKOIIOA9Rkl2lBd2/UIj4akm9TSu8SLJBOQYk+Z7x47xVIFe4LooRTJFTSM47SUdu2CU3QmhReBOwMFNKta1/70eiGNBQSacqJU23Ui3UmI1IxySPNerCAidEQG0DYwIAJUJ5mcluJjw/RwP5TmBRpP2N8dCRFKjYVvnNmial7LyP+0dqz7552EBVGsIaDTQf2YYx3iLCfcYxKo5mMDCJXM7IrpkEhCtUkzb0Jw509eBI1S0S0XKzflQvViFkcOHaIjdIJcdIaq6BrVUB1R9Iie0St6s56sF+vd+phal6xZzwH6U9bXD7wboKk=</latexit>
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Gravitational Form Factor
The propagation of hMN in Minkowski coordinates

� z3

e'g(z)
@z

✓
e'g(z)

z3
@zh

⌫
µ

◆
+ @⇢@

⇢h⌫
µ = 0

<latexit sha1_base64="37l0Pn0My0/j1jWU3oPYbpJXyds="></latexit>

plane wave along the physical coordinates: h
⌫
µ(x, z) = ✏

⌫
µe

�iq·x
H

�
q
2
, z
�

<latexit sha1_base64="XsRzlFHMdXaRze0NpaGWYw3uscw="></latexit>

boundary conditions: H
�
q
2 = 0, z

�
= H

�
q
2
, z = 0

�
= 1

<latexit sha1_base64="bRL5W3AsliaTsglCJzDUUwdp5b4=">AAACHHicbVBNS0JBFJ1nX2ZfVss2QxIYhLxnRm0EqY1Lg/wANZk3ztPBeR/N3BfYwx/Spr/SpkURbVoE/ZtGfYFpBy4czrmXe++xA8EVmOa3kVhaXlldS66nNja3tnfSu3s15YeSsir1hS8bNlFMcI9VgYNgjUAy4tqC1e3B1div3zOpuO/dwDBgbZf0PO5wSkBLnfRpuSWYA9m72yg/Kpon+KElea8Px8VZQ8tF89ewOumMmTMnwIvEikkGxah00p+trk9Dl3lABVGqaZkBtCMigVPBRqlWqFhA6ID0WFNTj7hMtaPJcyN8pJUudnypywM8UWcnIuIqNXRt3ekS6Kt5byz+5zVDcC7aEfeCEJhHp4ucUGDw8Tgp3OWSURBDTQiVXN+KaZ9IQkHnmdIhWPMvL5JaPmcVcmfXhUzpMo4jiQ7QIcoiC52jEiqjCqoiih7RM3pFb8aT8WK8Gx/T1oQRz+yjPzC+fgC9T5/o</latexit>

solution:

'g(z) = ��gz
2

<latexit sha1_base64="ygJYAhvS+w1h5/xovsnOAnlKii8=">AAACCnicbVA7T8MwGHTKq5RXgJHFUCGVgSqpimBBqmBhLBJ9SE2IHNdprToP2U6lNsrMwl9hYQAhVn4BG/8Gp80AhZMsne++k/2dGzEqpGF8aYWl5ZXVteJ6aWNza3tH391rizDmmLRwyELedZEgjAakJalkpBtxgnyXkY47us78zphwQcPgTk4iYvtoEFCPYiSV5OiH1hjxaEidZJBWpieXpxZT4T7K7nB6n9RSRy8bVWMG+JeYOSmDHE1H/7T6IY59EkjMkBA904iknSAuKWYkLVmxIBHCIzQgPUUD5BNhJ7NVUnislD70Qq5OIOFM/ZlIkC/ExHfVpI/kUCx6mfif14uld2EnNIhiSQI8f8iLGZQhzHqBfcoJlmyiCMKcqr9CPEQcYanaK6kSzMWV/5J2rWrWq2e39XLjKq+jCA7AEagAE5yDBrgBTdACGDyAJ/ACXrVH7Vl7097nowUtz+yDX9A+vgH6qZpz</latexit>

soft-wall profile:

H(a, ⇠) = �(2 + a)U(a,�1, ⇠)

<latexit sha1_base64="BGjQAQn4k/CQl5fYtR2+P6sIM9M=">AAACC3icbVBNS0JBFJ1nX2ZfVss2gxIolbwnRm0CqUUuDfIDVOS+cbTBmfceM/Miebhv019p06KItv2Bdv2bRn2L0g5cOJxzL/fe4wacKW3b31ZiaXlldS25ntrY3NreSe/u1ZUfSkJrxOe+bLqgKGcerWmmOW0GkoJwOW24w6uJ37inUjHfu9WjgHYEDDzWZwS0kbrpTCUHx7j9wPIX7WsQAnLFI8jjmlFPnJnRTWftgj0FXiROTLIoRrWb/mr3fBIK6mnCQamWYwe6E4HUjHA6TrVDRQMgQxjQlqEeCKo60fSXMT40Sg/3fWnK03iq/p6IQCg1Eq7pFKDv1Lw3Ef/zWqHun3ci5gWhph6ZLeqHHGsfT4LBPSYp0XxkCBDJzK2Y3IEEok18KROCM//yIqkXC06pcHpTypYv4ziS6ABlUA456AyVUQVVUQ0R9Iie0St6s56sF+vd+pi1Jqx4Zh/9gfX5AyHHl08=</latexit>

a = Q2/4�g, ⇠ = �gz
2

<latexit sha1_base64="1787LtHoglv3xBO1zheTvf8OjXM=">AAACHnicbVDLSgMxFM34rOOr6tJNsAgupM6UFt0Uim5ctmAf0KnlTiZtQzMPk4xYh36JG3/FjQtFBFf6N6aPRW09EDiccy4397gRZ1JZ1o+xtLyyurae2jA3t7Z3dtN7+zUZxoLQKgl5KBouSMpZQKuKKU4bkaDgu5zW3f7VyK/fUyFZGNyoQURbPnQD1mEElJba6QIUK7dJbojPcB47XA960E66w1PTuYvBM7HzwIozOn4cpdvpjJW1xsCLxJ6SDJqi3E5/OV5IYp8GinCQsmlbkWolIBQjnA5NJ5Y0AtKHLm1qGoBPZSsZnzfEx1rxcCcU+gUKj9XZiQR8KQe+q5M+qJ6c90bif14zVp2LVsKCKFY0IJNFnZhjFeJRV9hjghLFB5oAEUz/FZMeCCBKN2rqEuz5kxdJLZe189lCJZ8pXU7rSKFDdIROkI3OUQldozKqIoKe0At6Q+/Gs/FqfBifk+iSMZ05QH9gfP8CkaSg+A==</latexit>

The coupling with EMT
A scalar field, e.g. pion, Sq[�] =

Z
d5x

p
ge'q(z)

�
gMN@M�⇤@N�� µ2�⇤�

�

<latexit sha1_base64="JLlklbQvQQa6edaSTMvlHVYIOxw="></latexit>

TMN = @M�⇤@N�+ @N�⇤@M�

<latexit sha1_base64="m6riHkc13g7e9ux3w0jsCESBnl8=">AAACQHicbZBLS8NAFIUn9VXrK+rSzWARRKEkUtGNUHTjxlKhL2himEwn7dDJg5mJUEJ+mht/gjvXblwo4taVkzaItl4YOPPde+Zx3IhRIQ3jWSssLC4trxRXS2vrG5tb+vZOW4Qxx6SFQxbyrosEYTQgLUklI92IE+S7jHTc0VXW79wTLmgYNOU4IraPBgH1KEZSIUfvNJ3kBtbTCytCXFLE1DaFVmNI75IjJX5ofUqP58jMXO529LJRMSYF54WZizLIq+HoT1Y/xLFPAokZEqJnGpG0k+xYzEhasmJBIoRHaEB6SgbIJ8JOJgGk8ECRPvRCrlYg4YT+diTIF2Lsu2rSR3IoZnsZ/K/Xi6V3bic0iGJJAjy9yIsZlCHM0oR9ygmWbKwEwpyqt0I8RBxhqTIvqRDM2S/Pi/ZJxaxWTm+r5dplHkcR7IF9cAhMcAZq4Bo0QAtg8ABewBt41x61V+1D+5yOFrTcswv+lPb1DXEfsFE=</latexit>

transition amplitude:
Z

d5x
p
ghMN

�
@M�⇤

P 0@N�P + @N�⇤
P 0@M�P

�

<latexit sha1_base64="urlzDZKTmG9uZbYm6I63P8xeIEQ=">AAAChHicdVHLThsxFPUMFGj6CnTZjUVUlT4UzRQiWFWIbroBpVIDSHEy8jh3MhaeB/YdRGT5S/pX3fE3dUJEW6BXsnR0zrm+9rlpraTBKLoJwpXVJ2vrG09bz56/ePmqvbl1aqpGCxiISlX6POUGlCxhgBIVnNcaeJEqOEsvvs71syvQRlblD5zVMCr4tJSZFBw9lbR/MlkinYxtz9FrysylRjt1NE/sMT1xTEGGO6zmGiVXY3vsKOvnMrH9sWW1lgU4N7YfPHtnObmzuI+Psf9t/HO3Y1pOc3yftDtRN1oUfQjiJeiQZfWT9i82qURTQIlCcWOGcVTjyM4nCAWuxRoDNRcXfApDD0tegBnZRYiOvvXMhGaV9sdHsmD/7rC8MGZWpN5ZcMzNfW1OPqYNG8wORlaWdYNQittBWaMoVnS+ETqRGgSqmQdcaOnfSkXONRfo99byIcT3v/wQnH7uxnvd3ve9zuHRMo4N8oZskx0Sk31ySL6RPhkQEQTBuyAK4nAt/BTuhr1baxgse16Tfyr88htjsMT0</latexit>
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Gravitational Form Factor
Gravitational Form Factor

Pomeron coupling to the constituent gluon

Proton: the lowest Fock state

⌦
P 0 ��T ⌫

µ

��P
↵
=

�
P ⌫P 0

µ + PµP
0⌫�A

�
Q2

�

<latexit sha1_base64="IhfWJ9SzmGGYKHdEQhauTfsboYA="></latexit>

hadronic matrix element:

GFF: A⌧

�
Q

2
�
=

Z 1

0

dz

z3
H

�
Q

2
, z
�
�2

⌧ (z)

<latexit sha1_base64="tofHjD8GqHE2IYkPkkNjZBHq61Y=">AAACUXicbVFNTxsxFHzZ0kJDP9L2yMUiQgpSFe1SEL1UgvbCMUgNIGWTldfxZi283pX9Fimx/Bd7gBP/o5ceiuqEPVBgJEujmTf+GKeVFAbD8LYVvFh7+Wp943V7883bd+87Hz6embLWjA9ZKUt9kVLDpVB8iAIlv6g0p0Uq+Xl6+WPpn19xbUSpfuK84uOCzpTIBKPopaSTHyc2Rlq7WPIMe6cTu+diLWY57n6LhcLEhm5iPctw7kicacrslCycXUzsF+fIyYPcZ7JooiQe5KLZeOn0FrtJpxv2wxXIUxI1pAsNBknnOp6WrC64QiapMaMorHBsqUbBJHftuDa8ouySzvjIU0ULbsZ21YgjO16ZkqzUfikkK/VhwtLCmHmR+smCYm4ee0vxOW9UY/Z1bIWqauSK3R+U1ZJgSZb1kqnQnKGce0KZFv6uhOXUt4b+E9q+hOjxk5+Ss71+tN8/ON3vHn1v6tiALdiGHkRwCEdwAgMYAoNf8Bv+wl3rpvUngCC4Hw1aTeYT/Idg8x+J3rTF</latexit>

�g
⌧ (z) ⇠ z⌧e��gz

2/2

<latexit sha1_base64="CHzJNAMZizyDbRgPiNNoAv+oy8g="></latexit>

Ag
⌧

�
Q2

�
=

1

N⌧
B
�
⌧ � 1, 2� ↵P

�
Q2

��

<latexit sha1_base64="Rn/cGBZfYQlfQZuIpkANHU66OUo="></latexit>

|uudgi

<latexit sha1_base64="/FbPlPDEKfrFwWsFJjvmUSWX0no=">AAAB+HicbVDLSgNBEJyNrxgfWfXoZTAInsKuRPQY9OIxgnlAsoTZSWczZHZ2mYcQ13yJFw+KePVTvPk3TpI9aGJBQ1HVTXdXmHKmtOd9O4W19Y3NreJ2aWd3b7/sHhy2VGIkhSZNeCI7IVHAmYCmZppDJ5VA4pBDOxzfzPz2A0jFEnGvJykEMYkEGzJKtJX6bvnJYIMHOOpJIiIOfbfiVb058Crxc1JBORp996s3SKiJQWjKiVJd30t1kBGpGeUwLfWMgpTQMYmga6kgMaggmx8+xadWGeBhIm0Jjefq74mMxEpN4tB2xkSP1LI3E//zukYPr4KMidRoEHSxaGg41gmepYAHTALVfGIJoZLZWzEdEUmotlmVbAj+8surpHVe9WvVi7tapX6dx1FEx+gEnSEfXaI6ukUN1EQUGfSMXtGb8+i8OO/Ox6K14OQzR+gPnM8fA1CSrw==</latexit>

⌧ = 4

<latexit sha1_base64="Q5KrXHEvv3MHVNZ1CJLfERW3yPw=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KolU9CIUvXisYD+gDWWz3bRLN5u4OxFK6J/w4kERr/4db/4bt20O2vpg4PHeDDPzgkQKg6777aysrq1vbBa2its7u3v7pYPDpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDv1W09cGxGrBxwn3I/oQIlQMIpWaneRpuSaVHulsltxZyDLxMtJGXLUe6Wvbj9macQVMkmN6Xhugn5GNQom+aTYTQ1PKBvRAe9YqmjEjZ/N7p2QU6v0SRhrWwrJTP09kdHImHEU2M6I4tAselPxP6+TYnjlZ0IlKXLF5ovCVBKMyfR50heaM5RjSyjTwt5K2JBqytBGVLQheIsvL5PmecWrVi7uq+XaTR5HAY7hBM7Ag0uowR3UoQEMJDzDK7w5j86L8+58zFtXnHzmCP7A+fwBy16PKQ==</latexit>

Pion: the lowest Fock state |ud̄gi

<latexit sha1_base64="rKNKgRLwkqI59iMXm7wJhaucQB0=">AAAB/HicbVBNS8NAEJ3Ur1q/oj16WSyCp5JIRY9FLx4r2A9oQtlst+nSzSbsboQQ61/x4kERr/4Qb/4bt20O2vpg4PHeDDPzgoQzpR3n2yqtrW9sbpW3Kzu7e/sH9uFRR8WpJLRNYh7LXoAV5UzQtmaa014iKY4CTrvB5Gbmdx+oVCwW9zpLqB/hULARI1gbaWBXH1PkBVjmwykKPYlFyOnArjl1Zw60StyC1KBAa2B/ecOYpBEVmnCsVN91Eu3nWGpGOJ1WvFTRBJMJDmnfUIEjqvx8fvwUnRpliEaxNCU0mqu/J3IcKZVFgemMsB6rZW8m/uf1Uz268nMmklRTQRaLRilHOkazJNCQSUo0zwzBRDJzKyJjLDHRJq+KCcFdfnmVdM7rbqN+cdeoNa+LOMpwDCdwBi5cQhNuoQVtIJDBM7zCm/VkvVjv1seitWQVM1X4A+vzB6rplMs=</latexit>

⌧ = 3

<latexit sha1_base64="YSoWKaf9KIm2lQydRvLAahoyBug=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKexqRC9C0IvHCOYByRJmJ5NkyOzsOtMrhCU/4cWDIl79HW/+jZNkD5pY0FBUddPdFcRSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslItwJquBSK11Gg5K1YcxoGkjeD0e3Ubz5xbUSkHnAccz+kAyX6glG0UquDNCHX5LxbLLlldwayTLyMlCBDrVv86vQiloRcIZPUmLbnxuinVKNgkk8KncTwmLIRHfC2pYqG3Pjp7N4JObFKj/QjbUshmam/J1IaGjMOA9sZUhyaRW8q/ue1E+xf+alQcYJcsfmifiIJRmT6POkJzRnKsSWUaWFvJWxINWVoIyrYELzFl5dJ46zsVcoX95VS9SaLIw9HcAyn4MElVOEOalAHBhKe4RXenEfnxXl3PuatOSebOYQ/cD5/AMnajyg=</latexit>
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Numerical Results of GFF

G.F. de Téramond, H.G. Dosch, TL, R.S. Sufian, S.J. Brodsky, A. Deur,  
Phys. Rev. D 104, 114005 (2021).
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r2g
↵
=

6

Ag(0)

dAg(t)

dt

����
t=0

<latexit sha1_base64="O3Hw/gWX+H8sdMGcO9tYcDqG380="></latexit>

⌦
r2g
↵
p
= 2.93/�g = (0.34fm)2

<latexit sha1_base64="Nu/VKMJFeyk+SM54/MOMsZp7ttg="></latexit>

⌦
r2g
↵
⇡
= 2.41/�g = (0.31fm)2

<latexit sha1_base64="Wk21lth/nPliDEvOmJUV5XQQdo4="></latexit>
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Gluon Distributions

G.F. de Téramond, H.G. Dosch, TL, R.S. Sufian, S.J. Brodsky, A. Deur,  
Phys. Rev. D 104, 114005 (2021).

From GFF to gluon distributions
follow the procedure in quark distribution, but start from gluon gravitational form factor 

Ag
⌧ (t) =

1

N⌧

Z 1

0
dxw0(x)w(x)1�↵P (t)[1� w(x)]⌧�2

<latexit sha1_base64="noGBzCN6v9MqG+/ctWZL5Gi0ReM=">AAACUnicbVJNa9swGFaybu2ybsu64y6iYZAeEuzS0V4G7XrZaaSwtIXYMa8VORGVZSO9bhuEfuNg9LIfsssOW+XUh/XjBYmH53k/pEdKSykMBsGvVvvZ2vMX6xsvO682X7952323dWqKSjM+ZoUs9HkKhkuh+BgFSn5eag55KvlZenFc62eXXBtRqO+4LHmcw1yJTDBATyVdcZTYCKFyUzt3fdz5HGUamA2d/dYIjkZCYWIDnxI6OqPX9Gpqo1KLnLv+9Q698puXBhHIcgGJHdV93CQc1EI8XXUZ7Lqk2wuGwSroYxA2oEeaGCXdn9GsYFXOFTIJxkzCoMTYgkbBJHedqDK8BHYBcz7xUEHOTWxXljj60TMzmhXaL4V0xf5fYSE3ZpmnPjMHXJiHWk0+pU0qzA5iK1RZIVfsblBWSYoFrf2lM6E5Q7n0AJgW/qyULcB7iv4VOt6E8OGVH4PT3WG4N/x0stc7/NLYsUE+kG3SJyHZJ4fkKxmRMWHkB/lN/pJ/rZvWn7b/JXep7VZT857ci/bmLUYKs+Q=</latexit>

the same w(x) as in quark distributions

g⌧ (x) =
1

N⌧

w0(x)

x
[1� w(x)]⌧�2w(x)1�↵P (0)

<latexit sha1_base64="BI+A4wzOUYmYyJU91uHg9JMi8/s="></latexit>

g⌧ (x) ⇠ (1� x)2⌧�3

<latexit sha1_base64="pV0/j3hY3ccH8mYYx8rRMJgrqsw=">AAACCXicbVDLSsNAFJ34rPUVdelmsAjtoiWpFV0W3bisYB/QxDCZTtqhkwczE2kJ2brxV9y4UMStf+DOv3HSZqGtBy4czrmXe+9xI0aFNIxvbWV1bX1js7BV3N7Z3dvXDw47Iow5Jm0cspD3XCQIowFpSyoZ6UWcIN9lpOuOrzO/+0C4oGFwJ6cRsX00DKhHMZJKcnQ4dBJLojgtTyrQEtQvm9VJ5T6pw0ytnqWOXjJqxgxwmZg5KYEcLUf/sgYhjn0SSMyQEH3TiKSdIC4pZiQtWrEgEcJjNCR9RQPkE2Ens09SeKqUAfRCriqQcKb+nkiQL8TUd1Wnj+RILHqZ+J/Xj6V3aSc0iGJJAjxf5MUMyhBmscAB5QRLNlUEYU7VrRCPEEdYqvCKKgRz8eVl0qnXzEbt/LZRal7lcRTAMTgBZWCCC9AEN6AF2gCDR/AMXsGb9qS9aO/ax7x1RctnjsAfaJ8/LSOYug==</latexit>

intrinsic gluon distribution:
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In LF holographic QCD, we determine the structure of GPDs up to a 
universal reparametrization function w(x), incorporating Regge behavior at 
small x and counting rules at large x.
It connects parton distributions in the proton and those in the pion. Including 
quark mass correction, this approach can be applied to intrinsic strange and 
intrinsic charm.

Thanks!

Given the unpolarized quark distributions, the polarized distributions are 
uniquely determined, consistent with the helicity retention at x→1 predicted 
by pQCD.
With the holographic coupling of the spin-two soft Pomeron to hadron EMT, 
we provide simultaneous description of intrinsic gluon GFF and distribution 
within a unified framework for both nucleon and pion.
With quark distributions determined from previous studies, the gluon 
distributions are predicted using only the leading Fock component with no 
additional parameters.
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Nucleon form factor: spin-flip
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Effective spin-flip amplitude in AdS space of 
an external EM field coupling to a nucleon

Form Factors in Holographic QCD

Pauli form factor in physical spacetime

Pauli form factor

Z. Abidin and C.E. Carlson, 
Phys. Rev. D 79, 115003 (2009).

Pτ for each Fock state and the vector meson masses M2
ρn .

The advantage, however, of the holographic approach is
that no fine-tuning of the coefficients Cλ is necessary since
the correct scaling is incorporated from the onset; the
expansion coefficients Pτ then have a clear physical
meaning in terms of the probability of each Fock
component.
The expression for the FF (9) contains a cluster decom-

position: the hadronic FF factorizes into the i ¼ N − 1
product of twist-2 monopole FFs evaluated at different
scales [52] (N is the total number of constituents of a given
Fock state),

FiðQ2Þ ¼ Fi¼2ðQ2ÞFi¼2

!
1

3
Q2

"
$ $ $Fi¼2

!
1

2i − 1
Q2

"
:

ð12Þ

In the case of a nucleon, for example, the Dirac FF
of the twist-3 valence quark-diquark state F1ðQ2Þ ¼
Fi¼2ðQ2ÞFi¼2ð13Q

2Þ corresponds to the factorization of
the proton FF as a product of a pointlike quark and a
diquark-cluster FF. The identical twist-3 expression from
Eq. (9) is described by the product of two poles consistent
with leading-twist scaling, Q4F1ðQ2Þ ∼ const, at high
momentum transfer. As we show below, the Pauli form
factor F2 is given instead by the i ¼ N þ 1 product of
dipoles, and thus the leading-twist scaling Q6F2ðQ2Þ∼
const.

III. NUCLEON FORM FACTORS
IN HOLOGRAPHIC QCD

The nucleon spin-nonflip EM FF follows from the
expression [34]

Z
d4xdz

ffiffiffi
g

p
Ψ̄P0ðx; zÞeMA ΓAAMðx; zÞΨPðx; zÞ

∼ ð2πÞ4δ4ðP0 − P − qÞϵμūðP0ÞγμF1ðq2ÞuðPÞ; ð13Þ

where the curved space indices in AdS5 space are M, N,
and tangent indices in flat five-dimensional space are A, B.
The ΓA are Dirac gamma matrices which obey the usual
anticommutation relation fΓA;ΓBg ¼ 2ηAB and are given
by ΓA ¼ ðγμ;−iγ5Þ, and the eMA are the inverse vielbein,
eMA ¼ ðzRÞδ

M
A . The expression on the right-hand side repre-

sents the Dirac EM form factor in physical space-time. It is
the EM spin-conserving matrix element of the quark
current Jμ ¼

P
qeqq̄γ

μq [34].
In the higher-dimensional gravity theory nucleons are

described by plus and minus wave functions Ψþ and Ψ−
corresponding to the positive and negative chirality of the
nucleon [33,34]

ΨþðzÞ ∼ zτþ1=2e−κ
2z2=2; Ψ−ðzÞ ∼ zτþ3=2e−κ

2z2=2; ð14Þ

which represent, respectively, a positive chirality compo-
nent with orbital angular momentum L ¼ 0 and a negative
chirality component with L ¼ 1, and have identical nor-
malization. The spin-nonflip nucleon elastic form factor F1

follows from (13) and is given in terms of Ψþ and Ψ− [34],

FN
1 ðQ2Þ ¼

X

&
gN&

Z
dz
z4

VðQ2; zÞΨ2
&ðzÞ: ð15Þ

The effective charges g& have to be determined by the
specific spin-flavor structure which is not contained in the
holographic principle. For example, in the SU(6) symmetry
approximation the effective charges are computed by the
sum of the EM charges of the struck quark convoluted by
the corresponding probability for the L ¼ 0 and L ¼ 1
components Ψþ and Ψ− respectively. The result is [34]

gpþ ¼ 1; gp− ¼ 0; gnþ ¼ −
1

3
; gn− ¼ 1

3
: ð16Þ

Notice that there is an additional scaling power in (15), as
compared with Eq. (3), but this is compensated by the
additional z1=2 factor in the twist-τ nucleon AdS wave
functions (14).
Since the structure of (13) can only account for F1, one

should therefore include an effective gauge-invariant inter-
action in the five-dimensional gravity action to describe the
spin-flip amplitude [68]. The nucleon spin-flip EM FF
follows from the nonminimal term
Z

d4xdz
ffiffiffi
g

p
Ψ̄P0ðx;zÞeMA eNB ½ΓA;ΓB(FMNðx;zÞΨPðx;zÞ

∼ ð2πÞ4δ4ðP0 −P−qÞϵμūðP0Þσ
μνqν
2MN

F2ðq2ÞuðPÞ; ð17Þ

where the expression on the right-hand side represents the
Pauli EM form factor in physical space-time. It corresponds
to the EM spin-flip matrix element of the quark current
Jμ ¼

P
qeqq̄γ

μq [34]. Since (17) represents an effective
interaction, its overall strength has to be fixed to the static
values of the anomalous magnetic moments χp and
χn [34,68].
Extracting the factor ð2πÞ4δ4ðP0 − P − qÞ from momen-

tum conservation in (17) we find [68]

FN
2 ðQ2Þ ¼ χN

Z
dz
z3

ΨþðzÞVðQ2; zÞΨ−ðzÞ; ð18Þ

where N ¼ p, n. Comparing the spin-flip result (18) with
the with the spin-nonflip FF (15), it becomes clear that there
is an important difference between the scaling powers of z
in both expressions. This difference arises from two
sources: first, the appearance of one vielbein in (13), but
two in Eq. (17), and secondly, the appearance of an
additional power of z in the product of the two wave
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Pτ for each Fock state and the vector meson masses M2
ρn .

The advantage, however, of the holographic approach is
that no fine-tuning of the coefficients Cλ is necessary since
the correct scaling is incorporated from the onset; the
expansion coefficients Pτ then have a clear physical
meaning in terms of the probability of each Fock
component.
The expression for the FF (9) contains a cluster decom-

position: the hadronic FF factorizes into the i ¼ N − 1
product of twist-2 monopole FFs evaluated at different
scales [52] (N is the total number of constituents of a given
Fock state),

FiðQ2Þ ¼ Fi¼2ðQ2ÞFi¼2
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In the case of a nucleon, for example, the Dirac FF
of the twist-3 valence quark-diquark state F1ðQ2Þ ¼
Fi¼2ðQ2ÞFi¼2ð13Q

2Þ corresponds to the factorization of
the proton FF as a product of a pointlike quark and a
diquark-cluster FF. The identical twist-3 expression from
Eq. (9) is described by the product of two poles consistent
with leading-twist scaling, Q4F1ðQ2Þ ∼ const, at high
momentum transfer. As we show below, the Pauli form
factor F2 is given instead by the i ¼ N þ 1 product of
dipoles, and thus the leading-twist scaling Q6F2ðQ2Þ∼
const.

III. NUCLEON FORM FACTORS
IN HOLOGRAPHIC QCD

The nucleon spin-nonflip EM FF follows from the
expression [34]

Z
d4xdz

ffiffiffi
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p
Ψ̄P0ðx; zÞeMA ΓAAMðx; zÞΨPðx; zÞ

∼ ð2πÞ4δ4ðP0 − P − qÞϵμūðP0ÞγμF1ðq2ÞuðPÞ; ð13Þ

where the curved space indices in AdS5 space are M, N,
and tangent indices in flat five-dimensional space are A, B.
The ΓA are Dirac gamma matrices which obey the usual
anticommutation relation fΓA;ΓBg ¼ 2ηAB and are given
by ΓA ¼ ðγμ;−iγ5Þ, and the eMA are the inverse vielbein,
eMA ¼ ðzRÞδ

M
A . The expression on the right-hand side repre-

sents the Dirac EM form factor in physical space-time. It is
the EM spin-conserving matrix element of the quark
current Jμ ¼

P
qeqq̄γ

μq [34].
In the higher-dimensional gravity theory nucleons are

described by plus and minus wave functions Ψþ and Ψ−
corresponding to the positive and negative chirality of the
nucleon [33,34]

ΨþðzÞ ∼ zτþ1=2e−κ
2z2=2; Ψ−ðzÞ ∼ zτþ3=2e−κ

2z2=2; ð14Þ

which represent, respectively, a positive chirality compo-
nent with orbital angular momentum L ¼ 0 and a negative
chirality component with L ¼ 1, and have identical nor-
malization. The spin-nonflip nucleon elastic form factor F1

follows from (13) and is given in terms of Ψþ and Ψ− [34],

FN
1 ðQ2Þ ¼

X

&
gN&

Z
dz
z4

VðQ2; zÞΨ2
&ðzÞ: ð15Þ

The effective charges g& have to be determined by the
specific spin-flavor structure which is not contained in the
holographic principle. For example, in the SU(6) symmetry
approximation the effective charges are computed by the
sum of the EM charges of the struck quark convoluted by
the corresponding probability for the L ¼ 0 and L ¼ 1
components Ψþ and Ψ− respectively. The result is [34]

gpþ ¼ 1; gp− ¼ 0; gnþ ¼ −
1

3
; gn− ¼ 1

3
: ð16Þ

Notice that there is an additional scaling power in (15), as
compared with Eq. (3), but this is compensated by the
additional z1=2 factor in the twist-τ nucleon AdS wave
functions (14).
Since the structure of (13) can only account for F1, one

should therefore include an effective gauge-invariant inter-
action in the five-dimensional gravity action to describe the
spin-flip amplitude [68]. The nucleon spin-flip EM FF
follows from the nonminimal term
Z

d4xdz
ffiffiffi
g

p
Ψ̄P0ðx;zÞeMA eNB ½ΓA;ΓB(FMNðx;zÞΨPðx;zÞ

∼ ð2πÞ4δ4ðP0 −P−qÞϵμūðP0Þσ
μνqν
2MN

F2ðq2ÞuðPÞ; ð17Þ

where the expression on the right-hand side represents the
Pauli EM form factor in physical space-time. It corresponds
to the EM spin-flip matrix element of the quark current
Jμ ¼

P
qeqq̄γ

μq [34]. Since (17) represents an effective
interaction, its overall strength has to be fixed to the static
values of the anomalous magnetic moments χp and
χn [34,68].
Extracting the factor ð2πÞ4δ4ðP0 − P − qÞ from momen-

tum conservation in (17) we find [68]

FN
2 ðQ2Þ ¼ χN

Z
dz
z3

ΨþðzÞVðQ2; zÞΨ−ðzÞ; ð18Þ

where N ¼ p, n. Comparing the spin-flip result (18) with
the with the spin-nonflip FF (15), it becomes clear that there
is an important difference between the scaling powers of z
in both expressions. This difference arises from two
sources: first, the appearance of one vielbein in (13), but
two in Eq. (17), and secondly, the appearance of an
additional power of z in the product of the two wave
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normalized to anomalous magnetic moments

Scaling: additional power of z in the wave function product of          and functions due to the different scaling behavior of Ψþ and
Ψ−, Eq. (14), with orbital angular momentum L ¼ 0 and
L ¼ 1 respectively. As a result, while the leading scaling
behavior of the Dirac form factor is 1=Q4, the leading
scaling behavior of the Pauli form factor is 1=Q6 because of
the additional z2-factor in (18). Remarkably, the correct
large-Q2 power scaling from hard scattering is incorporated
in the covariant spin structure of the AdS expressions for
the nucleon FFs.

IV. A SIMPLE LIGHT-FRONT HOLOGRAPHIC
MODEL FOR NUCLEON FORM FACTORS

Following Ref. [55] we consider a simplified model
where we only include the first two components in a Fock
expansion of the nucleon LF function with no constituent
dynamical gluons [54],

jNiL¼0 ¼ ψL¼0
qqq=Njqqqiτ¼3 þ ψL¼0

qqqqq̄=N jqqqqq̄iτ¼5

þ # # # ; ð19Þ

jNiL¼1 ¼ ψL¼1
qqq=Njqqqiτ¼4 þ ψL¼1

qqqqq̄=N jqqqqq̄iτ¼6

þ # # # ; ð20Þ

with N ¼ p, n. The additional qq̄ contribution to the
nucleon wave function from higher Fock components is
relevant at larger distances and is usually interpreted as a
pion cloud.
We have performed a systematic evaluation of the

relevance of higher Fock components in the nucleon FFs
by extending the previous results in Ref. [34] for the Dirac
and Pauli FFs. For example, for the proton Dirac FF we
have determined the relevance of higher Fock components
by writing Fp

1 ðQ2Þ ¼ ð1 − αpÞFi¼3ðQ2Þ þ αpFi¼5ðQ2Þ,
where i − 1 is the number of poles in the expansion (9)
and αp is the twist-5 probability αp ¼ Pα

qqqqq̄=p. Therefore,
1 − αp ¼ Pα

qqq=p is the valence twist-3 probability for the
spin-nonflip EM transition amplitude. It is found that
Pqqqqq̄=p is very small, of the order of 1%. Likewise, the
contribution of higher Fock components to the Dirac
neutron FF is of the order of 2% and does not change
significantly our previous results [34]. We thus drop the
contribution of the higher Fock components to the spin-
nonflip nucleon FFs in the rest of our analysis; namely, we
take Pα

qqq=p ¼ Pα
qqq=n ¼ 1, which gives us a considerable

simplification. Within this approximation, thus considering
only the effect of higher qq̄ Fock components to the spin-
flip nucleon FFs, we write

Fp
1 ðQ2Þ ¼ Fi¼3ðQ2Þ; ð21Þ

Fp
2 ðQ2Þ ¼ χp½ð1 − γpÞFi¼4ðQ2Þ þ γpFi¼6ðQ2Þ' ð22Þ

for the proton, where χp ¼ μp − 1 ¼ 1.793 is the proton
anomalous moment, and

Fn
1ðQ2Þ ¼ −

1

3
½Fi¼3ðQ2Þ − Fi¼4ðQ2Þ'; ð23Þ

Fn
2ðQ2Þ ¼ χn½ð1 − γnÞFi¼4ðQ2Þ þ γnFi¼6ðQ2Þ' ð24Þ

for the neutron, with χn ¼ μn ¼ −1.913, and where γp;n are
the higher Fock probabilities for the L ¼ 0 → L ¼ 1 spin-
flip nucleon EM form factors. Equations (21) and (23) are
the exact SU(6) results for the spin-nonflip nucleon FFs
(13) in the valence configuration, whereas (22) and (24)
correspond to the spin-flip nucleon FFs (17), incorporating
the higher Fock components, properly normalized to the
nucleon anomalous magnetic moments.
The inclusion of higher Fock states is not of much help in

describing well the available data for the neutron Dirac
form factor. Indeed the zero value of the neutron FF at zero
momentum transfer comes from the cancellation of two
normalizable wave functions, which vanishes at Q2 ¼ 0.
One could thus expect that in contrast to the other three
FFs, namely Fp

1, F
p
2 and Fn

2 , second order effects are more
important. Therefore our results for the neutron FFs are, in
principle, less reliable than our predictions for the proton
FFs, especially for the low Q2 region which is more
sensitive to the leading cancellations. With this possible
shortcoming of the model in mind, we are thus led to
introduce one additional parameter r, which is required
phenomenologically. With this free parameter r we modify
the neutron effective charges in Eq. (16) as

gnþ ¼ −
1

3
r; gn− ¼ 1

3
r; ð25Þ

and thus the expression for the neutron Dirac FF

Fn
1ðQ2Þ ¼ −

1

3
r½Fτ¼3ðQ2Þ − Fτ¼4ðQ2Þ': ð26Þ

The value r ¼ 2.08 is required to give a proper matching to
the available experimental data as shown in Fig. 1. Also,
keeping in mind that the gauge-gravity duality does not
determine the spin-flavor structure of the nucleons, which
is conventionally included in the nucleon wave function
using SU(6) spin-flavor symmetry, the departure of this free
parameter r from unity may be interpreted as a SU(6)
symmetry-breaking effect in the neutron Dirac FF. Indeed,
the breaking of SU(6) flavor-spin symmetry has also been
observed in a meson cloud model where mixed symmetry
in the nucleon wave function was included to reproduce the
experimental data [69]. The effect of SU(6) symmetry
breaking on the neutron FFs was also investigated within a
LF constituent quark model in Ref. [70].
All the results presented here correspond to the value of

the universal confinement scale determined from the mass
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scaling behavior of the Pauli form factor is 1=Q6 because of
the additional z2-factor in (18). Remarkably, the correct
large-Q2 power scaling from hard scattering is incorporated
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jNiL¼0 ¼ ψL¼0
qqq=Njqqqiτ¼3 þ ψL¼0

qqqqq̄=N jqqqqq̄iτ¼5

þ # # # ; ð19Þ

jNiL¼1 ¼ ψL¼1
qqq=Njqqqiτ¼4 þ ψL¼1

qqqqq̄=N jqqqqq̄iτ¼6

þ # # # ; ð20Þ

with N ¼ p, n. The additional qq̄ contribution to the
nucleon wave function from higher Fock components is
relevant at larger distances and is usually interpreted as a
pion cloud.
We have performed a systematic evaluation of the

relevance of higher Fock components in the nucleon FFs
by extending the previous results in Ref. [34] for the Dirac
and Pauli FFs. For example, for the proton Dirac FF we
have determined the relevance of higher Fock components
by writing Fp

1 ðQ2Þ ¼ ð1 − αpÞFi¼3ðQ2Þ þ αpFi¼5ðQ2Þ,
where i − 1 is the number of poles in the expansion (9)
and αp is the twist-5 probability αp ¼ Pα

qqqqq̄=p. Therefore,
1 − αp ¼ Pα

qqq=p is the valence twist-3 probability for the
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qqq=p ¼ Pα
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flip nucleon FFs, we write

Fp
1 ðQ2Þ ¼ Fi¼3ðQ2Þ; ð21Þ

Fp
2 ðQ2Þ ¼ χp½ð1 − γpÞFi¼4ðQ2Þ þ γpFi¼6ðQ2Þ' ð22Þ

for the proton, where χp ¼ μp − 1 ¼ 1.793 is the proton
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Fn
1ðQ2Þ ¼ −

1

3
½Fi¼3ðQ2Þ − Fi¼4ðQ2Þ'; ð23Þ

Fn
2ðQ2Þ ¼ χn½ð1 − γnÞFi¼4ðQ2Þ þ γnFi¼6ðQ2Þ' ð24Þ

for the neutron, with χn ¼ μn ¼ −1.913, and where γp;n are
the higher Fock probabilities for the L ¼ 0 → L ¼ 1 spin-
flip nucleon EM form factors. Equations (21) and (23) are
the exact SU(6) results for the spin-nonflip nucleon FFs
(13) in the valence configuration, whereas (22) and (24)
correspond to the spin-flip nucleon FFs (17), incorporating
the higher Fock components, properly normalized to the
nucleon anomalous magnetic moments.
The inclusion of higher Fock states is not of much help in

describing well the available data for the neutron Dirac
form factor. Indeed the zero value of the neutron FF at zero
momentum transfer comes from the cancellation of two
normalizable wave functions, which vanishes at Q2 ¼ 0.
One could thus expect that in contrast to the other three
FFs, namely Fp

1, F
p
2 and Fn

2 , second order effects are more
important. Therefore our results for the neutron FFs are, in
principle, less reliable than our predictions for the proton
FFs, especially for the low Q2 region which is more
sensitive to the leading cancellations. With this possible
shortcoming of the model in mind, we are thus led to
introduce one additional parameter r, which is required
phenomenologically. With this free parameter r we modify
the neutron effective charges in Eq. (16) as

gnþ ¼ −
1

3
r; gn− ¼ 1

3
r; ð25Þ

and thus the expression for the neutron Dirac FF

Fn
1ðQ2Þ ¼ −

1

3
r½Fτ¼3ðQ2Þ − Fτ¼4ðQ2Þ': ð26Þ

The value r ¼ 2.08 is required to give a proper matching to
the available experimental data as shown in Fig. 1. Also,
keeping in mind that the gauge-gravity duality does not
determine the spin-flavor structure of the nucleons, which
is conventionally included in the nucleon wave function
using SU(6) spin-flavor symmetry, the departure of this free
parameter r from unity may be interpreted as a SU(6)
symmetry-breaking effect in the neutron Dirac FF. Indeed,
the breaking of SU(6) flavor-spin symmetry has also been
observed in a meson cloud model where mixed symmetry
in the nucleon wave function was included to reproduce the
experimental data [69]. The effect of SU(6) symmetry
breaking on the neutron FFs was also investigated within a
LF constituent quark model in Ref. [70].
All the results presented here correspond to the value of

the universal confinement scale determined from the mass
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the leading scaling of the Pauli form factor has additional power of 1/Q2
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Nucleon valence component: |uud⟩

Nonvalence nature of the strange distribution:

distributions in the nucleon [1]. The intrinsic nonperturba-
tive strangeness distributions and asymmetry also give
insight, via the operator product expansion, into the non-
perturbative physics of the intrinsic charm and bottom
contributions to the nucleon structure functions [2–4].
Lattice QCD calculations [5–7], at the physical pion

mass and extrapolated to the continuum and infinite volume
limits, have provided estimates of the strangeness contri-
bution to the electromagnetic (EM) form factors of the
nucleon with better accuracy than that available from the
global analyses [8–10] of the experimental data. A direct
lattice calculation of sðxÞ − s̄ðxÞ has not as yet been
achieved [11]. However, we shall show that one can
constrain the sðxÞ − s̄ðxÞ asymmetry by comparing the
lattice QCD results for the strange form factor with
predictions based on a baryon-meson fluctuation model
[12]. We will also introduce a new model based on the
structural behavior of the light-front holographic approach
to hadron structure [13], form factors and parton distribu-
tion functions [14]. We shall show that the sðxÞ − s̄ðxÞ
asymmetry in the nucleon can be predicted up to a
normalization factor constrained by lattice results.
Parton distribution functions (PDFs) are interpreted, at

leading twist, as distributions of quarks and gluons carrying
the light-front momentum fraction x of the nucleon’s
momentum at fixed light-front time τ ¼ tþ z=c. The
global QCD analysis of PDFs is based on factorization
theorems of physical observables, such as the cross section
of deep inelastic lepton-nucleon scattering [15]. Although
equal numbers of s and s̄ are required by their nonvalence
nature in the nucleon,

hs − s̄i ¼
Z

1

0
dx½sðxÞ − s̄ðxÞ& ¼ 0; ð1Þ

no fundamental principles prohibit different sðxÞ and s̄ðxÞ
distributions. A nonzero sðxÞ − s̄ðxÞ has also been allowed
for in global analyses of PDFs [16–18]. Furthermore, the
first moment of the difference of PDFs,

hS−i≡ hxðs − s̄Þi ¼
Z

1

0
dx x½sðxÞ − s̄ðxÞ&; ð2Þ

can also be used to quantify the sðxÞ − s̄ðxÞ asymmetry.
The strange-quark sea in the nucleon has both “extrinsic”

and “intrinsic” components [2–4]. The extrinsic one is
produced by gluon splitting g → ss̄ triggered by a hard
probe, e.g., the virtual photon exchanged between the
lepton and the nucleon in a deep inelastic scattering
process. Since the QCD coupling αs is small at high
momentum scale, the extrinsic strange-sea derived from
the splitting function can be calculated perturbatively. The
nonperturbative intrinsic strange-sea encoded in the nucle-
on’s nonvalence light-front (LF) Fock state wave function
can in principle be obtained by solving the LF Hamiltonian
eigenvalue problem [19]; e.g., by matrix diagonalization.
However, to capture the nonperturbative dynamics in the

bound state equations, one should integrate out all higher
Fock states, corresponding to an infinite number of d.o.f., a
formidable problem.
The strange-antistrange asymmetry in the nucleon orig-

inates in QCD from the difference between quark-quark
versus quark-antiquark interactions. Since the nucleon car-
ries nonzero quark number—the number of quarks minus the
number of antiquarks—the interaction of the strange quark
with the spectators of the nonvalence Fock states is different
from that of the antistrange quark with the remaining quarks,
thus leading to different s and s̄ distributions. The extrinsic
strange-antistrange asymmetry in the nucleon PDF arises
from perturbative QCD evolution at high orders due to the
difference between quark-to-strange quark splitting function
Pqs and quark-to-antistrange quark splitting function Pqs̄.
Since the strange-antistrange pair is generated from a non-
strange quark at next-to-leading order, and the interaction
between the strange/antistrange quark and the nonstrange
quark is mediated by additional gluon exchange, this pQCD
effect arises at the three-loop level. An explicit calculation
has been performed in [20].
In addition to PDFs, one can also obtain information on

nucleon structure from elastic form factors, which relate to
the transverse coordinate space distributions at fixed LF time
via a Fourier transform [21]. The nucleon spin-preserving
amplitude is described by the Dirac form factor, which can
be expressed as:

F1ðQ2Þ ¼
X

q

eqF
q
1ðQ2Þ; ð3Þ

where Q2 is the momentum transfer squared, and the flavor
form factor Fq

1ðQ2Þ, with q ¼ u; d; s;…, measures the
q-flavor quark contribution minus the q̄-flavor antiquark
contribution due to the opposite charge of the quark and
antiquark. Therefore a nonvanishing Fs

1ðQ2Þ at Q2 ≠ 0
indicates a strange-antistrange asymmetry in LF coordinate
space. The constraint Fs

1ð0Þ ¼ 0 is fixed by the sum rule (1).
Lattice QCD results for Fs

1ðQ2Þ, obtained in the con-
tinuum limit [5–7], are shown in Fig. 2 with systematic and
statistical uncertainties added in quadrature. The lattice
QCD analyses are described in the Appendix A.
There have been a number of phenomenological studies

[12,22–27] of the sðxÞ − s̄ðxÞ distribution. In the baryon-
meson fluctuation model [12], the nonperturbative strange
sea is generated from the fluctuation of the nucleon valence
state to the lightest mass hadronic state with strangeness;
i.e., a kaon and a hyperon ðΛ or ΣÞ. The different distri-
butions of the strange quark in the hyperon and the
antistrange quark in the kaon yield a nonvanishing sðxÞ −
s̄ðxÞ distribution. In this model, a meson-baryon configu-
ration, e.g., the KþΛ0 state, creates different radially
separated distributions of the s and the s̄ quarks from
the center of mass. Since the kaon is lighter than the
hyperon, one expects that the kaon—and thus the s̄ quark—
to be at a larger radial distance from the center of mass than
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Intrinsic: encoded in nucleon nonvalence LF Fock state wave functions

can be calculated perturbatively

can in principle be obtained by solving the Hamiltonian eigenvalue 
problem
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Can strange and antistrange distributions be different?
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Perturbative QCD calculation
Splitting functions q→s and q→s are different at NNLO–

extrinsic and very small asymmetry s(x)� s̄(x)
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Vogelsang, Phys, Rev. Lett. 93, 152003 (2004).

q
<latexit sha1_base64="6st+2unI49vTKzHpFrX8LltbNi8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN3N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB252M9Q==</latexit><latexit sha1_base64="6st+2unI49vTKzHpFrX8LltbNi8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN3N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB252M9Q==</latexit><latexit sha1_base64="6st+2unI49vTKzHpFrX8LltbNi8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN3N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB252M9Q==</latexit><latexit sha1_base64="6st+2unI49vTKzHpFrX8LltbNi8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN3N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB252M9Q==</latexit>

q
<latexit sha1_base64="6st+2unI49vTKzHpFrX8LltbNi8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN3N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB252M9Q==</latexit><latexit sha1_base64="6st+2unI49vTKzHpFrX8LltbNi8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN3N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB252M9Q==</latexit><latexit sha1_base64="6st+2unI49vTKzHpFrX8LltbNi8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN3N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB252M9Q==</latexit><latexit sha1_base64="6st+2unI49vTKzHpFrX8LltbNi8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN3N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB252M9Q==</latexit>

q
<latexit sha1_base64="6st+2unI49vTKzHpFrX8LltbNi8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN3N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB252M9Q==</latexit><latexit sha1_base64="6st+2unI49vTKzHpFrX8LltbNi8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN3N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB252M9Q==</latexit><latexit sha1_base64="6st+2unI49vTKzHpFrX8LltbNi8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN3N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB252M9Q==</latexit><latexit sha1_base64="6st+2unI49vTKzHpFrX8LltbNi8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN3N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB252M9Q==</latexit>

q
<latexit sha1_base64="6st+2unI49vTKzHpFrX8LltbNi8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN3N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB252M9Q==</latexit><latexit sha1_base64="6st+2unI49vTKzHpFrX8LltbNi8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN3N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB252M9Q==</latexit><latexit sha1_base64="6st+2unI49vTKzHpFrX8LltbNi8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN3N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB252M9Q==</latexit><latexit sha1_base64="6st+2unI49vTKzHpFrX8LltbNi8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN3N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHst7M0nQj+hQ8pAzaqzUeOyXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqN3kcRTiBUzgHD66gBndQhyYwQHiGV3hzHpwX5935WLQWnHzmGP7A+fwB252M9Q==</latexit>

s
<latexit sha1_base64="N1eK0lTaQQAFA6yHzcECkl4oWJk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/epYz3</latexit><latexit sha1_base64="N1eK0lTaQQAFA6yHzcECkl4oWJk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/epYz3</latexit><latexit sha1_base64="N1eK0lTaQQAFA6yHzcECkl4oWJk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/epYz3</latexit><latexit sha1_base64="N1eK0lTaQQAFA6yHzcECkl4oWJk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/epYz3</latexit> s
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Hadrons are eigenstates of QCD LF Hamiltonian

the hyperon and its s quark. This picture leads to Fs
1ðQ2Þ >

0 at Q2 > 0, consistent with the lattice QCD results [5–7].
As we will discuss below, a positive value of Fs

1ðQ2Þ at
Q2 > 0 indicates that the strange quark distribution is more
centralized in coordinate space than the antistrange quark
distribution, and results in an sðxÞ − s̄ðxÞ asymmetry in
momentum space. A narrower distribution in coordinate
space corresponds to a wider one in momentum space, and
therefore the lattice QCD result Fs

1ðQ2Þ > 0 implies a
negative sðxÞ − s̄ðxÞ distribution at small-x and a positive
distribution at large-x.
We will also examine in this article the behavior of

Fs
1ðQ2Þ and sðxÞ − s̄ðxÞ using the nonperturbative structure

of light-front holographic QCD (LFHQCD), a semiclass-
ical approach to relativistic bound state equations which
follows from the holographic embedding of light-front
dynamics in a higher dimensional gravity theory, with the
constraints imposed by the underlying superconformal
algebraic structure [28–33]. This approach incorporates a
nontrivial connection to the hadron spectrum and therefore
to the Regge trajectories predicted by the model.
In Sec. II, we will describe the strange-antistrange

asymmetries in coordinate and momentum spaces in the
boost invariant light-front formalism, together with quali-
tative discussions. We will perform quantitative calcula-
tions of sðxÞ − s̄ðxÞ and Fs

1ðQ2Þ in Sec. III using the
baryon-meson fluctuation model, and in Sec. IV using

the structural framework of LFHQCD. We will analyze the
constraints imposed from lattice QCD for these two non-
perturbative models. We will also use the lattice QCD data
to quantitatively constrain each model in order to obtain
more precise predictions. The procedures discussed here
can be applied to other approaches, e.g., by deriving
constraints on the wave functions predicted by meson
cloud and chiral quark models. Final discussions and
conclusions are presented in Sec. V.

II. STRANGE-ANTISTRANGE ASYMMETRY
IN THE NUCLEON

Hadrons are eigenstates of the QCD LF Hamiltonian
HQCD

LF jΨi ¼ M2jΨi [34]. The hadronic light-front wave
functions are the projection of the eigenstate on the basis of
free Fock states. Taking a complete basis of LF Fock states
with quarks and gluons as the d.o.f., a nucleon state with
four-momentum Pμ ¼ ðPþ; P−;P⊥Þ and total spin Sz can
be expanded as

jN;Pþ;P⊥; Szi ¼
X

n;fλig

Z
½dx&½d2k⊥&ψn=Nðxi;ki⊥; λiÞ

× jn; xiPþ; xiP⊥ þ ki⊥; λii; ð4Þ

where

½dx&½d2k⊥&¼16π3δ

!
1−

X

j

xj

"
δð2Þ

!X

j

kj⊥

"Y

i

dxid2ki⊥
2

ffiffiffiffi
xi

p ð2πÞ3
: ð5Þ

The index n ¼ qqq; qqqg; qqqqq̄;…, represents the con-
stituents of the Fock state, the internal LF variables xi, ki⊥,
and λi are the longitudinal momentum fraction, the intrinsic
transverse momentum, and the spin carried by the ith
constituent, respectively, and ψn=N is the light-front wave
function (LFWF). It gives the probability of the n-particle
LF Fock state and represents the transition amplitude of the
on-shell nucleon eigenstate to the quark and gluon Fock
states of the free LF Hamiltonian which are off-shell in
invariant mass. All nucleon properties are encoded in the
LFWFs, which in principle could be obtained by solving
the LF Hamiltonian eigenvalue problem. Aiming at a first-
principle calculation of the LFWFs, calculational methods
based on matrix diagonalization, such as discretized LF
quantization [35], the transverse lattice method [36] and the
basis LF quantization [37], have been proposed.
In this paper, we will focus on the s and s̄ quark

contributions to the nucleon nonvalence LF Fock state
wave functions, ψ s=Nðxs;ks⊥; λsÞ and ψ s̄=Nðxs̄;ks̄⊥; λs̄Þ,
where the sum over other d.o.f. is implied. The s and s̄
quark PDFs expressed in terms of the LFWFs are

sðxÞ ¼
X

λs

Z
d2ks⊥
16π3

jψ s=Nðxs;ks⊥; λsÞj2; ð6Þ

s̄ðxÞ ¼
X

λs̄

Z
d2ks̄⊥
16π3

jψ s̄=Nðxs̄;ks̄⊥; λs̄Þj2: ð7Þ

The sum rule (1) requires the normalization

X

λs

Z
dxsd2ks⊥
16π3

jψ s=Nðxs;ks⊥; λsÞj2

¼
X

λs̄

Z
dxs̄d2ks̄⊥
16π3

jψ s̄=Nðxs̄;ks̄⊥; λs̄Þj2 ¼ Is; ð8Þ

where Is gives the number of intrinsic strange/antistrange
quarks in the nucleon. Perturbative QCD evolution needs to
be performed to include contributions from the extrinsic sea
and to compare with the PDFs extracted from high energy
scattering experiments.
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constraints imposed by the underlying superconformal
algebraic structure [28–33]. This approach incorporates a
nontrivial connection to the hadron spectrum and therefore
to the Regge trajectories predicted by the model.
In Sec. II, we will describe the strange-antistrange

asymmetries in coordinate and momentum spaces in the
boost invariant light-front formalism, together with quali-
tative discussions. We will perform quantitative calcula-
tions of sðxÞ − s̄ðxÞ and Fs

1ðQ2Þ in Sec. III using the
baryon-meson fluctuation model, and in Sec. IV using

the structural framework of LFHQCD. We will analyze the
constraints imposed from lattice QCD for these two non-
perturbative models. We will also use the lattice QCD data
to quantitatively constrain each model in order to obtain
more precise predictions. The procedures discussed here
can be applied to other approaches, e.g., by deriving
constraints on the wave functions predicted by meson
cloud and chiral quark models. Final discussions and
conclusions are presented in Sec. V.

II. STRANGE-ANTISTRANGE ASYMMETRY
IN THE NUCLEON

Hadrons are eigenstates of the QCD LF Hamiltonian
HQCD

LF jΨi ¼ M2jΨi [34]. The hadronic light-front wave
functions are the projection of the eigenstate on the basis of
free Fock states. Taking a complete basis of LF Fock states
with quarks and gluons as the d.o.f., a nucleon state with
four-momentum Pμ ¼ ðPþ; P−;P⊥Þ and total spin Sz can
be expanded as

jN;Pþ;P⊥; Szi ¼
X

n;fλig

Z
½dx&½d2k⊥&ψn=Nðxi;ki⊥; λiÞ

× jn; xiPþ; xiP⊥ þ ki⊥; λii; ð4Þ

where

½dx&½d2k⊥&¼16π3δ

!
1−

X

j

xj

"
δð2Þ

!X

j

kj⊥

"Y

i

dxid2ki⊥
2

ffiffiffiffi
xi

p ð2πÞ3
: ð5Þ

The index n ¼ qqq; qqqg; qqqqq̄;…, represents the con-
stituents of the Fock state, the internal LF variables xi, ki⊥,
and λi are the longitudinal momentum fraction, the intrinsic
transverse momentum, and the spin carried by the ith
constituent, respectively, and ψn=N is the light-front wave
function (LFWF). It gives the probability of the n-particle
LF Fock state and represents the transition amplitude of the
on-shell nucleon eigenstate to the quark and gluon Fock
states of the free LF Hamiltonian which are off-shell in
invariant mass. All nucleon properties are encoded in the
LFWFs, which in principle could be obtained by solving
the LF Hamiltonian eigenvalue problem. Aiming at a first-
principle calculation of the LFWFs, calculational methods
based on matrix diagonalization, such as discretized LF
quantization [35], the transverse lattice method [36] and the
basis LF quantization [37], have been proposed.
In this paper, we will focus on the s and s̄ quark

contributions to the nucleon nonvalence LF Fock state
wave functions, ψ s=Nðxs;ks⊥; λsÞ and ψ s̄=Nðxs̄;ks̄⊥; λs̄Þ,
where the sum over other d.o.f. is implied. The s and s̄
quark PDFs expressed in terms of the LFWFs are

sðxÞ ¼
X

λs

Z
d2ks⊥
16π3

jψ s=Nðxs;ks⊥; λsÞj2; ð6Þ

s̄ðxÞ ¼
X

λs̄

Z
d2ks̄⊥
16π3

jψ s̄=Nðxs̄;ks̄⊥; λs̄Þj2: ð7Þ

The sum rule (1) requires the normalization

X

λs

Z
dxsd2ks⊥
16π3

jψ s=Nðxs;ks⊥; λsÞj2

¼
X

λs̄

Z
dxs̄d2ks̄⊥
16π3

jψ s̄=Nðxs̄;ks̄⊥; λs̄Þj2 ¼ Is; ð8Þ

where Is gives the number of intrinsic strange/antistrange
quarks in the nucleon. Perturbative QCD evolution needs to
be performed to include contributions from the extrinsic sea
and to compare with the PDFs extracted from high energy
scattering experiments.
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normalization:

Form factor:

The EM form factors of the nucleon are defined as [38]

hP0; S0jJμð0ÞjP; Si

¼ ūðP0; S0Þ
!
γμF1ðQ2Þ þ iσμνqν

2M
F2ðQ2Þ

"
uðP; SÞ; ð9Þ

where Jμ ¼
P

q eqψ̄qγμψq is the current operator, M is the
nucleon mass, F1ðQ2Þ and F2ðQ2Þ are the Dirac and Pauli
form factors, respectively. Comparing with the decompo-
sition (3), one observes that Fs

1ðQ2Þ and Fs
2ðQ2Þ are given

by the matrix elements of the current operator Jμs ¼ ψ̄ sγμψ s.
In the LF formalism, F1ðQ2Þ and F2ðQ2Þ can be calculated
from the overlap of spin-conserving and spin-flip
matrix elements of the þ component of the current,
respectively, [39]:

#
P0;↑j J

þð0Þ
2Pþ jP;↑

$
¼ F1ðq2Þ; ð10Þ

#
P0;↑j J

þð0Þ
2Pþ jP;↓

$
¼ −

q1 − iq2
2M

F2ðq2Þ; ð11Þ

with qμ ¼ ðqþ; q−;q⊥Þ and transferred momentum
squared q2 ¼ t ¼ ðP0 − PÞ2 ¼ −Q2.
The Drell-Yan-West (DYW) frame [40,41]

q ¼
%
0;

q2

2Pþ ;q⊥

&
; ð12Þ

P ¼
%
Pþ;

M2

2Pþ ; 0⊥

&
; ð13Þ

with q2 ¼ −q2
⊥, can be used to avoid off-diagonal con-

tributions n → n0 ¼ n% 2 from Fock states with different
constituents. Here q⊥ is the Fourier conjugate of the
transverse LF coordinate a⊥. From (10) and the Fock state
expansion (4), the Dirac form factor, in terms of the
LFWFs, is given by the DYW expression [40,41]

Fs
1ðQ2 ¼ q2

⊥Þ ¼
X

λs

Z
dxsd2ks⊥
16π3

ψ&
s=Nðxs;ks⊥ þ ð1 − xsÞq⊥; λsÞψ s=Nðxs;ks⊥; λsÞ

−
X

λs̄

Z
dxs̄d2ks̄⊥
16π3

ψ&
s̄=Nðxs̄;ks̄⊥ þ ð1 − xs̄Þq⊥; λs̄Þψ s̄=Nðxs̄;ks̄⊥; λs̄Þ

¼ ρsðq⊥Þ − ρs̄ðq⊥Þ; ð14Þ

where ρs=s̄ðq⊥Þ represents the effective strange/antistrange
density. The relative minus sign in (14) arises from the
opposite strange and antistrange charges.
The density ρs=s̄ðq⊥Þ is the inverse Fourier transform of

the distribution ρ̃ða⊥Þ,

ρs=s̄ðq⊥Þ ¼
Z

d2a⊥
ð2πÞ2

eiq⊥·a⊥ ρ̃s=s̄ða⊥Þ: ð15Þ

Following the normalization (8) or the sum rule (1), we
require

Z
d2a⊥ρ̃sða⊥Þ ¼

Z
d2a⊥ρ̃s̄ða⊥Þ ¼ Is; ð16Þ

and thus Fs
1ð0Þ ¼ 0.

A nonzero Fs
1ðQ2Þ is equivalent to an asymmetric

distribution ρ̃sða⊥Þ ≠ ρ̃sða⊥Þ based on the uniqueness of
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FIG. 1. Nonzero form factor F1ðQ2Þ (right panel) from asymmetric sea quark and antiquark distributions in transverse LF coordinate
space (left panel). The dashed-dotted curves (blue) represent the quark, the dashed curves (red) represent the antiquark, and the
continuous curves (black) represent q − q̄. The quark/antiquark number is normalized to 1 in this figure.
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Coordinate space distribution:

The EM form factors of the nucleon are defined as [38]

hP0; S0jJμð0ÞjP; Si

¼ ūðP0; S0Þ
!
γμF1ðQ2Þ þ iσμνqν

2M
F2ðQ2Þ

"
uðP; SÞ; ð9Þ

where Jμ ¼
P

q eqψ̄qγμψq is the current operator, M is the
nucleon mass, F1ðQ2Þ and F2ðQ2Þ are the Dirac and Pauli
form factors, respectively. Comparing with the decompo-
sition (3), one observes that Fs

1ðQ2Þ and Fs
2ðQ2Þ are given

by the matrix elements of the current operator Jμs ¼ ψ̄ sγμψ s.
In the LF formalism, F1ðQ2Þ and F2ðQ2Þ can be calculated
from the overlap of spin-conserving and spin-flip
matrix elements of the þ component of the current,
respectively, [39]:

#
P0;↑j J

þð0Þ
2Pþ jP;↑

$
¼ F1ðq2Þ; ð10Þ

#
P0;↑j J

þð0Þ
2Pþ jP;↓

$
¼ −

q1 − iq2
2M

F2ðq2Þ; ð11Þ

with qμ ¼ ðqþ; q−;q⊥Þ and transferred momentum
squared q2 ¼ t ¼ ðP0 − PÞ2 ¼ −Q2.
The Drell-Yan-West (DYW) frame [40,41]

q ¼
%
0;

q2

2Pþ ;q⊥

&
; ð12Þ

P ¼
%
Pþ;

M2

2Pþ ; 0⊥

&
; ð13Þ

with q2 ¼ −q2
⊥, can be used to avoid off-diagonal con-

tributions n → n0 ¼ n% 2 from Fock states with different
constituents. Here q⊥ is the Fourier conjugate of the
transverse LF coordinate a⊥. From (10) and the Fock state
expansion (4), the Dirac form factor, in terms of the
LFWFs, is given by the DYW expression [40,41]

Fs
1ðQ2 ¼ q2

⊥Þ ¼
X

λs

Z
dxsd2ks⊥
16π3

ψ&
s=Nðxs;ks⊥ þ ð1 − xsÞq⊥; λsÞψ s=Nðxs;ks⊥; λsÞ

−
X

λs̄

Z
dxs̄d2ks̄⊥
16π3

ψ&
s̄=Nðxs̄;ks̄⊥ þ ð1 − xs̄Þq⊥; λs̄Þψ s̄=Nðxs̄;ks̄⊥; λs̄Þ

¼ ρsðq⊥Þ − ρs̄ðq⊥Þ; ð14Þ

where ρs=s̄ðq⊥Þ represents the effective strange/antistrange
density. The relative minus sign in (14) arises from the
opposite strange and antistrange charges.
The density ρs=s̄ðq⊥Þ is the inverse Fourier transform of

the distribution ρ̃ða⊥Þ,

ρs=s̄ðq⊥Þ ¼
Z

d2a⊥
ð2πÞ2

eiq⊥·a⊥ ρ̃s=s̄ða⊥Þ: ð15Þ

Following the normalization (8) or the sum rule (1), we
require

Z
d2a⊥ρ̃sða⊥Þ ¼

Z
d2a⊥ρ̃s̄ða⊥Þ ¼ Is; ð16Þ

and thus Fs
1ð0Þ ¼ 0.

A nonzero Fs
1ðQ2Þ is equivalent to an asymmetric

distribution ρ̃sða⊥Þ ≠ ρ̃sða⊥Þ based on the uniqueness of
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FIG. 1. Nonzero form factor F1ðQ2Þ (right panel) from asymmetric sea quark and antiquark distributions in transverse LF coordinate
space (left panel). The dashed-dotted curves (blue) represent the quark, the dashed curves (red) represent the antiquark, and the
continuous curves (black) represent q − q̄. The quark/antiquark number is normalized to 1 in this figure.
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The EM form factors of the nucleon are defined as [38]

hP0; S0jJμð0ÞjP; Si

¼ ūðP0; S0Þ
!
γμF1ðQ2Þ þ iσμνqν

2M
F2ðQ2Þ

"
uðP; SÞ; ð9Þ

where Jμ ¼
P

q eqψ̄qγμψq is the current operator, M is the
nucleon mass, F1ðQ2Þ and F2ðQ2Þ are the Dirac and Pauli
form factors, respectively. Comparing with the decompo-
sition (3), one observes that Fs

1ðQ2Þ and Fs
2ðQ2Þ are given

by the matrix elements of the current operator Jμs ¼ ψ̄ sγμψ s.
In the LF formalism, F1ðQ2Þ and F2ðQ2Þ can be calculated
from the overlap of spin-conserving and spin-flip
matrix elements of the þ component of the current,
respectively, [39]:

#
P0;↑j J

þð0Þ
2Pþ jP;↑

$
¼ F1ðq2Þ; ð10Þ

#
P0;↑j J

þð0Þ
2Pþ jP;↓

$
¼ −

q1 − iq2
2M

F2ðq2Þ; ð11Þ

with qμ ¼ ðqþ; q−;q⊥Þ and transferred momentum
squared q2 ¼ t ¼ ðP0 − PÞ2 ¼ −Q2.
The Drell-Yan-West (DYW) frame [40,41]

q ¼
%
0;

q2

2Pþ ;q⊥

&
; ð12Þ

P ¼
%
Pþ;

M2

2Pþ ; 0⊥

&
; ð13Þ

with q2 ¼ −q2
⊥, can be used to avoid off-diagonal con-

tributions n → n0 ¼ n% 2 from Fock states with different
constituents. Here q⊥ is the Fourier conjugate of the
transverse LF coordinate a⊥. From (10) and the Fock state
expansion (4), the Dirac form factor, in terms of the
LFWFs, is given by the DYW expression [40,41]

Fs
1ðQ2 ¼ q2

⊥Þ ¼
X

λs

Z
dxsd2ks⊥
16π3

ψ&
s=Nðxs;ks⊥ þ ð1 − xsÞq⊥; λsÞψ s=Nðxs;ks⊥; λsÞ

−
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λs̄
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dxs̄d2ks̄⊥
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¼ ρsðq⊥Þ − ρs̄ðq⊥Þ; ð14Þ

where ρs=s̄ðq⊥Þ represents the effective strange/antistrange
density. The relative minus sign in (14) arises from the
opposite strange and antistrange charges.
The density ρs=s̄ðq⊥Þ is the inverse Fourier transform of

the distribution ρ̃ða⊥Þ,

ρs=s̄ðq⊥Þ ¼
Z

d2a⊥
ð2πÞ2

eiq⊥·a⊥ ρ̃s=s̄ða⊥Þ: ð15Þ

Following the normalization (8) or the sum rule (1), we
require

Z
d2a⊥ρ̃sða⊥Þ ¼

Z
d2a⊥ρ̃s̄ða⊥Þ ¼ Is; ð16Þ

and thus Fs
1ð0Þ ¼ 0.

A nonzero Fs
1ðQ2Þ is equivalent to an asymmetric

distribution ρ̃sða⊥Þ ≠ ρ̃sða⊥Þ based on the uniqueness of
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FIG. 1. Nonzero form factor F1ðQ2Þ (right panel) from asymmetric sea quark and antiquark distributions in transverse LF coordinate
space (left panel). The dashed-dotted curves (blue) represent the quark, the dashed curves (red) represent the antiquark, and the
continuous curves (black) represent q − q̄. The quark/antiquark number is normalized to 1 in this figure.
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normalization:

the Fourier transform. As illustrated in Fig. 1 for a simple
Gaussian distribution, if the s (or s̄) quarks are more
concentrated at small transverse separation than the s̄ (or s)
quarks, one obtains a positive (or negative) form factor
Fs
1ðQ2Þ at Q2 > 0. A similar concept based on the locality

defined in the instant form was presented in [42].
The strange-antistrange asymmetries in LF coordinate

space and LF momentum space are correlated. To show
this, we express ρs=s̄ðq⊥Þ in terms of the transverse impact
variable b⊥ using the Fourier transform of the k⊥-space
LFWFs following Ref. [43],

ρs=s̄ðq⊥Þ ¼
X

λs=s̄

Z
dxs=s̄d2b⊥ expðið1 − xs=s̄Þb⊥ · q⊥Þ

× jψ̃ s=s̄ðxs=s̄;b⊥; λs=s̄Þj2: ð17Þ

The coordinate space distribution is then

ρ̃s=s̄ða⊥Þ ¼
Z

d2q⊥e−iq⊥·a⊥ρs=s̄ðq⊥Þ

¼
X

λs=s̄

Z
dxs=s̄

ð1− xs=s̄Þ2

!!!!ψ̃ s=s̄

"
xs=s̄;

a⊥
1− xs=s̄

; λs=s̄

#!!!!
2

:

ð18Þ

Here, b⊥ is not the usual LF transverse coordinate variable
but related according to a⊥ ¼ ð1 − xÞb⊥.
As they are related by a Fourier transform, the strange-

antistrange asymmetry in b⊥-space is equivalent to the
asymmetry of the transverse momentum k⊥ distribution.
Since there is no privileged direction for an unpolarized
nucleon, one should have a nonvanishing strange-
antistrange asymmetry of the longitudinal momentum
distribution if the asymmetry of the transverse momentum
distribution is nonzero. A positiveFs

1ðQ2Þ implies that the s
quarks in the nucleon sea are more centralized in coordinate
space than the s̄ quarks and are therefore more spread out in
momentum space. This leads to a negative sðxÞ − s̄ðxÞ
distribution at small-x and a positive one at large-x.

III. THE BARYON-MESON
FLUCTUATION MODEL

We first evaluate the sðxÞ − s̄ðxÞ distribution in the
nucleon using the baryon-meson fluctuation model of
Ref. [12]. As in Ref. [44], we shall focus on the fluctuation
of the proton to the KþΛ0 state, the lightest kaon-hyperon
configuration and thus the state with the minimum off-
shellness in invariant mass. In this nonperturbative
approach the momentum distribution of the constituents
is maximal at minimum off-shellness; i.e., at equal rapidity:
xi ≃m2

⊥i=
PN

j m2
⊥j. Thus the mean LF momentum fraction

of each constituent is proportional to its transverse
mass: m⊥i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
⊥i þm2

i

p
.

Instead of expanding directly in terms of quarks and
gluons as in Eq. (4), the expansion in the fluctuation model
is performed using a two-level convolution approach [44]
in which the proton state is expanded as the valence state
plus the baryon-meson state jBMi. The component baryon
and the meson wave functions are then further expanded
into their quark and gluon Fock states. This LF cluster-
decomposition procedure [45] for the baryon LFWF is
similar to the expansion in the meson cloud model [46–49].
Considering only the fluctuation to the jBMi ¼ jΛKi state,
the expansion yields

jpi¼
Z

dxΛd2kΛ⊥
2

ffiffiffiffiffi
xΛ

p ð2πÞ3
dxKd2kK⊥
2

ffiffiffiffiffiffi
xK

p ð2πÞ3
16π3δð1− xΛ − xKÞ

× δð2ÞðkΛ⊥ þkK⊥ÞΨðxΛ;kΛ⊥; xK;kK⊥ÞjΛKiþ % % % ;
ð19Þ

where “% % %” represents states other than jΛKi in the
expansion, xΛ=K is the longitudinal LF momentum fraction
carried by the Λ=K, and kΛ=K⊥ is the intrinsic transverse
momentum of the Λ=K.
The wave function is normalized to the probability of the

fluctuation:

Z
dxΛd2kΛ⊥

16π3

Z
dxKd2kK⊥

16π3
16π3δð1 − xΛ − xKÞ

×δð2ÞðkΛ⊥ þ kK⊥ÞjΨðxΛ;kΛ⊥; xK;kK⊥Þj2 ¼ Is; ð20Þ

where Is is the intrinsic strange quark number in (8).
The intrinsic distribution sðxÞ is then expressed as a

convolution of the strange distribution qs=Λ in the Λ and the
Λ distribution fΛ=ΛK in the baryon-meson state,

sðxÞ ¼
Z

1

x

dxΛ
xΛ

fΛ=ΛKðxΛÞqs=Λ
"
x
xΛ

#
: ð21Þ

Likewise, the intrinsic distribution s̄ðxÞ is

s̄ðxÞ ¼
Z

1

x

dxK
xK

fK=ΛKðxKÞqs̄=K
"

x
xK

#
: ð22Þ

The Λ and K distributions in the baryon-meson state are

fΛ=ΛKðxΛÞ ¼
Z

d2kΛ⊥
16π3

jψΛKðxΛ;kΛ⊥Þj2; ð23Þ

fK=ΛKðxKÞ ¼
Z

d2kK⊥
16π3

jψKΛðxK;kK⊥Þj2; ð24Þ

where
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<latexit sha1_base64="rBrB2uRuPsZpkLAWRiPKvWwFQ0Y=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSxCvZSkCHosCuKxBfsBbRo222m7dLOJuxul1P4ULx4U8eov8ea/cdvmoK0PBh7vzTAzL4g5U9pxvq3M2vrG5lZ2O7ezu7d/YOcPGypKJIU6jXgkWwFRwJmAumaaQyuWQMKAQzMYXc/85gNIxSJxp8cxeCEZCNZnlGgj+Xb+xne7qljrls9wR8A9dny74JScOfAqcVNSQCmqvv3V6UU0CUFoyolSbdeJtTchUjPKYZrrJApiQkdkAG1DBQlBeZP56VN8apQe7kfSlNB4rv6emJBQqXEYmM6Q6KFa9mbif1470f1Lb8JEnGgQdLGon3CsIzzLAfeYBKr52BBCJTO3YjokklBt0sqZENzll1dJo1xynZJbOy9UrtI4sugYnaAictEFqqBbVEV1RNEjekav6M16sl6sd+tj0Zqx0pkj9AfW5w+RU5I+</latexit><latexit sha1_base64="rBrB2uRuPsZpkLAWRiPKvWwFQ0Y=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSxCvZSkCHosCuKxBfsBbRo222m7dLOJuxul1P4ULx4U8eov8ea/cdvmoK0PBh7vzTAzL4g5U9pxvq3M2vrG5lZ2O7ezu7d/YOcPGypKJIU6jXgkWwFRwJmAumaaQyuWQMKAQzMYXc/85gNIxSJxp8cxeCEZCNZnlGgj+Xb+xne7qljrls9wR8A9dny74JScOfAqcVNSQCmqvv3V6UU0CUFoyolSbdeJtTchUjPKYZrrJApiQkdkAG1DBQlBeZP56VN8apQe7kfSlNB4rv6emJBQqXEYmM6Q6KFa9mbif1470f1Lb8JEnGgQdLGon3CsIzzLAfeYBKr52BBCJTO3YjokklBt0sqZENzll1dJo1xynZJbOy9UrtI4sugYnaAictEFqqBbVEV1RNEjekav6M16sl6sd+tj0Zqx0pkj9AfW5w+RU5I+</latexit><latexit sha1_base64="rBrB2uRuPsZpkLAWRiPKvWwFQ0Y=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSxCvZSkCHosCuKxBfsBbRo222m7dLOJuxul1P4ULx4U8eov8ea/cdvmoK0PBh7vzTAzL4g5U9pxvq3M2vrG5lZ2O7ezu7d/YOcPGypKJIU6jXgkWwFRwJmAumaaQyuWQMKAQzMYXc/85gNIxSJxp8cxeCEZCNZnlGgj+Xb+xne7qljrls9wR8A9dny74JScOfAqcVNSQCmqvv3V6UU0CUFoyolSbdeJtTchUjPKYZrrJApiQkdkAG1DBQlBeZP56VN8apQe7kfSlNB4rv6emJBQqXEYmM6Q6KFa9mbif1470f1Lb8JEnGgQdLGon3CsIzzLAfeYBKr52BBCJTO3YjokklBt0sqZENzll1dJo1xynZJbOy9UrtI4sugYnaAictEFqqBbVEV1RNEjekav6M16sl6sd+tj0Zqx0pkj9AfW5w+RU5I+</latexit><latexit sha1_base64="rBrB2uRuPsZpkLAWRiPKvWwFQ0Y=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WSxCvZSkCHosCuKxBfsBbRo222m7dLOJuxul1P4ULx4U8eov8ea/cdvmoK0PBh7vzTAzL4g5U9pxvq3M2vrG5lZ2O7ezu7d/YOcPGypKJIU6jXgkWwFRwJmAumaaQyuWQMKAQzMYXc/85gNIxSJxp8cxeCEZCNZnlGgj+Xb+xne7qljrls9wR8A9dny74JScOfAqcVNSQCmqvv3V6UU0CUFoyolSbdeJtTchUjPKYZrrJApiQkdkAG1DBQlBeZP56VN8apQe7kfSlNB4rv6emJBQqXEYmM6Q6KFa9mbif1470f1Lb8JEnGgQdLGon3CsIzzLAfeYBKr52BBCJTO3YjokklBt0sqZENzll1dJo1xynZJbOy9UrtI4sugYnaAictEFqqBbVEV1RNEjekav6M16sl6sd+tj0Zqx0pkj9AfW5w+RU5I+</latexit>

⇢̃s(a?) 6= ⇢̃s̄(a?)
<latexit sha1_base64="rIDwvxa1DXmB48bE0g3eI1J4bBM=">AAACL3icbVDLSsNAFJ3UV62vqEs3g0Wom5KIoMuiIC4r2Ac0IUymN+3QySTOTIQS+kdu/JVuRBRx6184fSxq64GBwznncueeMOVMacd5twpr6xubW8Xt0s7u3v6BfXjUVEkmKTRowhPZDokCzgQ0NNMc2qkEEoccWuHgduK3nkEqlohHPUzBj0lPsIhRoo0U2HeeZrwL2JP9JFC4knthhMko8FKQ6Tn2BDzhxYjxicRqtBQM7LJTdabAq8SdkzKaox7YY6+b0CwGoSknSnVcJ9V+TqRmlMOo5GUKUkIHpAcdQwWJQfn59N4RPjNKF0eJNE9oPFUXJ3ISKzWMQ5OMie6rZW8i/ud1Mh1d+zkTaaZB0NmiKONYJ3hSHu4yCVTzoSGESmb+immfSEK1qbhkSnCXT14lzYuq61Tdh8ty7WZeRxGdoFNUQS66QjV0j+qogSh6QWP0gT6tV+vN+rK+Z9GCNZ85Rn9g/fwCswuo2g==</latexit><latexit sha1_base64="rIDwvxa1DXmB48bE0g3eI1J4bBM=">AAACL3icbVDLSsNAFJ3UV62vqEs3g0Wom5KIoMuiIC4r2Ac0IUymN+3QySTOTIQS+kdu/JVuRBRx6184fSxq64GBwznncueeMOVMacd5twpr6xubW8Xt0s7u3v6BfXjUVEkmKTRowhPZDokCzgQ0NNMc2qkEEoccWuHgduK3nkEqlohHPUzBj0lPsIhRoo0U2HeeZrwL2JP9JFC4knthhMko8FKQ6Tn2BDzhxYjxicRqtBQM7LJTdabAq8SdkzKaox7YY6+b0CwGoSknSnVcJ9V+TqRmlMOo5GUKUkIHpAcdQwWJQfn59N4RPjNKF0eJNE9oPFUXJ3ISKzWMQ5OMie6rZW8i/ud1Mh1d+zkTaaZB0NmiKONYJ3hSHu4yCVTzoSGESmb+immfSEK1qbhkSnCXT14lzYuq61Tdh8ty7WZeRxGdoFNUQS66QjV0j+qogSh6QWP0gT6tV+vN+rK+Z9GCNZ85Rn9g/fwCswuo2g==</latexit><latexit sha1_base64="rIDwvxa1DXmB48bE0g3eI1J4bBM=">AAACL3icbVDLSsNAFJ3UV62vqEs3g0Wom5KIoMuiIC4r2Ac0IUymN+3QySTOTIQS+kdu/JVuRBRx6184fSxq64GBwznncueeMOVMacd5twpr6xubW8Xt0s7u3v6BfXjUVEkmKTRowhPZDokCzgQ0NNMc2qkEEoccWuHgduK3nkEqlohHPUzBj0lPsIhRoo0U2HeeZrwL2JP9JFC4knthhMko8FKQ6Tn2BDzhxYjxicRqtBQM7LJTdabAq8SdkzKaox7YY6+b0CwGoSknSnVcJ9V+TqRmlMOo5GUKUkIHpAcdQwWJQfn59N4RPjNKF0eJNE9oPFUXJ3ISKzWMQ5OMie6rZW8i/ud1Mh1d+zkTaaZB0NmiKONYJ3hSHu4yCVTzoSGESmb+immfSEK1qbhkSnCXT14lzYuq61Tdh8ty7WZeRxGdoFNUQS66QjV0j+qogSh6QWP0gT6tV+vN+rK+Z9GCNZ85Rn9g/fwCswuo2g==</latexit><latexit sha1_base64="rIDwvxa1DXmB48bE0g3eI1J4bBM=">AAACL3icbVDLSsNAFJ3UV62vqEs3g0Wom5KIoMuiIC4r2Ac0IUymN+3QySTOTIQS+kdu/JVuRBRx6184fSxq64GBwznncueeMOVMacd5twpr6xubW8Xt0s7u3v6BfXjUVEkmKTRowhPZDokCzgQ0NNMc2qkEEoccWuHgduK3nkEqlohHPUzBj0lPsIhRoo0U2HeeZrwL2JP9JFC4knthhMko8FKQ6Tn2BDzhxYjxicRqtBQM7LJTdabAq8SdkzKaox7YY6+b0CwGoSknSnVcJ9V+TqRmlMOo5GUKUkIHpAcdQwWJQfn59N4RPjNKF0eJNE9oPFUXJ3ISKzWMQ5OMie6rZW8i/ud1Mh1d+zkTaaZB0NmiKONYJ3hSHu4yCVTzoSGESmb+immfSEK1qbhkSnCXT14lzYuq61Tdh8ty7WZeRxGdoFNUQS66QjV0j+qogSh6QWP0gT6tV+vN+rK+Z9GCNZ85Rn9g/fwCswuo2g==</latexit>

| ̃s(x,b?)|2 6= | ̃s̄(x,b?)|2
<latexit sha1_base64="XC5lqF0k7YHVLY9BjFsJKqcbtg8="></latexit><latexit sha1_base64="XC5lqF0k7YHVLY9BjFsJKqcbtg8=">AAACO3icbVBNSwMxFMzWr1q/Vj16CRahgpTdIuix6MWjilWhW5ds+lZDs9mYZMWy7f/y4p/w5sWLB0W8ejetPWjrQGCYmcfLm0hypo3nPTuFqemZ2bnifGlhcWl5xV1dO9dppig0aMpTdRkRDZwJaBhmOFxKBSSJOFxEncOBf3EHSrNUnJmuhFZCrgWLGSXGSqF72gsM423AgdQs1JX7HZwHUYyjfhhIUHK7d1XDgYBb/CdoM0Rh3bf5iXjolr2qNwSeJP6IlNEIx6H7FLRTmiUgDOVE66bvSdPKiTKMcuiXgkyDJLRDrqFpqSAJ6FY+vL2Pt6zSxnGq7BMGD9XfEzlJtO4mkU0mxNzocW8g/uc1MxPvt3ImZGZA0J9FccaxSfGgSNxmCqjhXUsIVcz+FdMbogg1tu6SLcEfP3mSnNeqvlf1T3bL9YNRHUW0gTZRBfloD9XRETpGDUTRA3pBb+jdeXRenQ/n8ydacEYz6+gPnK9vaNatsg==</latexit><latexit sha1_base64="XC5lqF0k7YHVLY9BjFsJKqcbtg8="></latexit><latexit sha1_base64="XC5lqF0k7YHVLY9BjFsJKqcbtg8="></latexit>

| s(x,k?)|2 6= | s̄(x,k?)|2
<latexit sha1_base64="7gGKHwGDHIUmUciVMNshz/39jWs=">AAACLXicbVDLSgMxFM34rPVVdekmWAQFKTNF0GVRFy4r2Ad06pBJ72hoJhOTjFim/SE3/ooILiri1t8wfSzUeiBwOOdcbu4JJWfauO7QmZtfWFxazq3kV9fWNzYLW9t1naSKQo0mPFHNkGjgTEDNMMOhKRWQOOTQCLvnI7/xAEqzRFybnoR2TG4FixglxkpB4aLvS80CffB4hDM/jHB3EPgSlDzs35SxL+AeTxLWJArrgQ3O5IJC0S25Y+BZ4k1JEU1RDQqvfiehaQzCUE60bnmuNO2MKMMoh0HeTzVIQrvkFlqWChKDbmfjawd43yodHCXKPmHwWP05kZFY614c2mRMzJ3+643E/7xWaqLTdsaETA0IOlkUpRybBI+qwx2mgBres4RQxexfMb0jilBjC87bEry/J8+SernkuSXv6rhYOZvWkUO7aA8dIA+doAq6RFVUQxQ9oRc0RO/Os/PmfDifk+icM53ZQb/gfH0DO66oHA==</latexit><latexit sha1_base64="7gGKHwGDHIUmUciVMNshz/39jWs=">AAACLXicbVDLSgMxFM34rPVVdekmWAQFKTNF0GVRFy4r2Ad06pBJ72hoJhOTjFim/SE3/ooILiri1t8wfSzUeiBwOOdcbu4JJWfauO7QmZtfWFxazq3kV9fWNzYLW9t1naSKQo0mPFHNkGjgTEDNMMOhKRWQOOTQCLvnI7/xAEqzRFybnoR2TG4FixglxkpB4aLvS80CffB4hDM/jHB3EPgSlDzs35SxL+AeTxLWJArrgQ3O5IJC0S25Y+BZ4k1JEU1RDQqvfiehaQzCUE60bnmuNO2MKMMoh0HeTzVIQrvkFlqWChKDbmfjawd43yodHCXKPmHwWP05kZFY614c2mRMzJ3+643E/7xWaqLTdsaETA0IOlkUpRybBI+qwx2mgBres4RQxexfMb0jilBjC87bEry/J8+SernkuSXv6rhYOZvWkUO7aA8dIA+doAq6RFVUQxQ9oRc0RO/Os/PmfDifk+icM53ZQb/gfH0DO66oHA==</latexit><latexit sha1_base64="7gGKHwGDHIUmUciVMNshz/39jWs=">AAACLXicbVDLSgMxFM34rPVVdekmWAQFKTNF0GVRFy4r2Ad06pBJ72hoJhOTjFim/SE3/ooILiri1t8wfSzUeiBwOOdcbu4JJWfauO7QmZtfWFxazq3kV9fWNzYLW9t1naSKQo0mPFHNkGjgTEDNMMOhKRWQOOTQCLvnI7/xAEqzRFybnoR2TG4FixglxkpB4aLvS80CffB4hDM/jHB3EPgSlDzs35SxL+AeTxLWJArrgQ3O5IJC0S25Y+BZ4k1JEU1RDQqvfiehaQzCUE60bnmuNO2MKMMoh0HeTzVIQrvkFlqWChKDbmfjawd43yodHCXKPmHwWP05kZFY614c2mRMzJ3+643E/7xWaqLTdsaETA0IOlkUpRybBI+qwx2mgBres4RQxexfMb0jilBjC87bEry/J8+SernkuSXv6rhYOZvWkUO7aA8dIA+doAq6RFVUQxQ9oRc0RO/Os/PmfDifk+icM53ZQb/gfH0DO66oHA==</latexit><latexit sha1_base64="7gGKHwGDHIUmUciVMNshz/39jWs=">AAACLXicbVDLSgMxFM34rPVVdekmWAQFKTNF0GVRFy4r2Ad06pBJ72hoJhOTjFim/SE3/ooILiri1t8wfSzUeiBwOOdcbu4JJWfauO7QmZtfWFxazq3kV9fWNzYLW9t1naSKQo0mPFHNkGjgTEDNMMOhKRWQOOTQCLvnI7/xAEqzRFybnoR2TG4FixglxkpB4aLvS80CffB4hDM/jHB3EPgSlDzs35SxL+AeTxLWJArrgQ3O5IJC0S25Y+BZ4k1JEU1RDQqvfiehaQzCUE60bnmuNO2MKMMoh0HeTzVIQrvkFlqWChKDbmfjawd43yodHCXKPmHwWP05kZFY614c2mRMzJ3+643E/7xWaqLTdsaETA0IOlkUpRybBI+qwx2mgBres4RQxexfMb0jilBjC87bEry/J8+SernkuSXv6rhYOZvWkUO7aA8dIA+doAq6RFVUQxQ9oRc0RO/Os/PmfDifk+icM53ZQb/gfH0DO66oHA==</latexit>

s(x) 6= s̄(x)
<latexit sha1_base64="NK05cRwpUk3eRejZUV03+O66Na0=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1iEuimJCLosunFZwT6gCWUynbRDJ5M4MxFrKP6KGxeKuPU/3Pk3TtsstPXAhTPn3Mvce4KEM6Ud59sqLC2vrK4V10sbm1vbO/buXlPFqSS0QWIey3aAFeVM0IZmmtN2IimOAk5bwfBq4rfuqVQsFrd6lFA/wn3BQkawNlLXPlCVhxPkCXqHvADLTI3Nu2uXnaozBVokbk7KkKPetb+8XkzSiApNOFaq4zqJ9jMsNSOcjkteqmiCyRD3acdQgSOq/Gy6/RgdG6WHwliaEhpN1d8TGY6UGkWB6YywHqh5byL+53VSHV74GRNJqqkgs4/ClCMdo0kUqMckJZqPDMFEMrMrIgMsMdEmsJIJwZ0/eZE0T6uuU3Vvzsq1yzyOIhzCEVTAhXOowTXUoQEEHuEZXuHNerJerHfrY9ZasPKZffgD6/MHFAiUVA==</latexit><latexit sha1_base64="NK05cRwpUk3eRejZUV03+O66Na0=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1iEuimJCLosunFZwT6gCWUynbRDJ5M4MxFrKP6KGxeKuPU/3Pk3TtsstPXAhTPn3Mvce4KEM6Ud59sqLC2vrK4V10sbm1vbO/buXlPFqSS0QWIey3aAFeVM0IZmmtN2IimOAk5bwfBq4rfuqVQsFrd6lFA/wn3BQkawNlLXPlCVhxPkCXqHvADLTI3Nu2uXnaozBVokbk7KkKPetb+8XkzSiApNOFaq4zqJ9jMsNSOcjkteqmiCyRD3acdQgSOq/Gy6/RgdG6WHwliaEhpN1d8TGY6UGkWB6YywHqh5byL+53VSHV74GRNJqqkgs4/ClCMdo0kUqMckJZqPDMFEMrMrIgMsMdEmsJIJwZ0/eZE0T6uuU3Vvzsq1yzyOIhzCEVTAhXOowTXUoQEEHuEZXuHNerJerHfrY9ZasPKZffgD6/MHFAiUVA==</latexit><latexit sha1_base64="NK05cRwpUk3eRejZUV03+O66Na0=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1iEuimJCLosunFZwT6gCWUynbRDJ5M4MxFrKP6KGxeKuPU/3Pk3TtsstPXAhTPn3Mvce4KEM6Ud59sqLC2vrK4V10sbm1vbO/buXlPFqSS0QWIey3aAFeVM0IZmmtN2IimOAk5bwfBq4rfuqVQsFrd6lFA/wn3BQkawNlLXPlCVhxPkCXqHvADLTI3Nu2uXnaozBVokbk7KkKPetb+8XkzSiApNOFaq4zqJ9jMsNSOcjkteqmiCyRD3acdQgSOq/Gy6/RgdG6WHwliaEhpN1d8TGY6UGkWB6YywHqh5byL+53VSHV74GRNJqqkgs4/ClCMdo0kUqMckJZqPDMFEMrMrIgMsMdEmsJIJwZ0/eZE0T6uuU3Vvzsq1yzyOIhzCEVTAhXOowTXUoQEEHuEZXuHNerJerHfrY9ZasPKZffgD6/MHFAiUVA==</latexit><latexit sha1_base64="NK05cRwpUk3eRejZUV03+O66Na0=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1iEuimJCLosunFZwT6gCWUynbRDJ5M4MxFrKP6KGxeKuPU/3Pk3TtsstPXAhTPn3Mvce4KEM6Ud59sqLC2vrK4V10sbm1vbO/buXlPFqSS0QWIey3aAFeVM0IZmmtN2IimOAk5bwfBq4rfuqVQsFrd6lFA/wn3BQkawNlLXPlCVhxPkCXqHvADLTI3Nu2uXnaozBVokbk7KkKPetb+8XkzSiApNOFaq4zqJ9jMsNSOcjkteqmiCyRD3acdQgSOq/Gy6/RgdG6WHwliaEhpN1d8TGY6UGkWB6YywHqh5byL+53VSHV74GRNJqqkgs4/ClCMdo0kUqMckJZqPDMFEMrMrIgMsMdEmsJIJwZ0/eZE0T6uuU3Vvzsq1yzyOIhzCEVTAhXOowTXUoQEEHuEZXuHNerJerHfrY9ZasPKZffgD6/MHFAiUVA==</latexit>no privileged direction

F s
1 (Q

2) > 0
<latexit sha1_base64="DoOXC9IdbptFwTdjMGY9xFu/nVI=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahXkpSCnqSoiAeW7Af0KZls920SzebuLsplNDf4cWDIl79Md78N27bHLT1wcDjvRlm5nkRZ0rb9reV2djc2t7J7ub29g8Oj/LHJ00VxpLQBgl5KNseVpQzQRuaaU7bkaQ48DhteeO7ud+aUKlYKB71NKJugIeC+YxgbST3vu/0VLHeK1+iG7ufL9glewG0TpyUFCBFrZ//6g5CEgdUaMKxUh3HjrSbYKkZ4XSW68aKRpiM8ZB2DBU4oMpNFkfP0IVRBsgPpSmh0UL9PZHgQKlp4JnOAOuRWvXm4n9eJ9b+tZswEcWaCrJc5Mcc6RDNE0ADJinRfGoIJpKZWxEZYYmJNjnlTAjO6svrpFkuOXbJqVcK1ds0jiycwTkUwYErqMID1KABBJ7gGV7hzZpYL9a79bFszVjpzCn8gfX5AyrUkGM=</latexit><latexit sha1_base64="DoOXC9IdbptFwTdjMGY9xFu/nVI=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahXkpSCnqSoiAeW7Af0KZls920SzebuLsplNDf4cWDIl79Md78N27bHLT1wcDjvRlm5nkRZ0rb9reV2djc2t7J7ub29g8Oj/LHJ00VxpLQBgl5KNseVpQzQRuaaU7bkaQ48DhteeO7ud+aUKlYKB71NKJugIeC+YxgbST3vu/0VLHeK1+iG7ufL9glewG0TpyUFCBFrZ//6g5CEgdUaMKxUh3HjrSbYKkZ4XSW68aKRpiM8ZB2DBU4oMpNFkfP0IVRBsgPpSmh0UL9PZHgQKlp4JnOAOuRWvXm4n9eJ9b+tZswEcWaCrJc5Mcc6RDNE0ADJinRfGoIJpKZWxEZYYmJNjnlTAjO6svrpFkuOXbJqVcK1ds0jiycwTkUwYErqMID1KABBJ7gGV7hzZpYL9a79bFszVjpzCn8gfX5AyrUkGM=</latexit><latexit sha1_base64="DoOXC9IdbptFwTdjMGY9xFu/nVI=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahXkpSCnqSoiAeW7Af0KZls920SzebuLsplNDf4cWDIl79Md78N27bHLT1wcDjvRlm5nkRZ0rb9reV2djc2t7J7ub29g8Oj/LHJ00VxpLQBgl5KNseVpQzQRuaaU7bkaQ48DhteeO7ud+aUKlYKB71NKJugIeC+YxgbST3vu/0VLHeK1+iG7ufL9glewG0TpyUFCBFrZ//6g5CEgdUaMKxUh3HjrSbYKkZ4XSW68aKRpiM8ZB2DBU4oMpNFkfP0IVRBsgPpSmh0UL9PZHgQKlp4JnOAOuRWvXm4n9eJ9b+tZswEcWaCrJc5Mcc6RDNE0ADJinRfGoIJpKZWxEZYYmJNjnlTAjO6svrpFkuOXbJqVcK1ds0jiycwTkUwYErqMID1KABBJ7gGV7hzZpYL9a79bFszVjpzCn8gfX5AyrUkGM=</latexit><latexit sha1_base64="DoOXC9IdbptFwTdjMGY9xFu/nVI=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahXkpSCnqSoiAeW7Af0KZls920SzebuLsplNDf4cWDIl79Md78N27bHLT1wcDjvRlm5nkRZ0rb9reV2djc2t7J7ub29g8Oj/LHJ00VxpLQBgl5KNseVpQzQRuaaU7bkaQ48DhteeO7ud+aUKlYKB71NKJugIeC+YxgbST3vu/0VLHeK1+iG7ufL9glewG0TpyUFCBFrZ//6g5CEgdUaMKxUh3HjrSbYKkZ4XSW68aKRpiM8ZB2DBU4oMpNFkfP0IVRBsgPpSmh0UL9PZHgQKlp4JnOAOuRWvXm4n9eJ9b+tZswEcWaCrJc5Mcc6RDNE0ADJinRfGoIJpKZWxEZYYmJNjnlTAjO6svrpFkuOXbJqVcK1ds0jiycwTkUwYErqMID1KABBJ7gGV7hzZpYL9a79bFszVjpzCn8gfX5AyrUkGM=</latexit>

s quark is more centralized in coordinate space 
and more spread out in momentum space 

It favors a positive                      at large-x, and a negative value at small-x.  s(x)� s̄(x)
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FF with twist-τ: 

hadron state; it is equal to the number of constituents in a
given Fock component in the LF Fock expansion.
In LFHQCD [13], the EM form factors for a bound-state

hadron with twist-τ can be expressed as [14,57]

FτðtÞ ¼
1

Nτ
Bðτ − 1; 1 − αðtÞÞ; ð40Þ

where the Euler Beta function is

Bðu; vÞ ¼
Z

1

0
dy yu−1ð1 − yÞv−1; ð41Þ

with Bðu; vÞ ¼ Bðv; uÞ ¼ ΓðuÞΓðvÞ
ΓðuþvÞ , Nτ ¼ Γðτ − 1ÞΓð1 −

αð0ÞÞ=Γðτ − αð0ÞÞ a normalization factor, and αðtÞ is the
Regge trajectory of the vector meson which couples to the
EM current in the t-channel exchange.
The Beta function structure of the EM form factors

(40), which follows from the gauge/gravity structure in
LFHQCD, was obtained in the pre-QCD era by Ademollo
and Del Giudice [58] and independently by Landshoff and
Polkinghorne [59]. Their derivations were based on the
Veneziano model [60], which is an incorporation of the
concept of duality [61] in a pole model. For hadronic four-
point functions, it leads to a representation of the scattering
amplitude by Euler Beta functions. Extending these con-
siderations to current induced interactions, a structure like
(40) was derived in Refs. [58,59,62]. However, the variable
τ in the duality based derivations is a free parameter and the
Regge trajectory is a phenomenological input. In contra-
distinction, LFHQCD provides a clear physical meaning of
τ, the twist of a given Fock component of the hadron, and
also incorporates the Regge trajectory from the vector-
meson (VM) spectrum by solving the semiclassical LF
QCD Hamiltonian eigenvalue problem.
For linear Regge trajectories

αðtÞ ¼ αð0Þ þ α0t; ð42Þ

Eq. (40) incorporates the hard-scattering counting rules at
large t [63,64]. Indeed, for fixed u and large v we have
Bðu; vÞ ∼ ΓðuÞv−u, and therefore the first argument in the
Euler Beta function determines the scaling behavior of (40)

lim
Q2→∞

FτðQ2Þ ¼ Γðτ − 1Þ
!

1

α0Q2

"
τ−1

; ð43Þ

at large Q2 ¼ −t. The second argument in (40) determines
the timelike pole structure of the form factor; the analytic
structure of (40) thus leads to a nontrivial connection with
the hadron spectrum. In fact, using the expansion of the
Gamma function

ΓðN þ zÞ ¼ ðN − 1þ zÞðN − 2þ zÞ % % % ð1þ zÞΓð1þ zÞ;
ð44Þ

for integer twist N ¼ τ, with N the number of constituents
for a given Fock component, we find

FτðQ2Þ ¼ 1#
1þ Q2

M2
n¼0

$#
1þ Q2

M2
n¼1

$
% % %

#
1þ Q2

M2
n¼τ−2

$ ; ð45Þ

which is expressed as a product of τ − 1 poles located at

−Q2 ¼ M2
n ¼

1

α0
ðnþ 1 − αð0ÞÞ: ð46Þ

The form factor (45) thus generates the radial excitation
spectrum of the exchanged particles in the t-channel, while
keeping the structural form found previously in the limit of
zero quark masses [13].
For the lowest radial excitation the VM spectrum in

LFHQCD is given by [13,33] (Appendix B)

M2 ¼ 4λ

!
J −

1

2

"
þ ΔM2; ð47Þ

where the squared mass shift ΔM2 incorporates the effect
from finite light quark masses. The quantity λ ¼ κ2 is the
emergent mass scale, the only dimensional quantity appear-
ing in LFHQCD for massless quarks [13]. Its value
determined from the best fit to all radial and orbital
excitations of the light mesons and baryons is κ ¼

ffiffiffi
λ

p
¼

0.523& 0.024 GeV [33].
There is no need to introduce additional procedures to

include quark masses when using the structural form (40) to
describe form factors, since the effect of quark masses only
amounts to a shift of the Regge intercept. For example, for
the ρ, a vector mesons we obtain from Eq. (47) the leading
Regge trajectory

αρðtÞ ¼
1

2
þ t
4λ

−
ΔM2

ρ

4λ
; ð48Þ

with slope α0 ¼ 1
4λ and intercept αρð0Þ ¼ 1

2 −
ΔM2

ρ

4λ , which

differs from the conformal limit 1
2 by the mass shift ΔM2

ρ

4λ
from quark masses. Likewise, the ω, f trajectory is

αωðtÞ ¼
1

2
þ t
4λ

−
ΔM2

ω

4λ
; ð49Þ

with the same slope α0 ¼ 1
4λ and similar intercept

αωð0Þ ¼ 1
2 −

ΔM2
ω

4λ . We show in Fig. 5 the Chew-Frautschi
plot for the leading ρ − a and ω − f trajectories.
The spectrum of the exchanged particles in the t-channel

follows from (46) for the leading VM trajectory (48). We
find
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Expand the distribution into twist-5 and twist-6 components

It has been noted in the pre-QCD era that the behavior of
parton distributions near x → 0 is governed by the Regge
intercept [59]. This is again in agreement with LFHQCD
even including the finite quark mass correction. The
t-dependence of GPDs, instead, is not influenced by the
introduction of quark masses, since the Regge slope is
universal for light hadrons [33].
The expression for the strange-antistrange PDF asym-

metry sðxÞ − s̄ðxÞ corresponding to (52) is

sðxÞ − s̄ðxÞ ¼ ð1 − ηÞNs½qϕτ¼5ðxÞ − qϕτ¼6ðxÞ%
þ ηNs½qωτ¼5ðxÞ − qωτ¼6ðxÞ%; ð61Þ

with qω;ϕτ ðxÞ given by (58) for ΔM2
ω and ΔM2

ϕ respectively.
For the universal reparametrization function wðxÞ we use
the form in Ref. [14],

wðxÞ ¼ x1−xe−að1−xÞ
2
; ð62Þ

with a ¼ 0.531 determined from the first moment of proton
valence quark distributions. The effect of the ϕ − ω mixing
for the sðxÞ − s̄ðxÞ asymmetry also turns out to be negli-
gible for a mixing of the order of 10% (Fig. 6) and will be
neglected.
The PDF predictions for the asymmetry sðxÞ − s̄ðxÞ

are shown in Fig. 4 and compared with the fluctuation
model and global fits for Ns ¼ 0.046ð17Þ and

ffiffiffi
λ

p
¼

0.52ð17Þ GeV obtained from the lattice form factor results.
The actual computations are carried out with the universal
function wðxÞ given by (62). In contrast to the baryon-
meson fluctuation model, which has the small-x behavior
sðxÞ − s̄ðxÞ → 0, the holographic model has the Regge
behavior sðxÞ − s̄ðxÞ ≃ −0.044x−0.01 in the limit x → 0.
This can be compared with the global data fit results, shown
in Fig. 4 at the initial scale μ ¼ 1 GeV.
The sign and the magnitude of hS−i, Eq. (2), play a

significant role in understanding the NuTeV anomaly
[68–73]; namely, that the Weinberg angle θW extracted
from deep inelastic neutrino/antineutrino scatterings by
NuTeV deviates by about 3σ from the standard model value
sin2 θW ¼ 0.23129ð5Þ [54]. A positive hS−i will reduce the
NuTeV anomaly, whereas a negative hS−i will increase it
[20,69,71]. Assuming a single source for the NuTeV
anomaly, hS−i ∼ 0.005 is required.
From our analysis, the lattice QCD result favors a

positive hS−i. However, the fits with the fluctuation model
and LFHQCD yield hS−i ¼ 0.0011ð4Þ, which is not
sufficient to solely explain the NuTeV anomaly; other
sources are needed. Although the value for hS−i is model
dependent, we emphasize that more precise determinations
of Fs

1ðQ2Þ from first-principle lattice QCD calculations
and/or future experiments will provide important con-
straints on the strange-antistrange asymmetry.

C. Separation of strange and antistrange asymmetric
quark distributions

Light-front holographic QCD predicts the structural
behavior of the strange asymmetry (61) up to twist-6,
but it does not directly predict the individual distributions
sðxÞ and s̄ðxÞwhich together determine the intrinsic strange
contribution to the quark sea in the nucleon

Z
dx sðxÞ ¼

Z
dx s̄ðxÞ ¼ Is: ð63Þ

We will show, however, how one can uniquely determine
the minimum strange probability Is in the proton and then
give constraints on the separate sðxÞ and s̄ðxÞ distributions.
We expand the longitudinal quark distributions sðxÞ and

s̄ðxÞ into their twist-5 and twist-6 components

sðxÞ ¼ αqτ¼5ðxÞ þ βqτ¼6ðxÞ; ð64Þ

s̄ðxÞ ¼ γqτ¼5ðxÞ þ δqτ¼6ðxÞ; ð65Þ

corresponding to Lz ¼ 0 and Lz ¼ 1, respectively.
Comparing with (61) and using the sum rule (1), we find

αþ β ¼ Is; ð66Þ

γ þ δ ¼ Is; ð67Þ

α − γ ¼ Ns; ð68Þ

δ − β ¼ Ns; ð69Þ

with the general solution

β ¼ Is − α; ð70Þ

γ ¼ α − Ns; ð71Þ

δ ¼ Is − αþ Ns: ð72Þ

We can thus write

sðxÞ ¼ αqτ¼5ðxÞ þ ðIs − αÞqτ¼6ðxÞ; ð73Þ

s̄ðxÞ ¼ ðα − NsÞqτ¼5ðxÞ þ ðIs − αþ NsÞqτ¼6ðxÞ; ð74Þ

with α an arbitrary parameter constrained by the conditions
sðxÞ ≥ 0 and s̄ðxÞ ≥ 0. Since the twist-5 term dominates at
large-x we require α ≥ 0 and γ ≥ 0. For positive Ns, the
positivity constraints lead to α ≥ Ns. At small-x we have
the behavior
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It has been noted in the pre-QCD era that the behavior of
parton distributions near x → 0 is governed by the Regge
intercept [59]. This is again in agreement with LFHQCD
even including the finite quark mass correction. The
t-dependence of GPDs, instead, is not influenced by the
introduction of quark masses, since the Regge slope is
universal for light hadrons [33].
The expression for the strange-antistrange PDF asym-

metry sðxÞ − s̄ðxÞ corresponding to (52) is

sðxÞ − s̄ðxÞ ¼ ð1 − ηÞNs½qϕτ¼5ðxÞ − qϕτ¼6ðxÞ%
þ ηNs½qωτ¼5ðxÞ − qωτ¼6ðxÞ%; ð61Þ

with qω;ϕτ ðxÞ given by (58) for ΔM2
ω and ΔM2

ϕ respectively.
For the universal reparametrization function wðxÞ we use
the form in Ref. [14],

wðxÞ ¼ x1−xe−að1−xÞ
2
; ð62Þ

with a ¼ 0.531 determined from the first moment of proton
valence quark distributions. The effect of the ϕ − ω mixing
for the sðxÞ − s̄ðxÞ asymmetry also turns out to be negli-
gible for a mixing of the order of 10% (Fig. 6) and will be
neglected.
The PDF predictions for the asymmetry sðxÞ − s̄ðxÞ

are shown in Fig. 4 and compared with the fluctuation
model and global fits for Ns ¼ 0.046ð17Þ and

ffiffiffi
λ

p
¼

0.52ð17Þ GeV obtained from the lattice form factor results.
The actual computations are carried out with the universal
function wðxÞ given by (62). In contrast to the baryon-
meson fluctuation model, which has the small-x behavior
sðxÞ − s̄ðxÞ → 0, the holographic model has the Regge
behavior sðxÞ − s̄ðxÞ ≃ −0.044x−0.01 in the limit x → 0.
This can be compared with the global data fit results, shown
in Fig. 4 at the initial scale μ ¼ 1 GeV.
The sign and the magnitude of hS−i, Eq. (2), play a

significant role in understanding the NuTeV anomaly
[68–73]; namely, that the Weinberg angle θW extracted
from deep inelastic neutrino/antineutrino scatterings by
NuTeV deviates by about 3σ from the standard model value
sin2 θW ¼ 0.23129ð5Þ [54]. A positive hS−i will reduce the
NuTeV anomaly, whereas a negative hS−i will increase it
[20,69,71]. Assuming a single source for the NuTeV
anomaly, hS−i ∼ 0.005 is required.
From our analysis, the lattice QCD result favors a

positive hS−i. However, the fits with the fluctuation model
and LFHQCD yield hS−i ¼ 0.0011ð4Þ, which is not
sufficient to solely explain the NuTeV anomaly; other
sources are needed. Although the value for hS−i is model
dependent, we emphasize that more precise determinations
of Fs

1ðQ2Þ from first-principle lattice QCD calculations
and/or future experiments will provide important con-
straints on the strange-antistrange asymmetry.

C. Separation of strange and antistrange asymmetric
quark distributions

Light-front holographic QCD predicts the structural
behavior of the strange asymmetry (61) up to twist-6,
but it does not directly predict the individual distributions
sðxÞ and s̄ðxÞwhich together determine the intrinsic strange
contribution to the quark sea in the nucleon

Z
dx sðxÞ ¼

Z
dx s̄ðxÞ ¼ Is: ð63Þ

We will show, however, how one can uniquely determine
the minimum strange probability Is in the proton and then
give constraints on the separate sðxÞ and s̄ðxÞ distributions.
We expand the longitudinal quark distributions sðxÞ and

s̄ðxÞ into their twist-5 and twist-6 components

sðxÞ ¼ αqτ¼5ðxÞ þ βqτ¼6ðxÞ; ð64Þ

s̄ðxÞ ¼ γqτ¼5ðxÞ þ δqτ¼6ðxÞ; ð65Þ

corresponding to Lz ¼ 0 and Lz ¼ 1, respectively.
Comparing with (61) and using the sum rule (1), we find

αþ β ¼ Is; ð66Þ

γ þ δ ¼ Is; ð67Þ

α − γ ¼ Ns; ð68Þ

δ − β ¼ Ns; ð69Þ

with the general solution

β ¼ Is − α; ð70Þ

γ ¼ α − Ns; ð71Þ

δ ¼ Is − αþ Ns: ð72Þ

We can thus write

sðxÞ ¼ αqτ¼5ðxÞ þ ðIs − αÞqτ¼6ðxÞ; ð73Þ

s̄ðxÞ ¼ ðα − NsÞqτ¼5ðxÞ þ ðIs − αþ NsÞqτ¼6ðxÞ; ð74Þ

with α an arbitrary parameter constrained by the conditions
sðxÞ ≥ 0 and s̄ðxÞ ≥ 0. Since the twist-5 term dominates at
large-x we require α ≥ 0 and γ ≥ 0. For positive Ns, the
positivity constraints lead to α ≥ Ns. At small-x we have
the behavior

lim
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qτ¼5ðxÞ
qτ¼6ðxÞ
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It has been noted in the pre-QCD era that the behavior of
parton distributions near x → 0 is governed by the Regge
intercept [59]. This is again in agreement with LFHQCD
even including the finite quark mass correction. The
t-dependence of GPDs, instead, is not influenced by the
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For the universal reparametrization function wðxÞ we use
the form in Ref. [14],

wðxÞ ¼ x1−xe−að1−xÞ
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with a ¼ 0.531 determined from the first moment of proton
valence quark distributions. The effect of the ϕ − ω mixing
for the sðxÞ − s̄ðxÞ asymmetry also turns out to be negli-
gible for a mixing of the order of 10% (Fig. 6) and will be
neglected.
The PDF predictions for the asymmetry sðxÞ − s̄ðxÞ

are shown in Fig. 4 and compared with the fluctuation
model and global fits for Ns ¼ 0.046ð17Þ and
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¼

0.52ð17Þ GeV obtained from the lattice form factor results.
The actual computations are carried out with the universal
function wðxÞ given by (62). In contrast to the baryon-
meson fluctuation model, which has the small-x behavior
sðxÞ − s̄ðxÞ → 0, the holographic model has the Regge
behavior sðxÞ − s̄ðxÞ ≃ −0.044x−0.01 in the limit x → 0.
This can be compared with the global data fit results, shown
in Fig. 4 at the initial scale μ ¼ 1 GeV.
The sign and the magnitude of hS−i, Eq. (2), play a

significant role in understanding the NuTeV anomaly
[68–73]; namely, that the Weinberg angle θW extracted
from deep inelastic neutrino/antineutrino scatterings by
NuTeV deviates by about 3σ from the standard model value
sin2 θW ¼ 0.23129ð5Þ [54]. A positive hS−i will reduce the
NuTeV anomaly, whereas a negative hS−i will increase it
[20,69,71]. Assuming a single source for the NuTeV
anomaly, hS−i ∼ 0.005 is required.
From our analysis, the lattice QCD result favors a

positive hS−i. However, the fits with the fluctuation model
and LFHQCD yield hS−i ¼ 0.0011ð4Þ, which is not
sufficient to solely explain the NuTeV anomaly; other
sources are needed. Although the value for hS−i is model
dependent, we emphasize that more precise determinations
of Fs

1ðQ2Þ from first-principle lattice QCD calculations
and/or future experiments will provide important con-
straints on the strange-antistrange asymmetry.
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quark distributions

Light-front holographic QCD predicts the structural
behavior of the strange asymmetry (61) up to twist-6,
but it does not directly predict the individual distributions
sðxÞ and s̄ðxÞwhich together determine the intrinsic strange
contribution to the quark sea in the nucleon

Z
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We will show, however, how one can uniquely determine
the minimum strange probability Is in the proton and then
give constraints on the separate sðxÞ and s̄ðxÞ distributions.
We expand the longitudinal quark distributions sðxÞ and

s̄ðxÞ into their twist-5 and twist-6 components
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γ þ δ ¼ Is; ð67Þ
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with the general solution
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We can thus write
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with α an arbitrary parameter constrained by the conditions
sðxÞ ≥ 0 and s̄ðxÞ ≥ 0. Since the twist-5 term dominates at
large-x we require α ≥ 0 and γ ≥ 0. For positive Ns, the
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the behavior

lim
x→0

qτ¼5ðxÞ
qτ¼6ðxÞ

¼ Nτ¼6

Nτ¼5

≡ R; ð75Þ

NONPERTURBATIVE STRANGE-QUARK SEA FROM … PHYS. REV. D 98, 114004 (2018)

114004-11

The coefficients satisfy:

It has been noted in the pre-QCD era that the behavior of
parton distributions near x → 0 is governed by the Regge
intercept [59]. This is again in agreement with LFHQCD
even including the finite quark mass correction. The
t-dependence of GPDs, instead, is not influenced by the
introduction of quark masses, since the Regge slope is
universal for light hadrons [33].
The expression for the strange-antistrange PDF asym-
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sðxÞ − s̄ðxÞ ¼ ð1 − ηÞNs½qϕτ¼5ðxÞ − qϕτ¼6ðxÞ%
þ ηNs½qωτ¼5ðxÞ − qωτ¼6ðxÞ%; ð61Þ

with qω;ϕτ ðxÞ given by (58) for ΔM2
ω and ΔM2

ϕ respectively.
For the universal reparametrization function wðxÞ we use
the form in Ref. [14],

wðxÞ ¼ x1−xe−að1−xÞ
2
; ð62Þ

with a ¼ 0.531 determined from the first moment of proton
valence quark distributions. The effect of the ϕ − ω mixing
for the sðxÞ − s̄ðxÞ asymmetry also turns out to be negli-
gible for a mixing of the order of 10% (Fig. 6) and will be
neglected.
The PDF predictions for the asymmetry sðxÞ − s̄ðxÞ

are shown in Fig. 4 and compared with the fluctuation
model and global fits for Ns ¼ 0.046ð17Þ and

ffiffiffi
λ

p
¼

0.52ð17Þ GeV obtained from the lattice form factor results.
The actual computations are carried out with the universal
function wðxÞ given by (62). In contrast to the baryon-
meson fluctuation model, which has the small-x behavior
sðxÞ − s̄ðxÞ → 0, the holographic model has the Regge
behavior sðxÞ − s̄ðxÞ ≃ −0.044x−0.01 in the limit x → 0.
This can be compared with the global data fit results, shown
in Fig. 4 at the initial scale μ ¼ 1 GeV.
The sign and the magnitude of hS−i, Eq. (2), play a

significant role in understanding the NuTeV anomaly
[68–73]; namely, that the Weinberg angle θW extracted
from deep inelastic neutrino/antineutrino scatterings by
NuTeV deviates by about 3σ from the standard model value
sin2 θW ¼ 0.23129ð5Þ [54]. A positive hS−i will reduce the
NuTeV anomaly, whereas a negative hS−i will increase it
[20,69,71]. Assuming a single source for the NuTeV
anomaly, hS−i ∼ 0.005 is required.
From our analysis, the lattice QCD result favors a

positive hS−i. However, the fits with the fluctuation model
and LFHQCD yield hS−i ¼ 0.0011ð4Þ, which is not
sufficient to solely explain the NuTeV anomaly; other
sources are needed. Although the value for hS−i is model
dependent, we emphasize that more precise determinations
of Fs

1ðQ2Þ from first-principle lattice QCD calculations
and/or future experiments will provide important con-
straints on the strange-antistrange asymmetry.

C. Separation of strange and antistrange asymmetric
quark distributions

Light-front holographic QCD predicts the structural
behavior of the strange asymmetry (61) up to twist-6,
but it does not directly predict the individual distributions
sðxÞ and s̄ðxÞwhich together determine the intrinsic strange
contribution to the quark sea in the nucleon

Z
dx sðxÞ ¼

Z
dx s̄ðxÞ ¼ Is: ð63Þ

We will show, however, how one can uniquely determine
the minimum strange probability Is in the proton and then
give constraints on the separate sðxÞ and s̄ðxÞ distributions.
We expand the longitudinal quark distributions sðxÞ and

s̄ðxÞ into their twist-5 and twist-6 components

sðxÞ ¼ αqτ¼5ðxÞ þ βqτ¼6ðxÞ; ð64Þ

s̄ðxÞ ¼ γqτ¼5ðxÞ þ δqτ¼6ðxÞ; ð65Þ

corresponding to Lz ¼ 0 and Lz ¼ 1, respectively.
Comparing with (61) and using the sum rule (1), we find

αþ β ¼ Is; ð66Þ

γ þ δ ¼ Is; ð67Þ

α − γ ¼ Ns; ð68Þ

δ − β ¼ Ns; ð69Þ

with the general solution

β ¼ Is − α; ð70Þ

γ ¼ α − Ns; ð71Þ

δ ¼ Is − αþ Ns: ð72Þ

We can thus write

sðxÞ ¼ αqτ¼5ðxÞ þ ðIs − αÞqτ¼6ðxÞ; ð73Þ

s̄ðxÞ ¼ ðα − NsÞqτ¼5ðxÞ þ ðIs − αþ NsÞqτ¼6ðxÞ; ð74Þ

with α an arbitrary parameter constrained by the conditions
sðxÞ ≥ 0 and s̄ðxÞ ≥ 0. Since the twist-5 term dominates at
large-x we require α ≥ 0 and γ ≥ 0. For positive Ns, the
positivity constraints lead to α ≥ Ns. At small-x we have
the behavior

lim
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It has been noted in the pre-QCD era that the behavior of
parton distributions near x → 0 is governed by the Regge
intercept [59]. This is again in agreement with LFHQCD
even including the finite quark mass correction. The
t-dependence of GPDs, instead, is not influenced by the
introduction of quark masses, since the Regge slope is
universal for light hadrons [33].
The expression for the strange-antistrange PDF asym-

metry sðxÞ − s̄ðxÞ corresponding to (52) is

sðxÞ − s̄ðxÞ ¼ ð1 − ηÞNs½qϕτ¼5ðxÞ − qϕτ¼6ðxÞ%
þ ηNs½qωτ¼5ðxÞ − qωτ¼6ðxÞ%; ð61Þ

with qω;ϕτ ðxÞ given by (58) for ΔM2
ω and ΔM2

ϕ respectively.
For the universal reparametrization function wðxÞ we use
the form in Ref. [14],

wðxÞ ¼ x1−xe−að1−xÞ
2
; ð62Þ

with a ¼ 0.531 determined from the first moment of proton
valence quark distributions. The effect of the ϕ − ω mixing
for the sðxÞ − s̄ðxÞ asymmetry also turns out to be negli-
gible for a mixing of the order of 10% (Fig. 6) and will be
neglected.
The PDF predictions for the asymmetry sðxÞ − s̄ðxÞ

are shown in Fig. 4 and compared with the fluctuation
model and global fits for Ns ¼ 0.046ð17Þ and

ffiffiffi
λ

p
¼

0.52ð17Þ GeV obtained from the lattice form factor results.
The actual computations are carried out with the universal
function wðxÞ given by (62). In contrast to the baryon-
meson fluctuation model, which has the small-x behavior
sðxÞ − s̄ðxÞ → 0, the holographic model has the Regge
behavior sðxÞ − s̄ðxÞ ≃ −0.044x−0.01 in the limit x → 0.
This can be compared with the global data fit results, shown
in Fig. 4 at the initial scale μ ¼ 1 GeV.
The sign and the magnitude of hS−i, Eq. (2), play a

significant role in understanding the NuTeV anomaly
[68–73]; namely, that the Weinberg angle θW extracted
from deep inelastic neutrino/antineutrino scatterings by
NuTeV deviates by about 3σ from the standard model value
sin2 θW ¼ 0.23129ð5Þ [54]. A positive hS−i will reduce the
NuTeV anomaly, whereas a negative hS−i will increase it
[20,69,71]. Assuming a single source for the NuTeV
anomaly, hS−i ∼ 0.005 is required.
From our analysis, the lattice QCD result favors a

positive hS−i. However, the fits with the fluctuation model
and LFHQCD yield hS−i ¼ 0.0011ð4Þ, which is not
sufficient to solely explain the NuTeV anomaly; other
sources are needed. Although the value for hS−i is model
dependent, we emphasize that more precise determinations
of Fs

1ðQ2Þ from first-principle lattice QCD calculations
and/or future experiments will provide important con-
straints on the strange-antistrange asymmetry.

C. Separation of strange and antistrange asymmetric
quark distributions

Light-front holographic QCD predicts the structural
behavior of the strange asymmetry (61) up to twist-6,
but it does not directly predict the individual distributions
sðxÞ and s̄ðxÞwhich together determine the intrinsic strange
contribution to the quark sea in the nucleon

Z
dx sðxÞ ¼

Z
dx s̄ðxÞ ¼ Is: ð63Þ

We will show, however, how one can uniquely determine
the minimum strange probability Is in the proton and then
give constraints on the separate sðxÞ and s̄ðxÞ distributions.
We expand the longitudinal quark distributions sðxÞ and

s̄ðxÞ into their twist-5 and twist-6 components

sðxÞ ¼ αqτ¼5ðxÞ þ βqτ¼6ðxÞ; ð64Þ

s̄ðxÞ ¼ γqτ¼5ðxÞ þ δqτ¼6ðxÞ; ð65Þ

corresponding to Lz ¼ 0 and Lz ¼ 1, respectively.
Comparing with (61) and using the sum rule (1), we find

αþ β ¼ Is; ð66Þ

γ þ δ ¼ Is; ð67Þ

α − γ ¼ Ns; ð68Þ

δ − β ¼ Ns; ð69Þ

with the general solution

β ¼ Is − α; ð70Þ

γ ¼ α − Ns; ð71Þ

δ ¼ Is − αþ Ns: ð72Þ

We can thus write

sðxÞ ¼ αqτ¼5ðxÞ þ ðIs − αÞqτ¼6ðxÞ; ð73Þ

s̄ðxÞ ¼ ðα − NsÞqτ¼5ðxÞ þ ðIs − αþ NsÞqτ¼6ðxÞ; ð74Þ

with α an arbitrary parameter constrained by the conditions
sðxÞ ≥ 0 and s̄ðxÞ ≥ 0. Since the twist-5 term dominates at
large-x we require α ≥ 0 and γ ≥ 0. For positive Ns, the
positivity constraints lead to α ≥ Ns. At small-x we have
the behavior

lim
x→0

qτ¼5ðxÞ
qτ¼6ðxÞ

¼ Nτ¼6

Nτ¼5

≡ R; ð75Þ

NONPERTURBATIVE STRANGE-QUARK SEA FROM … PHYS. REV. D 98, 114004 (2018)

114004-11

It has been noted in the pre-QCD era that the behavior of
parton distributions near x → 0 is governed by the Regge
intercept [59]. This is again in agreement with LFHQCD
even including the finite quark mass correction. The
t-dependence of GPDs, instead, is not influenced by the
introduction of quark masses, since the Regge slope is
universal for light hadrons [33].
The expression for the strange-antistrange PDF asym-
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þ ηNs½qωτ¼5ðxÞ − qωτ¼6ðxÞ%; ð61Þ

with qω;ϕτ ðxÞ given by (58) for ΔM2
ω and ΔM2

ϕ respectively.
For the universal reparametrization function wðxÞ we use
the form in Ref. [14],

wðxÞ ¼ x1−xe−að1−xÞ
2
; ð62Þ

with a ¼ 0.531 determined from the first moment of proton
valence quark distributions. The effect of the ϕ − ω mixing
for the sðxÞ − s̄ðxÞ asymmetry also turns out to be negli-
gible for a mixing of the order of 10% (Fig. 6) and will be
neglected.
The PDF predictions for the asymmetry sðxÞ − s̄ðxÞ

are shown in Fig. 4 and compared with the fluctuation
model and global fits for Ns ¼ 0.046ð17Þ and

ffiffiffi
λ

p
¼

0.52ð17Þ GeV obtained from the lattice form factor results.
The actual computations are carried out with the universal
function wðxÞ given by (62). In contrast to the baryon-
meson fluctuation model, which has the small-x behavior
sðxÞ − s̄ðxÞ → 0, the holographic model has the Regge
behavior sðxÞ − s̄ðxÞ ≃ −0.044x−0.01 in the limit x → 0.
This can be compared with the global data fit results, shown
in Fig. 4 at the initial scale μ ¼ 1 GeV.
The sign and the magnitude of hS−i, Eq. (2), play a

significant role in understanding the NuTeV anomaly
[68–73]; namely, that the Weinberg angle θW extracted
from deep inelastic neutrino/antineutrino scatterings by
NuTeV deviates by about 3σ from the standard model value
sin2 θW ¼ 0.23129ð5Þ [54]. A positive hS−i will reduce the
NuTeV anomaly, whereas a negative hS−i will increase it
[20,69,71]. Assuming a single source for the NuTeV
anomaly, hS−i ∼ 0.005 is required.
From our analysis, the lattice QCD result favors a

positive hS−i. However, the fits with the fluctuation model
and LFHQCD yield hS−i ¼ 0.0011ð4Þ, which is not
sufficient to solely explain the NuTeV anomaly; other
sources are needed. Although the value for hS−i is model
dependent, we emphasize that more precise determinations
of Fs

1ðQ2Þ from first-principle lattice QCD calculations
and/or future experiments will provide important con-
straints on the strange-antistrange asymmetry.

C. Separation of strange and antistrange asymmetric
quark distributions

Light-front holographic QCD predicts the structural
behavior of the strange asymmetry (61) up to twist-6,
but it does not directly predict the individual distributions
sðxÞ and s̄ðxÞwhich together determine the intrinsic strange
contribution to the quark sea in the nucleon

Z
dx sðxÞ ¼

Z
dx s̄ðxÞ ¼ Is: ð63Þ

We will show, however, how one can uniquely determine
the minimum strange probability Is in the proton and then
give constraints on the separate sðxÞ and s̄ðxÞ distributions.
We expand the longitudinal quark distributions sðxÞ and

s̄ðxÞ into their twist-5 and twist-6 components

sðxÞ ¼ αqτ¼5ðxÞ þ βqτ¼6ðxÞ; ð64Þ

s̄ðxÞ ¼ γqτ¼5ðxÞ þ δqτ¼6ðxÞ; ð65Þ

corresponding to Lz ¼ 0 and Lz ¼ 1, respectively.
Comparing with (61) and using the sum rule (1), we find

αþ β ¼ Is; ð66Þ

γ þ δ ¼ Is; ð67Þ

α − γ ¼ Ns; ð68Þ

δ − β ¼ Ns; ð69Þ

with the general solution

β ¼ Is − α; ð70Þ

γ ¼ α − Ns; ð71Þ

δ ¼ Is − αþ Ns: ð72Þ

We can thus write
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with α an arbitrary parameter constrained by the conditions
sðxÞ ≥ 0 and s̄ðxÞ ≥ 0. Since the twist-5 term dominates at
large-x we require α ≥ 0 and γ ≥ 0. For positive Ns, the
positivity constraints lead to α ≥ Ns. At small-x we have
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It has been noted in the pre-QCD era that the behavior of
parton distributions near x → 0 is governed by the Regge
intercept [59]. This is again in agreement with LFHQCD
even including the finite quark mass correction. The
t-dependence of GPDs, instead, is not influenced by the
introduction of quark masses, since the Regge slope is
universal for light hadrons [33].
The expression for the strange-antistrange PDF asym-

metry sðxÞ − s̄ðxÞ corresponding to (52) is

sðxÞ − s̄ðxÞ ¼ ð1 − ηÞNs½qϕτ¼5ðxÞ − qϕτ¼6ðxÞ%
þ ηNs½qωτ¼5ðxÞ − qωτ¼6ðxÞ%; ð61Þ

with qω;ϕτ ðxÞ given by (58) for ΔM2
ω and ΔM2

ϕ respectively.
For the universal reparametrization function wðxÞ we use
the form in Ref. [14],

wðxÞ ¼ x1−xe−að1−xÞ
2
; ð62Þ

with a ¼ 0.531 determined from the first moment of proton
valence quark distributions. The effect of the ϕ − ω mixing
for the sðxÞ − s̄ðxÞ asymmetry also turns out to be negli-
gible for a mixing of the order of 10% (Fig. 6) and will be
neglected.
The PDF predictions for the asymmetry sðxÞ − s̄ðxÞ

are shown in Fig. 4 and compared with the fluctuation
model and global fits for Ns ¼ 0.046ð17Þ and

ffiffiffi
λ

p
¼

0.52ð17Þ GeV obtained from the lattice form factor results.
The actual computations are carried out with the universal
function wðxÞ given by (62). In contrast to the baryon-
meson fluctuation model, which has the small-x behavior
sðxÞ − s̄ðxÞ → 0, the holographic model has the Regge
behavior sðxÞ − s̄ðxÞ ≃ −0.044x−0.01 in the limit x → 0.
This can be compared with the global data fit results, shown
in Fig. 4 at the initial scale μ ¼ 1 GeV.
The sign and the magnitude of hS−i, Eq. (2), play a

significant role in understanding the NuTeV anomaly
[68–73]; namely, that the Weinberg angle θW extracted
from deep inelastic neutrino/antineutrino scatterings by
NuTeV deviates by about 3σ from the standard model value
sin2 θW ¼ 0.23129ð5Þ [54]. A positive hS−i will reduce the
NuTeV anomaly, whereas a negative hS−i will increase it
[20,69,71]. Assuming a single source for the NuTeV
anomaly, hS−i ∼ 0.005 is required.
From our analysis, the lattice QCD result favors a

positive hS−i. However, the fits with the fluctuation model
and LFHQCD yield hS−i ¼ 0.0011ð4Þ, which is not
sufficient to solely explain the NuTeV anomaly; other
sources are needed. Although the value for hS−i is model
dependent, we emphasize that more precise determinations
of Fs

1ðQ2Þ from first-principle lattice QCD calculations
and/or future experiments will provide important con-
straints on the strange-antistrange asymmetry.

C. Separation of strange and antistrange asymmetric
quark distributions

Light-front holographic QCD predicts the structural
behavior of the strange asymmetry (61) up to twist-6,
but it does not directly predict the individual distributions
sðxÞ and s̄ðxÞwhich together determine the intrinsic strange
contribution to the quark sea in the nucleon

Z
dx sðxÞ ¼

Z
dx s̄ðxÞ ¼ Is: ð63Þ

We will show, however, how one can uniquely determine
the minimum strange probability Is in the proton and then
give constraints on the separate sðxÞ and s̄ðxÞ distributions.
We expand the longitudinal quark distributions sðxÞ and

s̄ðxÞ into their twist-5 and twist-6 components

sðxÞ ¼ αqτ¼5ðxÞ þ βqτ¼6ðxÞ; ð64Þ

s̄ðxÞ ¼ γqτ¼5ðxÞ þ δqτ¼6ðxÞ; ð65Þ

corresponding to Lz ¼ 0 and Lz ¼ 1, respectively.
Comparing with (61) and using the sum rule (1), we find

αþ β ¼ Is; ð66Þ

γ þ δ ¼ Is; ð67Þ

α − γ ¼ Ns; ð68Þ

δ − β ¼ Ns; ð69Þ

with the general solution

β ¼ Is − α; ð70Þ

γ ¼ α − Ns; ð71Þ

δ ¼ Is − αþ Ns: ð72Þ

We can thus write

sðxÞ ¼ αqτ¼5ðxÞ þ ðIs − αÞqτ¼6ðxÞ; ð73Þ

s̄ðxÞ ¼ ðα − NsÞqτ¼5ðxÞ þ ðIs − αþ NsÞqτ¼6ðxÞ; ð74Þ

with α an arbitrary parameter constrained by the conditions
sðxÞ ≥ 0 and s̄ðxÞ ≥ 0. Since the twist-5 term dominates at
large-x we require α ≥ 0 and γ ≥ 0. For positive Ns, the
positivity constraints lead to α ≥ Ns. At small-x we have
the behavior

lim
x→0

qτ¼5ðxÞ
qτ¼6ðxÞ

¼ Nτ¼6

Nτ¼5

≡ R; ð75Þ
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where and

It has been noted in the pre-QCD era that the behavior of
parton distributions near x → 0 is governed by the Regge
intercept [59]. This is again in agreement with LFHQCD
even including the finite quark mass correction. The
t-dependence of GPDs, instead, is not influenced by the
introduction of quark masses, since the Regge slope is
universal for light hadrons [33].
The expression for the strange-antistrange PDF asym-

metry sðxÞ − s̄ðxÞ corresponding to (52) is

sðxÞ − s̄ðxÞ ¼ ð1 − ηÞNs½qϕτ¼5ðxÞ − qϕτ¼6ðxÞ%
þ ηNs½qωτ¼5ðxÞ − qωτ¼6ðxÞ%; ð61Þ

with qω;ϕτ ðxÞ given by (58) for ΔM2
ω and ΔM2

ϕ respectively.
For the universal reparametrization function wðxÞ we use
the form in Ref. [14],

wðxÞ ¼ x1−xe−að1−xÞ
2
; ð62Þ

with a ¼ 0.531 determined from the first moment of proton
valence quark distributions. The effect of the ϕ − ω mixing
for the sðxÞ − s̄ðxÞ asymmetry also turns out to be negli-
gible for a mixing of the order of 10% (Fig. 6) and will be
neglected.
The PDF predictions for the asymmetry sðxÞ − s̄ðxÞ

are shown in Fig. 4 and compared with the fluctuation
model and global fits for Ns ¼ 0.046ð17Þ and

ffiffiffi
λ

p
¼

0.52ð17Þ GeV obtained from the lattice form factor results.
The actual computations are carried out with the universal
function wðxÞ given by (62). In contrast to the baryon-
meson fluctuation model, which has the small-x behavior
sðxÞ − s̄ðxÞ → 0, the holographic model has the Regge
behavior sðxÞ − s̄ðxÞ ≃ −0.044x−0.01 in the limit x → 0.
This can be compared with the global data fit results, shown
in Fig. 4 at the initial scale μ ¼ 1 GeV.
The sign and the magnitude of hS−i, Eq. (2), play a

significant role in understanding the NuTeV anomaly
[68–73]; namely, that the Weinberg angle θW extracted
from deep inelastic neutrino/antineutrino scatterings by
NuTeV deviates by about 3σ from the standard model value
sin2 θW ¼ 0.23129ð5Þ [54]. A positive hS−i will reduce the
NuTeV anomaly, whereas a negative hS−i will increase it
[20,69,71]. Assuming a single source for the NuTeV
anomaly, hS−i ∼ 0.005 is required.
From our analysis, the lattice QCD result favors a

positive hS−i. However, the fits with the fluctuation model
and LFHQCD yield hS−i ¼ 0.0011ð4Þ, which is not
sufficient to solely explain the NuTeV anomaly; other
sources are needed. Although the value for hS−i is model
dependent, we emphasize that more precise determinations
of Fs

1ðQ2Þ from first-principle lattice QCD calculations
and/or future experiments will provide important con-
straints on the strange-antistrange asymmetry.

C. Separation of strange and antistrange asymmetric
quark distributions

Light-front holographic QCD predicts the structural
behavior of the strange asymmetry (61) up to twist-6,
but it does not directly predict the individual distributions
sðxÞ and s̄ðxÞwhich together determine the intrinsic strange
contribution to the quark sea in the nucleon

Z
dx sðxÞ ¼

Z
dx s̄ðxÞ ¼ Is: ð63Þ

We will show, however, how one can uniquely determine
the minimum strange probability Is in the proton and then
give constraints on the separate sðxÞ and s̄ðxÞ distributions.
We expand the longitudinal quark distributions sðxÞ and

s̄ðxÞ into their twist-5 and twist-6 components

sðxÞ ¼ αqτ¼5ðxÞ þ βqτ¼6ðxÞ; ð64Þ

s̄ðxÞ ¼ γqτ¼5ðxÞ þ δqτ¼6ðxÞ; ð65Þ

corresponding to Lz ¼ 0 and Lz ¼ 1, respectively.
Comparing with (61) and using the sum rule (1), we find

αþ β ¼ Is; ð66Þ

γ þ δ ¼ Is; ð67Þ

α − γ ¼ Ns; ð68Þ

δ − β ¼ Ns; ð69Þ

with the general solution

β ¼ Is − α; ð70Þ

γ ¼ α − Ns; ð71Þ

δ ¼ Is − αþ Ns: ð72Þ

We can thus write

sðxÞ ¼ αqτ¼5ðxÞ þ ðIs − αÞqτ¼6ðxÞ; ð73Þ

s̄ðxÞ ¼ ðα − NsÞqτ¼5ðxÞ þ ðIs − αþ NsÞqτ¼6ðxÞ; ð74Þ

with α an arbitrary parameter constrained by the conditions
sðxÞ ≥ 0 and s̄ðxÞ ≥ 0. Since the twist-5 term dominates at
large-x we require α ≥ 0 and γ ≥ 0. For positive Ns, the
positivity constraints lead to α ≥ Ns. At small-x we have
the behavior

lim
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It has been noted in the pre-QCD era that the behavior of
parton distributions near x → 0 is governed by the Regge
intercept [59]. This is again in agreement with LFHQCD
even including the finite quark mass correction. The
t-dependence of GPDs, instead, is not influenced by the
introduction of quark masses, since the Regge slope is
universal for light hadrons [33].
The expression for the strange-antistrange PDF asym-

metry sðxÞ − s̄ðxÞ corresponding to (52) is

sðxÞ − s̄ðxÞ ¼ ð1 − ηÞNs½qϕτ¼5ðxÞ − qϕτ¼6ðxÞ%
þ ηNs½qωτ¼5ðxÞ − qωτ¼6ðxÞ%; ð61Þ

with qω;ϕτ ðxÞ given by (58) for ΔM2
ω and ΔM2

ϕ respectively.
For the universal reparametrization function wðxÞ we use
the form in Ref. [14],

wðxÞ ¼ x1−xe−að1−xÞ
2
; ð62Þ

with a ¼ 0.531 determined from the first moment of proton
valence quark distributions. The effect of the ϕ − ω mixing
for the sðxÞ − s̄ðxÞ asymmetry also turns out to be negli-
gible for a mixing of the order of 10% (Fig. 6) and will be
neglected.
The PDF predictions for the asymmetry sðxÞ − s̄ðxÞ

are shown in Fig. 4 and compared with the fluctuation
model and global fits for Ns ¼ 0.046ð17Þ and

ffiffiffi
λ

p
¼

0.52ð17Þ GeV obtained from the lattice form factor results.
The actual computations are carried out with the universal
function wðxÞ given by (62). In contrast to the baryon-
meson fluctuation model, which has the small-x behavior
sðxÞ − s̄ðxÞ → 0, the holographic model has the Regge
behavior sðxÞ − s̄ðxÞ ≃ −0.044x−0.01 in the limit x → 0.
This can be compared with the global data fit results, shown
in Fig. 4 at the initial scale μ ¼ 1 GeV.
The sign and the magnitude of hS−i, Eq. (2), play a

significant role in understanding the NuTeV anomaly
[68–73]; namely, that the Weinberg angle θW extracted
from deep inelastic neutrino/antineutrino scatterings by
NuTeV deviates by about 3σ from the standard model value
sin2 θW ¼ 0.23129ð5Þ [54]. A positive hS−i will reduce the
NuTeV anomaly, whereas a negative hS−i will increase it
[20,69,71]. Assuming a single source for the NuTeV
anomaly, hS−i ∼ 0.005 is required.
From our analysis, the lattice QCD result favors a

positive hS−i. However, the fits with the fluctuation model
and LFHQCD yield hS−i ¼ 0.0011ð4Þ, which is not
sufficient to solely explain the NuTeV anomaly; other
sources are needed. Although the value for hS−i is model
dependent, we emphasize that more precise determinations
of Fs

1ðQ2Þ from first-principle lattice QCD calculations
and/or future experiments will provide important con-
straints on the strange-antistrange asymmetry.

C. Separation of strange and antistrange asymmetric
quark distributions

Light-front holographic QCD predicts the structural
behavior of the strange asymmetry (61) up to twist-6,
but it does not directly predict the individual distributions
sðxÞ and s̄ðxÞwhich together determine the intrinsic strange
contribution to the quark sea in the nucleon

Z
dx sðxÞ ¼

Z
dx s̄ðxÞ ¼ Is: ð63Þ

We will show, however, how one can uniquely determine
the minimum strange probability Is in the proton and then
give constraints on the separate sðxÞ and s̄ðxÞ distributions.
We expand the longitudinal quark distributions sðxÞ and

s̄ðxÞ into their twist-5 and twist-6 components

sðxÞ ¼ αqτ¼5ðxÞ þ βqτ¼6ðxÞ; ð64Þ

s̄ðxÞ ¼ γqτ¼5ðxÞ þ δqτ¼6ðxÞ; ð65Þ

corresponding to Lz ¼ 0 and Lz ¼ 1, respectively.
Comparing with (61) and using the sum rule (1), we find

αþ β ¼ Is; ð66Þ

γ þ δ ¼ Is; ð67Þ

α − γ ¼ Ns; ð68Þ

δ − β ¼ Ns; ð69Þ

with the general solution

β ¼ Is − α; ð70Þ

γ ¼ α − Ns; ð71Þ

δ ¼ Is − αþ Ns: ð72Þ

We can thus write

sðxÞ ¼ αqτ¼5ðxÞ þ ðIs − αÞqτ¼6ðxÞ; ð73Þ

s̄ðxÞ ¼ ðα − NsÞqτ¼5ðxÞ þ ðIs − αþ NsÞqτ¼6ðxÞ; ð74Þ

with α an arbitrary parameter constrained by the conditions
sðxÞ ≥ 0 and s̄ðxÞ ≥ 0. Since the twist-5 term dominates at
large-x we require α ≥ 0 and γ ≥ 0. For positive Ns, the
positivity constraints lead to α ≥ Ns. At small-x we have
the behavior

lim
x→0

qτ¼5ðxÞ
qτ¼6ðxÞ

¼ Nτ¼6

Nτ¼5

≡ R; ð75Þ
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General solution:

It has been noted in the pre-QCD era that the behavior of
parton distributions near x → 0 is governed by the Regge
intercept [59]. This is again in agreement with LFHQCD
even including the finite quark mass correction. The
t-dependence of GPDs, instead, is not influenced by the
introduction of quark masses, since the Regge slope is
universal for light hadrons [33].
The expression for the strange-antistrange PDF asym-

metry sðxÞ − s̄ðxÞ corresponding to (52) is

sðxÞ − s̄ðxÞ ¼ ð1 − ηÞNs½qϕτ¼5ðxÞ − qϕτ¼6ðxÞ%
þ ηNs½qωτ¼5ðxÞ − qωτ¼6ðxÞ%; ð61Þ

with qω;ϕτ ðxÞ given by (58) for ΔM2
ω and ΔM2

ϕ respectively.
For the universal reparametrization function wðxÞ we use
the form in Ref. [14],

wðxÞ ¼ x1−xe−að1−xÞ
2
; ð62Þ

with a ¼ 0.531 determined from the first moment of proton
valence quark distributions. The effect of the ϕ − ω mixing
for the sðxÞ − s̄ðxÞ asymmetry also turns out to be negli-
gible for a mixing of the order of 10% (Fig. 6) and will be
neglected.
The PDF predictions for the asymmetry sðxÞ − s̄ðxÞ

are shown in Fig. 4 and compared with the fluctuation
model and global fits for Ns ¼ 0.046ð17Þ and

ffiffiffi
λ

p
¼

0.52ð17Þ GeV obtained from the lattice form factor results.
The actual computations are carried out with the universal
function wðxÞ given by (62). In contrast to the baryon-
meson fluctuation model, which has the small-x behavior
sðxÞ − s̄ðxÞ → 0, the holographic model has the Regge
behavior sðxÞ − s̄ðxÞ ≃ −0.044x−0.01 in the limit x → 0.
This can be compared with the global data fit results, shown
in Fig. 4 at the initial scale μ ¼ 1 GeV.
The sign and the magnitude of hS−i, Eq. (2), play a

significant role in understanding the NuTeV anomaly
[68–73]; namely, that the Weinberg angle θW extracted
from deep inelastic neutrino/antineutrino scatterings by
NuTeV deviates by about 3σ from the standard model value
sin2 θW ¼ 0.23129ð5Þ [54]. A positive hS−i will reduce the
NuTeV anomaly, whereas a negative hS−i will increase it
[20,69,71]. Assuming a single source for the NuTeV
anomaly, hS−i ∼ 0.005 is required.
From our analysis, the lattice QCD result favors a

positive hS−i. However, the fits with the fluctuation model
and LFHQCD yield hS−i ¼ 0.0011ð4Þ, which is not
sufficient to solely explain the NuTeV anomaly; other
sources are needed. Although the value for hS−i is model
dependent, we emphasize that more precise determinations
of Fs

1ðQ2Þ from first-principle lattice QCD calculations
and/or future experiments will provide important con-
straints on the strange-antistrange asymmetry.

C. Separation of strange and antistrange asymmetric
quark distributions

Light-front holographic QCD predicts the structural
behavior of the strange asymmetry (61) up to twist-6,
but it does not directly predict the individual distributions
sðxÞ and s̄ðxÞwhich together determine the intrinsic strange
contribution to the quark sea in the nucleon

Z
dx sðxÞ ¼

Z
dx s̄ðxÞ ¼ Is: ð63Þ

We will show, however, how one can uniquely determine
the minimum strange probability Is in the proton and then
give constraints on the separate sðxÞ and s̄ðxÞ distributions.
We expand the longitudinal quark distributions sðxÞ and

s̄ðxÞ into their twist-5 and twist-6 components

sðxÞ ¼ αqτ¼5ðxÞ þ βqτ¼6ðxÞ; ð64Þ

s̄ðxÞ ¼ γqτ¼5ðxÞ þ δqτ¼6ðxÞ; ð65Þ

corresponding to Lz ¼ 0 and Lz ¼ 1, respectively.
Comparing with (61) and using the sum rule (1), we find

αþ β ¼ Is; ð66Þ

γ þ δ ¼ Is; ð67Þ

α − γ ¼ Ns; ð68Þ

δ − β ¼ Ns; ð69Þ

with the general solution

β ¼ Is − α; ð70Þ

γ ¼ α − Ns; ð71Þ

δ ¼ Is − αþ Ns: ð72Þ

We can thus write

sðxÞ ¼ αqτ¼5ðxÞ þ ðIs − αÞqτ¼6ðxÞ; ð73Þ

s̄ðxÞ ¼ ðα − NsÞqτ¼5ðxÞ þ ðIs − αþ NsÞqτ¼6ðxÞ; ð74Þ

with α an arbitrary parameter constrained by the conditions
sðxÞ ≥ 0 and s̄ðxÞ ≥ 0. Since the twist-5 term dominates at
large-x we require α ≥ 0 and γ ≥ 0. For positive Ns, the
positivity constraints lead to α ≥ Ns. At small-x we have
the behavior

lim
x→0

qτ¼5ðxÞ
qτ¼6ðxÞ

¼ Nτ¼6

Nτ¼5

≡ R; ð75Þ
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It has been noted in the pre-QCD era that the behavior of
parton distributions near x → 0 is governed by the Regge
intercept [59]. This is again in agreement with LFHQCD
even including the finite quark mass correction. The
t-dependence of GPDs, instead, is not influenced by the
introduction of quark masses, since the Regge slope is
universal for light hadrons [33].
The expression for the strange-antistrange PDF asym-

metry sðxÞ − s̄ðxÞ corresponding to (52) is

sðxÞ − s̄ðxÞ ¼ ð1 − ηÞNs½qϕτ¼5ðxÞ − qϕτ¼6ðxÞ%
þ ηNs½qωτ¼5ðxÞ − qωτ¼6ðxÞ%; ð61Þ

with qω;ϕτ ðxÞ given by (58) for ΔM2
ω and ΔM2

ϕ respectively.
For the universal reparametrization function wðxÞ we use
the form in Ref. [14],

wðxÞ ¼ x1−xe−að1−xÞ
2
; ð62Þ

with a ¼ 0.531 determined from the first moment of proton
valence quark distributions. The effect of the ϕ − ω mixing
for the sðxÞ − s̄ðxÞ asymmetry also turns out to be negli-
gible for a mixing of the order of 10% (Fig. 6) and will be
neglected.
The PDF predictions for the asymmetry sðxÞ − s̄ðxÞ

are shown in Fig. 4 and compared with the fluctuation
model and global fits for Ns ¼ 0.046ð17Þ and

ffiffiffi
λ

p
¼

0.52ð17Þ GeV obtained from the lattice form factor results.
The actual computations are carried out with the universal
function wðxÞ given by (62). In contrast to the baryon-
meson fluctuation model, which has the small-x behavior
sðxÞ − s̄ðxÞ → 0, the holographic model has the Regge
behavior sðxÞ − s̄ðxÞ ≃ −0.044x−0.01 in the limit x → 0.
This can be compared with the global data fit results, shown
in Fig. 4 at the initial scale μ ¼ 1 GeV.
The sign and the magnitude of hS−i, Eq. (2), play a

significant role in understanding the NuTeV anomaly
[68–73]; namely, that the Weinberg angle θW extracted
from deep inelastic neutrino/antineutrino scatterings by
NuTeV deviates by about 3σ from the standard model value
sin2 θW ¼ 0.23129ð5Þ [54]. A positive hS−i will reduce the
NuTeV anomaly, whereas a negative hS−i will increase it
[20,69,71]. Assuming a single source for the NuTeV
anomaly, hS−i ∼ 0.005 is required.
From our analysis, the lattice QCD result favors a

positive hS−i. However, the fits with the fluctuation model
and LFHQCD yield hS−i ¼ 0.0011ð4Þ, which is not
sufficient to solely explain the NuTeV anomaly; other
sources are needed. Although the value for hS−i is model
dependent, we emphasize that more precise determinations
of Fs

1ðQ2Þ from first-principle lattice QCD calculations
and/or future experiments will provide important con-
straints on the strange-antistrange asymmetry.

C. Separation of strange and antistrange asymmetric
quark distributions

Light-front holographic QCD predicts the structural
behavior of the strange asymmetry (61) up to twist-6,
but it does not directly predict the individual distributions
sðxÞ and s̄ðxÞwhich together determine the intrinsic strange
contribution to the quark sea in the nucleon

Z
dx sðxÞ ¼

Z
dx s̄ðxÞ ¼ Is: ð63Þ

We will show, however, how one can uniquely determine
the minimum strange probability Is in the proton and then
give constraints on the separate sðxÞ and s̄ðxÞ distributions.
We expand the longitudinal quark distributions sðxÞ and

s̄ðxÞ into their twist-5 and twist-6 components

sðxÞ ¼ αqτ¼5ðxÞ þ βqτ¼6ðxÞ; ð64Þ

s̄ðxÞ ¼ γqτ¼5ðxÞ þ δqτ¼6ðxÞ; ð65Þ

corresponding to Lz ¼ 0 and Lz ¼ 1, respectively.
Comparing with (61) and using the sum rule (1), we find

αþ β ¼ Is; ð66Þ

γ þ δ ¼ Is; ð67Þ

α − γ ¼ Ns; ð68Þ

δ − β ¼ Ns; ð69Þ

with the general solution

β ¼ Is − α; ð70Þ

γ ¼ α − Ns; ð71Þ

δ ¼ Is − αþ Ns: ð72Þ

We can thus write

sðxÞ ¼ αqτ¼5ðxÞ þ ðIs − αÞqτ¼6ðxÞ; ð73Þ

s̄ðxÞ ¼ ðα − NsÞqτ¼5ðxÞ þ ðIs − αþ NsÞqτ¼6ðxÞ; ð74Þ

with α an arbitrary parameter constrained by the conditions
sðxÞ ≥ 0 and s̄ðxÞ ≥ 0. Since the twist-5 term dominates at
large-x we require α ≥ 0 and γ ≥ 0. For positive Ns, the
positivity constraints lead to α ≥ Ns. At small-x we have
the behavior

lim
x→0

qτ¼5ðxÞ
qτ¼6ðxÞ

¼ Nτ¼6

Nτ¼5

≡ R; ð75Þ
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It has been noted in the pre-QCD era that the behavior of
parton distributions near x → 0 is governed by the Regge
intercept [59]. This is again in agreement with LFHQCD
even including the finite quark mass correction. The
t-dependence of GPDs, instead, is not influenced by the
introduction of quark masses, since the Regge slope is
universal for light hadrons [33].
The expression for the strange-antistrange PDF asym-

metry sðxÞ − s̄ðxÞ corresponding to (52) is

sðxÞ − s̄ðxÞ ¼ ð1 − ηÞNs½qϕτ¼5ðxÞ − qϕτ¼6ðxÞ%
þ ηNs½qωτ¼5ðxÞ − qωτ¼6ðxÞ%; ð61Þ

with qω;ϕτ ðxÞ given by (58) for ΔM2
ω and ΔM2

ϕ respectively.
For the universal reparametrization function wðxÞ we use
the form in Ref. [14],

wðxÞ ¼ x1−xe−að1−xÞ
2
; ð62Þ

with a ¼ 0.531 determined from the first moment of proton
valence quark distributions. The effect of the ϕ − ω mixing
for the sðxÞ − s̄ðxÞ asymmetry also turns out to be negli-
gible for a mixing of the order of 10% (Fig. 6) and will be
neglected.
The PDF predictions for the asymmetry sðxÞ − s̄ðxÞ

are shown in Fig. 4 and compared with the fluctuation
model and global fits for Ns ¼ 0.046ð17Þ and

ffiffiffi
λ

p
¼

0.52ð17Þ GeV obtained from the lattice form factor results.
The actual computations are carried out with the universal
function wðxÞ given by (62). In contrast to the baryon-
meson fluctuation model, which has the small-x behavior
sðxÞ − s̄ðxÞ → 0, the holographic model has the Regge
behavior sðxÞ − s̄ðxÞ ≃ −0.044x−0.01 in the limit x → 0.
This can be compared with the global data fit results, shown
in Fig. 4 at the initial scale μ ¼ 1 GeV.
The sign and the magnitude of hS−i, Eq. (2), play a

significant role in understanding the NuTeV anomaly
[68–73]; namely, that the Weinberg angle θW extracted
from deep inelastic neutrino/antineutrino scatterings by
NuTeV deviates by about 3σ from the standard model value
sin2 θW ¼ 0.23129ð5Þ [54]. A positive hS−i will reduce the
NuTeV anomaly, whereas a negative hS−i will increase it
[20,69,71]. Assuming a single source for the NuTeV
anomaly, hS−i ∼ 0.005 is required.
From our analysis, the lattice QCD result favors a

positive hS−i. However, the fits with the fluctuation model
and LFHQCD yield hS−i ¼ 0.0011ð4Þ, which is not
sufficient to solely explain the NuTeV anomaly; other
sources are needed. Although the value for hS−i is model
dependent, we emphasize that more precise determinations
of Fs

1ðQ2Þ from first-principle lattice QCD calculations
and/or future experiments will provide important con-
straints on the strange-antistrange asymmetry.

C. Separation of strange and antistrange asymmetric
quark distributions

Light-front holographic QCD predicts the structural
behavior of the strange asymmetry (61) up to twist-6,
but it does not directly predict the individual distributions
sðxÞ and s̄ðxÞwhich together determine the intrinsic strange
contribution to the quark sea in the nucleon

Z
dx sðxÞ ¼

Z
dx s̄ðxÞ ¼ Is: ð63Þ

We will show, however, how one can uniquely determine
the minimum strange probability Is in the proton and then
give constraints on the separate sðxÞ and s̄ðxÞ distributions.
We expand the longitudinal quark distributions sðxÞ and

s̄ðxÞ into their twist-5 and twist-6 components

sðxÞ ¼ αqτ¼5ðxÞ þ βqτ¼6ðxÞ; ð64Þ

s̄ðxÞ ¼ γqτ¼5ðxÞ þ δqτ¼6ðxÞ; ð65Þ

corresponding to Lz ¼ 0 and Lz ¼ 1, respectively.
Comparing with (61) and using the sum rule (1), we find

αþ β ¼ Is; ð66Þ

γ þ δ ¼ Is; ð67Þ

α − γ ¼ Ns; ð68Þ

δ − β ¼ Ns; ð69Þ

with the general solution
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We can thus write
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with α an arbitrary parameter constrained by the conditions
sðxÞ ≥ 0 and s̄ðxÞ ≥ 0. Since the twist-5 term dominates at
large-x we require α ≥ 0 and γ ≥ 0. For positive Ns, the
positivity constraints lead to α ≥ Ns. At small-x we have
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parton distributions near x → 0 is governed by the Regge
intercept [59]. This is again in agreement with LFHQCD
even including the finite quark mass correction. The
t-dependence of GPDs, instead, is not influenced by the
introduction of quark masses, since the Regge slope is
universal for light hadrons [33].
The expression for the strange-antistrange PDF asym-

metry sðxÞ − s̄ðxÞ corresponding to (52) is

sðxÞ − s̄ðxÞ ¼ ð1 − ηÞNs½qϕτ¼5ðxÞ − qϕτ¼6ðxÞ%
þ ηNs½qωτ¼5ðxÞ − qωτ¼6ðxÞ%; ð61Þ

with qω;ϕτ ðxÞ given by (58) for ΔM2
ω and ΔM2

ϕ respectively.
For the universal reparametrization function wðxÞ we use
the form in Ref. [14],

wðxÞ ¼ x1−xe−að1−xÞ
2
; ð62Þ

with a ¼ 0.531 determined from the first moment of proton
valence quark distributions. The effect of the ϕ − ω mixing
for the sðxÞ − s̄ðxÞ asymmetry also turns out to be negli-
gible for a mixing of the order of 10% (Fig. 6) and will be
neglected.
The PDF predictions for the asymmetry sðxÞ − s̄ðxÞ

are shown in Fig. 4 and compared with the fluctuation
model and global fits for Ns ¼ 0.046ð17Þ and

ffiffiffi
λ

p
¼

0.52ð17Þ GeV obtained from the lattice form factor results.
The actual computations are carried out with the universal
function wðxÞ given by (62). In contrast to the baryon-
meson fluctuation model, which has the small-x behavior
sðxÞ − s̄ðxÞ → 0, the holographic model has the Regge
behavior sðxÞ − s̄ðxÞ ≃ −0.044x−0.01 in the limit x → 0.
This can be compared with the global data fit results, shown
in Fig. 4 at the initial scale μ ¼ 1 GeV.
The sign and the magnitude of hS−i, Eq. (2), play a

significant role in understanding the NuTeV anomaly
[68–73]; namely, that the Weinberg angle θW extracted
from deep inelastic neutrino/antineutrino scatterings by
NuTeV deviates by about 3σ from the standard model value
sin2 θW ¼ 0.23129ð5Þ [54]. A positive hS−i will reduce the
NuTeV anomaly, whereas a negative hS−i will increase it
[20,69,71]. Assuming a single source for the NuTeV
anomaly, hS−i ∼ 0.005 is required.
From our analysis, the lattice QCD result favors a

positive hS−i. However, the fits with the fluctuation model
and LFHQCD yield hS−i ¼ 0.0011ð4Þ, which is not
sufficient to solely explain the NuTeV anomaly; other
sources are needed. Although the value for hS−i is model
dependent, we emphasize that more precise determinations
of Fs

1ðQ2Þ from first-principle lattice QCD calculations
and/or future experiments will provide important con-
straints on the strange-antistrange asymmetry.
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but it does not directly predict the individual distributions
sðxÞ and s̄ðxÞwhich together determine the intrinsic strange
contribution to the quark sea in the nucleon
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Physical constraint: s(x) � 0
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with a ¼ 0.531 determined from the first moment of proton
valence quark distributions. The effect of the ϕ − ω mixing
for the sðxÞ − s̄ðxÞ asymmetry also turns out to be negli-
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This can be compared with the global data fit results, shown
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NuTeV deviates by about 3σ from the standard model value
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and LFHQCD yield hS−i ¼ 0.0011ð4Þ, which is not
sufficient to solely explain the NuTeV anomaly; other
sources are needed. Although the value for hS−i is model
dependent, we emphasize that more precise determinations
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but it does not directly predict the individual distributions
sðxÞ and s̄ðxÞwhich together determine the intrinsic strange
contribution to the quark sea in the nucleon

Z
dx sðxÞ ¼

Z
dx s̄ðxÞ ¼ Is: ð63Þ

We will show, however, how one can uniquely determine
the minimum strange probability Is in the proton and then
give constraints on the separate sðxÞ and s̄ðxÞ distributions.
We expand the longitudinal quark distributions sðxÞ and

s̄ðxÞ into their twist-5 and twist-6 components

sðxÞ ¼ αqτ¼5ðxÞ þ βqτ¼6ðxÞ; ð64Þ

s̄ðxÞ ¼ γqτ¼5ðxÞ þ δqτ¼6ðxÞ; ð65Þ

corresponding to Lz ¼ 0 and Lz ¼ 1, respectively.
Comparing with (61) and using the sum rule (1), we find

αþ β ¼ Is; ð66Þ

γ þ δ ¼ Is; ð67Þ

α − γ ¼ Ns; ð68Þ

δ − β ¼ Ns; ð69Þ

with the general solution

β ¼ Is − α; ð70Þ

γ ¼ α − Ns; ð71Þ

δ ¼ Is − αþ Ns: ð72Þ

We can thus write

sðxÞ ¼ αqτ¼5ðxÞ þ ðIs − αÞqτ¼6ðxÞ; ð73Þ

s̄ðxÞ ¼ ðα − NsÞqτ¼5ðxÞ þ ðIs − αþ NsÞqτ¼6ðxÞ; ð74Þ

with α an arbitrary parameter constrained by the conditions
sðxÞ ≥ 0 and s̄ðxÞ ≥ 0. Since the twist-5 term dominates at
large-x we require α ≥ 0 and γ ≥ 0. For positive Ns, the
positivity constraints lead to α ≥ Ns. At small-x we have
the behavior

lim
x→0

qτ¼5ðxÞ
qτ¼6ðxÞ

¼ Nτ¼6

Nτ¼5

≡ R; ð75Þ
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examine the small-x:

with Nτ defined in (40). In the conformal limit, ΔM2 ¼ 0,
we have R ¼ 8

9. Incorporating quark masses,ΔM2
ϕ ¼ 1.96λ,

we have R ¼ 0.80. This small-x behavior leads to the
condition Is ≥ ð1 − RÞα from Eq. (70). Together with
α ≥ Ns we have the condition

Ns ≤ α ≤
1

1 − R
Is: ð76Þ

Because the ratio qτ¼5ðxÞ=qτ¼6ðxÞ is monotonically
increasing, the condition (76) ensures sðxÞ ≥ 0 and
s̄ðxÞ ≥ 0 over the full range of x.
The solution which minimizes the strange sea probability

corresponds to α ¼ Ns and Is ¼ ð1 − RÞNs with longi-
tudinal quark distributions

sðxÞ ¼ Nsqτ¼5ðxÞ þ ðIs − NsÞqτ¼6ðxÞ; ð77Þ

s̄ðxÞ ¼ Isqτ¼6ðxÞ: ð78Þ

We show in Fig. 7 the holographic results for the individual
quark distributions sðxÞ and s̄ðxÞ. The results correspond to
the lower bound Is ¼ 0.92%. As we discussed in Sec. II,
the strange distribution sðxÞ should have its support for

larger values of the longitudinal momentum x, as compared
with s̄ðxÞ, to lead to negative sðxÞ − s̄ðxÞ asymmetry at
small-x and to a positive asymmetry at large-x. This
important property is verified for the holographic quark
distributions shown in Fig. 7. One can observe in Fig. 7
(left) that the high-twist suppression at large-x from local
counting rules is significant for the sðxÞ leading-twist-5
distribution above x ∼ 0.7 and for the s̄ðxÞ twist-6 distri-
bution above x ∼ 0.6.
The positive form factor Fs

1ðQ2Þ obtained from the
lattice calculations [5,6], shown in Fig. 2, requires that
the strange quarks are more concentrated at small trans-
verse separation compared with the antistrange quarks (See
Sec. II). As shown in Fig. 8 this is indeed the case for the
LFHQCD results computed from the coordinate space
transverse distribution given by Eq. (18).

V. DISCUSSIONS AND CONCLUSIONS

In this article, we have demonstrated that a nonzero
strangeness contribution to the spacelike electromagnetic
form factor of the nucleon Fs

1ðQ2Þ ≠ 0 implies a strange-
antistrange asymmetry in the nucleon’s light-front wave
function and thus in the nucleon PDF.

FIG. 7. The distributions xsðxÞ (continuous curves) and xs̄ðxÞ (dashed curves) correspond to the minimum intrinsic strange probability
Is ¼ 0.2Ns with Ns ¼ 0.047,

ffiffiffi
λ

p
¼ 0.534 GeV, and M2

ϕ ¼ 1.96λ. The results with massless quarks are included for comparison.

FIG. 8. Light-front holographic results for the asymmetric strange and antistrange quark distributions in transverse coordinate space
corresponding to the minimum possible intrinsic strange probability.
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It has been noted in the pre-QCD era that the behavior of
parton distributions near x → 0 is governed by the Regge
intercept [59]. This is again in agreement with LFHQCD
even including the finite quark mass correction. The
t-dependence of GPDs, instead, is not influenced by the
introduction of quark masses, since the Regge slope is
universal for light hadrons [33].
The expression for the strange-antistrange PDF asym-

metry sðxÞ − s̄ðxÞ corresponding to (52) is

sðxÞ − s̄ðxÞ ¼ ð1 − ηÞNs½qϕτ¼5ðxÞ − qϕτ¼6ðxÞ%
þ ηNs½qωτ¼5ðxÞ − qωτ¼6ðxÞ%; ð61Þ

with qω;ϕτ ðxÞ given by (58) for ΔM2
ω and ΔM2

ϕ respectively.
For the universal reparametrization function wðxÞ we use
the form in Ref. [14],

wðxÞ ¼ x1−xe−að1−xÞ
2
; ð62Þ

with a ¼ 0.531 determined from the first moment of proton
valence quark distributions. The effect of the ϕ − ω mixing
for the sðxÞ − s̄ðxÞ asymmetry also turns out to be negli-
gible for a mixing of the order of 10% (Fig. 6) and will be
neglected.
The PDF predictions for the asymmetry sðxÞ − s̄ðxÞ

are shown in Fig. 4 and compared with the fluctuation
model and global fits for Ns ¼ 0.046ð17Þ and

ffiffiffi
λ

p
¼

0.52ð17Þ GeV obtained from the lattice form factor results.
The actual computations are carried out with the universal
function wðxÞ given by (62). In contrast to the baryon-
meson fluctuation model, which has the small-x behavior
sðxÞ − s̄ðxÞ → 0, the holographic model has the Regge
behavior sðxÞ − s̄ðxÞ ≃ −0.044x−0.01 in the limit x → 0.
This can be compared with the global data fit results, shown
in Fig. 4 at the initial scale μ ¼ 1 GeV.
The sign and the magnitude of hS−i, Eq. (2), play a

significant role in understanding the NuTeV anomaly
[68–73]; namely, that the Weinberg angle θW extracted
from deep inelastic neutrino/antineutrino scatterings by
NuTeV deviates by about 3σ from the standard model value
sin2 θW ¼ 0.23129ð5Þ [54]. A positive hS−i will reduce the
NuTeV anomaly, whereas a negative hS−i will increase it
[20,69,71]. Assuming a single source for the NuTeV
anomaly, hS−i ∼ 0.005 is required.
From our analysis, the lattice QCD result favors a

positive hS−i. However, the fits with the fluctuation model
and LFHQCD yield hS−i ¼ 0.0011ð4Þ, which is not
sufficient to solely explain the NuTeV anomaly; other
sources are needed. Although the value for hS−i is model
dependent, we emphasize that more precise determinations
of Fs

1ðQ2Þ from first-principle lattice QCD calculations
and/or future experiments will provide important con-
straints on the strange-antistrange asymmetry.

C. Separation of strange and antistrange asymmetric
quark distributions

Light-front holographic QCD predicts the structural
behavior of the strange asymmetry (61) up to twist-6,
but it does not directly predict the individual distributions
sðxÞ and s̄ðxÞwhich together determine the intrinsic strange
contribution to the quark sea in the nucleon

Z
dx sðxÞ ¼

Z
dx s̄ðxÞ ¼ Is: ð63Þ

We will show, however, how one can uniquely determine
the minimum strange probability Is in the proton and then
give constraints on the separate sðxÞ and s̄ðxÞ distributions.
We expand the longitudinal quark distributions sðxÞ and

s̄ðxÞ into their twist-5 and twist-6 components

sðxÞ ¼ αqτ¼5ðxÞ þ βqτ¼6ðxÞ; ð64Þ

s̄ðxÞ ¼ γqτ¼5ðxÞ þ δqτ¼6ðxÞ; ð65Þ

corresponding to Lz ¼ 0 and Lz ¼ 1, respectively.
Comparing with (61) and using the sum rule (1), we find

αþ β ¼ Is; ð66Þ

γ þ δ ¼ Is; ð67Þ

α − γ ¼ Ns; ð68Þ

δ − β ¼ Ns; ð69Þ

with the general solution

β ¼ Is − α; ð70Þ

γ ¼ α − Ns; ð71Þ

δ ¼ Is − αþ Ns: ð72Þ

We can thus write

sðxÞ ¼ αqτ¼5ðxÞ þ ðIs − αÞqτ¼6ðxÞ; ð73Þ

s̄ðxÞ ¼ ðα − NsÞqτ¼5ðxÞ þ ðIs − αþ NsÞqτ¼6ðxÞ; ð74Þ

with α an arbitrary parameter constrained by the conditions
sðxÞ ≥ 0 and s̄ðxÞ ≥ 0. Since the twist-5 term dominates at
large-x we require α ≥ 0 and γ ≥ 0. For positive Ns, the
positivity constraints lead to α ≥ Ns. At small-x we have
the behavior

lim
x→0

qτ¼5ðxÞ
qτ¼6ðxÞ

¼ Nτ¼6

Nτ¼5

≡ R; ð75Þ
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Spin-aligned and spin-antialigned distributions:

q"/#(x) =
1

2
[q(x)±�q(x)]

<latexit sha1_base64="EaS3dtiu+yuvPVoim6xC3onk42s="></latexit><latexit sha1_base64="EaS3dtiu+yuvPVoim6xC3onk42s="></latexit><latexit sha1_base64="EaS3dtiu+yuvPVoim6xC3onk42s="></latexit><latexit sha1_base64="EaS3dtiu+yuvPVoim6xC3onk42s="></latexit>

Large x limit:

q#(x) ! c⌧+1q⌧+1(x) ⇠ (1� x)2⌧�1
<latexit sha1_base64="nHTpRJtcaymeCwxgNlSkcqbcTP4="></latexit><latexit sha1_base64="nHTpRJtcaymeCwxgNlSkcqbcTP4="></latexit><latexit sha1_base64="nHTpRJtcaymeCwxgNlSkcqbcTP4="></latexit><latexit sha1_base64="nHTpRJtcaymeCwxgNlSkcqbcTP4=">AAACMXicbVBNSwMxEM36WetX1aOXYBFaxLIpgh6LXnqsYFXo1iWbpm0wm90ms7Zl6V/y4j8RLx4U8eqfMK1FtPog8Oa9GSbzglgKA6777MzNLywuLWdWsqtr6xubua3tSxMlmvE6i2SkrwNquBSK10GA5Nex5jQMJL8Kbs/G/tUd10ZE6gKGMW+GtKNEWzAKVvJz1Z7vtaK+olpH/cKg6GnR6cKkwsxPPaDJARnh3je1PdgzIsQFcjgo3qTlsX5IRn4u75bcCfBfQqYkj6ao+blHu5glIVfAJDWmQdwYminVIJjko6yXGB5Tdks7vGGpoiE3zXRy8QjvW6WF25G2TwGeqD8nUhoaMwwD2xlS6JpZbyz+5zUSaJ80U6HiBLhiX4vaicQQ4XF8uCU0ZyCHllCmhf0rZl2qKQMbctaGQGZP/ksuyyXilsj5Ub5yOo0jg3bRHioggo5RBVVRDdURQ/foCb2gV+fBeXbenPev1jlnOrODfsH5+ASdL6kf</latexit>

q"(x) ! c⌧q⌧ (x) ⇠ (1� x)2⌧�3
<latexit sha1_base64="bwCmMyW9j5C0F2zeac90iEKzvmI="></latexit><latexit sha1_base64="bwCmMyW9j5C0F2zeac90iEKzvmI="></latexit><latexit sha1_base64="bwCmMyW9j5C0F2zeac90iEKzvmI="></latexit><latexit sha1_base64="bwCmMyW9j5C0F2zeac90iEKzvmI="></latexit>

Two helicity states tend to a pure contribution from one component.

E.g.: for valence state, τ=3

q"(x) ⇠ (1� x)3
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q#(x) ⇠ (1� x)5
<latexit sha1_base64="partOpYTJwm41/3POHp3JfTj+Fw=">AAACBHicbVDLTgIxFO34RHyNumTTSExgIZkxGl0S3bjERB4JjJNO6UBD2xnbjkAICzf+ihsXGuPWj3Dn31hgFgqe5CYn59zb3nuCmFGlHefbWlpeWV1bz2xkN7e2d3btvf2aihKJSRVHLJKNACnCqCBVTTUjjVgSxANG6kHvauLXH4hUNBK3ehgTj6OOoCHFSBvJt3P3fqsd9QWSMuoXBsWWohwW3ONB8e7Mt/NOyZkCLhI3JXmQouLbX+YtnHAiNGZIqabrxNobIakpZmScbSWKxAj3UIc0DRWIE+WNpkeM4ZFR2jCMpCmh4VT9PTFCXKkhD0wnR7qr5r2J+J/XTHR44Y2oiBNNBJ59FCYM6ghOEoFtKgnWbGgIwpKaXSHuIomwNrllTQju/MmLpHZScp2Se3OaL1+mcWRADhyCAnDBOSiDa1ABVYDBI3gGr+DNerJerHfrY9a6ZKUzB+APrM8fGnGXEA==</latexit><latexit sha1_base64="partOpYTJwm41/3POHp3JfTj+Fw=">AAACBHicbVDLTgIxFO34RHyNumTTSExgIZkxGl0S3bjERB4JjJNO6UBD2xnbjkAICzf+ihsXGuPWj3Dn31hgFgqe5CYn59zb3nuCmFGlHefbWlpeWV1bz2xkN7e2d3btvf2aihKJSRVHLJKNACnCqCBVTTUjjVgSxANG6kHvauLXH4hUNBK3ehgTj6OOoCHFSBvJt3P3fqsd9QWSMuoXBsWWohwW3ONB8e7Mt/NOyZkCLhI3JXmQouLbX+YtnHAiNGZIqabrxNobIakpZmScbSWKxAj3UIc0DRWIE+WNpkeM4ZFR2jCMpCmh4VT9PTFCXKkhD0wnR7qr5r2J+J/XTHR44Y2oiBNNBJ59FCYM6ghOEoFtKgnWbGgIwpKaXSHuIomwNrllTQju/MmLpHZScp2Se3OaL1+mcWRADhyCAnDBOSiDa1ABVYDBI3gGr+DNerJerHfrY9a6ZKUzB+APrM8fGnGXEA==</latexit><latexit sha1_base64="partOpYTJwm41/3POHp3JfTj+Fw=">AAACBHicbVDLTgIxFO34RHyNumTTSExgIZkxGl0S3bjERB4JjJNO6UBD2xnbjkAICzf+ihsXGuPWj3Dn31hgFgqe5CYn59zb3nuCmFGlHefbWlpeWV1bz2xkN7e2d3btvf2aihKJSRVHLJKNACnCqCBVTTUjjVgSxANG6kHvauLXH4hUNBK3ehgTj6OOoCHFSBvJt3P3fqsd9QWSMuoXBsWWohwW3ONB8e7Mt/NOyZkCLhI3JXmQouLbX+YtnHAiNGZIqabrxNobIakpZmScbSWKxAj3UIc0DRWIE+WNpkeM4ZFR2jCMpCmh4VT9PTFCXKkhD0wnR7qr5r2J+J/XTHR44Y2oiBNNBJ59FCYM6ghOEoFtKgnWbGgIwpKaXSHuIomwNrllTQju/MmLpHZScp2Se3OaL1+mcWRADhyCAnDBOSiDa1ABVYDBI3gGr+DNerJerHfrY9a6ZKUzB+APrM8fGnGXEA==</latexit><latexit sha1_base64="partOpYTJwm41/3POHp3JfTj+Fw=">AAACBHicbVDLTgIxFO34RHyNumTTSExgIZkxGl0S3bjERB4JjJNO6UBD2xnbjkAICzf+ihsXGuPWj3Dn31hgFgqe5CYn59zb3nuCmFGlHefbWlpeWV1bz2xkN7e2d3btvf2aihKJSRVHLJKNACnCqCBVTTUjjVgSxANG6kHvauLXH4hUNBK3ehgTj6OOoCHFSBvJt3P3fqsd9QWSMuoXBsWWohwW3ONB8e7Mt/NOyZkCLhI3JXmQouLbX+YtnHAiNGZIqabrxNobIakpZmScbSWKxAj3UIc0DRWIE+WNpkeM4ZFR2jCMpCmh4VT9PTFCXKkhD0wnR7qr5r2J+J/XTHR44Y2oiBNNBJ59FCYM6ghOEoFtKgnWbGgIwpKaXSHuIomwNrllTQju/MmLpHZScp2Se3OaL1+mcWRADhyCAnDBOSiDa1ABVYDBI3gGr+DNerJerHfrY9a6ZKUzB+APrM8fGnGXEA==</latexit>

Consistent with pQCD up to logarithmic corrections.

TL, R.S. Sufian, G.F. de Téramond, H.G. Dosch, S.J. Brodsky, A. Deur,  
Phys. Rev. Lett. 124, 082003 (2020).
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Coefficients cτ by fitting EM form factors do not separate quark and antiquark

c5,u = u⌧=5 � ū⌧=5
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c6,u = u⌧=6 � ū⌧=6
<latexit sha1_base64="/jmQfuRcIX9+hrbTr6X99nyQ2Zg=">AAACEHicbVDLSsNAFJ3UV62vqEs3g0V0oSURqW4KRTcuK9gHNCFMptN26GQS5iGUkE9w46+4caGIW5fu/BunbRCtHrhwOOde7r0nTBiVynE+rcLC4tLySnG1tLa+sbllb++0ZKwFJk0cs1h0QiQJo5w0FVWMdBJBUBQy0g5HVxO/fUeEpDG/VeOE+BEacNqnGCkjBfYhDtLqsc5gDeog9RTStWoGT6AXIpHq7FsK7LJTcaaAf4mbkzLI0QjsD68XYx0RrjBDUnZdJ1F+ioSimJGs5GlJEoRHaEC6hnIUEemn04cyeGCUHuzHwhRXcKr+nEhRJOU4Ck1nhNRQznsT8T+vq1X/wk8pT7QiHM8W9TWDKoaTdGCPCoIVGxuCsKDmVoiHSCCsTIYlE4I7//Jf0jqtuE7FvTkr1y/zOIpgD+yDI+CCc1AH16ABmgCDe/AInsGL9WA9Wa/W26y1YOUzu+AXrPcvFbyb/w==</latexit><latexit sha1_base64="/jmQfuRcIX9+hrbTr6X99nyQ2Zg=">AAACEHicbVDLSsNAFJ3UV62vqEs3g0V0oSURqW4KRTcuK9gHNCFMptN26GQS5iGUkE9w46+4caGIW5fu/BunbRCtHrhwOOde7r0nTBiVynE+rcLC4tLySnG1tLa+sbllb++0ZKwFJk0cs1h0QiQJo5w0FVWMdBJBUBQy0g5HVxO/fUeEpDG/VeOE+BEacNqnGCkjBfYhDtLqsc5gDeog9RTStWoGT6AXIpHq7FsK7LJTcaaAf4mbkzLI0QjsD68XYx0RrjBDUnZdJ1F+ioSimJGs5GlJEoRHaEC6hnIUEemn04cyeGCUHuzHwhRXcKr+nEhRJOU4Ck1nhNRQznsT8T+vq1X/wk8pT7QiHM8W9TWDKoaTdGCPCoIVGxuCsKDmVoiHSCCsTIYlE4I7//Jf0jqtuE7FvTkr1y/zOIpgD+yDI+CCc1AH16ABmgCDe/AInsGL9WA9Wa/W26y1YOUzu+AXrPcvFbyb/w==</latexit><latexit sha1_base64="/jmQfuRcIX9+hrbTr6X99nyQ2Zg=">AAACEHicbVDLSsNAFJ3UV62vqEs3g0V0oSURqW4KRTcuK9gHNCFMptN26GQS5iGUkE9w46+4caGIW5fu/BunbRCtHrhwOOde7r0nTBiVynE+rcLC4tLySnG1tLa+sbllb++0ZKwFJk0cs1h0QiQJo5w0FVWMdBJBUBQy0g5HVxO/fUeEpDG/VeOE+BEacNqnGCkjBfYhDtLqsc5gDeog9RTStWoGT6AXIpHq7FsK7LJTcaaAf4mbkzLI0QjsD68XYx0RrjBDUnZdJ1F+ioSimJGs5GlJEoRHaEC6hnIUEemn04cyeGCUHuzHwhRXcKr+nEhRJOU4Ck1nhNRQznsT8T+vq1X/wk8pT7QiHM8W9TWDKoaTdGCPCoIVGxuCsKDmVoiHSCCsTIYlE4I7//Jf0jqtuE7FvTkr1y/zOIpgD+yDI+CCc1AH16ABmgCDe/AInsGL9WA9Wa/W26y1YOUzu+AXrPcvFbyb/w==</latexit><latexit sha1_base64="/jmQfuRcIX9+hrbTr6X99nyQ2Zg=">AAACEHicbVDLSsNAFJ3UV62vqEs3g0V0oSURqW4KRTcuK9gHNCFMptN26GQS5iGUkE9w46+4caGIW5fu/BunbRCtHrhwOOde7r0nTBiVynE+rcLC4tLySnG1tLa+sbllb++0ZKwFJk0cs1h0QiQJo5w0FVWMdBJBUBQy0g5HVxO/fUeEpDG/VeOE+BEacNqnGCkjBfYhDtLqsc5gDeog9RTStWoGT6AXIpHq7FsK7LJTcaaAf4mbkzLI0QjsD68XYx0RrjBDUnZdJ1F+ioSimJGs5GlJEoRHaEC6hnIUEemn04cyeGCUHuzHwhRXcKr+nEhRJOU4Ck1nhNRQznsT8T+vq1X/wk8pT7QiHM8W9TWDKoaTdGCPCoIVGxuCsKDmVoiHSCCsTIYlE4I7//Jf0jqtuE7FvTkr1y/zOIpgD+yDI+CCc1AH16ABmgCDe/AInsGL9WA9Wa/W26y1YOUzu+AXrPcvFbyb/w==</latexit>

E.g.:

similar for down quark

Axial charge:
gA = (�u+�ū)� (�d+�d̄) ⇡ 1.2732(23)

<latexit sha1_base64="SN043eohTnvR5DC7D0Ah86iG2MM="></latexit><latexit sha1_base64="SN043eohTnvR5DC7D0Ah86iG2MM="></latexit><latexit sha1_base64="SN043eohTnvR5DC7D0Ah86iG2MM="></latexit><latexit sha1_base64="SN043eohTnvR5DC7D0Ah86iG2MM="></latexit>

Adding equal terms to u and ū, or d and d, does not change EM form factors.-

precisely measured via neutron weak decay.

Saturate the axial charge by a shift: 

u⌧=5 ! u⌧=5 + �u
<latexit sha1_base64="/Og47s8xPOSgRRsQMHN4Tv01SBw=">AAACFHicbVDJSgNBEO1xN25Rj14agyAIYUYUvQhBLx4VzAKZMNT09CSNPQvd1UoY8hFe/BUvHhTx6sGbf2NnAdcHBY/3qqiqF+ZSaHTdD2dqemZ2bn5hsbS0vLK6Vl7faOjMKMbrLJOZaoWguRQpr6NAyVu54pCEkjfD67Oh37zhSossvcJ+zjsJdFMRCwZopaC8Z4LCRzAnhwNfiW4PQansln6pdI/6EZcIgQnKFbfqjkD/Em9CKmSCi6D87kcZMwlPkUnQuu25OXYKUCiY5IOSbzTPgV1Dl7ctTSHhulOMnhrQHatENM6UrRTpSP0+UUCidT8JbWcC2NO/vaH4n9c2GB93CpHmBnnKxotiIylmdJgQjYTiDGXfEmBK2Fsp64EChjbHkg3B+/3yX9LYr3pu1bs8qNROJ3EskC2yTXaJR45IjZyTC1InjNyRB/JEnp1759F5cV7HrVPOZGaT/IDz9gmrc56L</latexit><latexit sha1_base64="/Og47s8xPOSgRRsQMHN4Tv01SBw=">AAACFHicbVDJSgNBEO1xN25Rj14agyAIYUYUvQhBLx4VzAKZMNT09CSNPQvd1UoY8hFe/BUvHhTx6sGbf2NnAdcHBY/3qqiqF+ZSaHTdD2dqemZ2bn5hsbS0vLK6Vl7faOjMKMbrLJOZaoWguRQpr6NAyVu54pCEkjfD67Oh37zhSossvcJ+zjsJdFMRCwZopaC8Z4LCRzAnhwNfiW4PQansln6pdI/6EZcIgQnKFbfqjkD/Em9CKmSCi6D87kcZMwlPkUnQuu25OXYKUCiY5IOSbzTPgV1Dl7ctTSHhulOMnhrQHatENM6UrRTpSP0+UUCidT8JbWcC2NO/vaH4n9c2GB93CpHmBnnKxotiIylmdJgQjYTiDGXfEmBK2Fsp64EChjbHkg3B+/3yX9LYr3pu1bs8qNROJ3EskC2yTXaJR45IjZyTC1InjNyRB/JEnp1759F5cV7HrVPOZGaT/IDz9gmrc56L</latexit><latexit sha1_base64="/Og47s8xPOSgRRsQMHN4Tv01SBw=">AAACFHicbVDJSgNBEO1xN25Rj14agyAIYUYUvQhBLx4VzAKZMNT09CSNPQvd1UoY8hFe/BUvHhTx6sGbf2NnAdcHBY/3qqiqF+ZSaHTdD2dqemZ2bn5hsbS0vLK6Vl7faOjMKMbrLJOZaoWguRQpr6NAyVu54pCEkjfD67Oh37zhSossvcJ+zjsJdFMRCwZopaC8Z4LCRzAnhwNfiW4PQansln6pdI/6EZcIgQnKFbfqjkD/Em9CKmSCi6D87kcZMwlPkUnQuu25OXYKUCiY5IOSbzTPgV1Dl7ctTSHhulOMnhrQHatENM6UrRTpSP0+UUCidT8JbWcC2NO/vaH4n9c2GB93CpHmBnnKxotiIylmdJgQjYTiDGXfEmBK2Fsp64EChjbHkg3B+/3yX9LYr3pu1bs8qNROJ3EskC2yTXaJR45IjZyTC1InjNyRB/JEnp1759F5cV7HrVPOZGaT/IDz9gmrc56L</latexit><latexit sha1_base64="/Og47s8xPOSgRRsQMHN4Tv01SBw=">AAACFHicbVDJSgNBEO1xN25Rj14agyAIYUYUvQhBLx4VzAKZMNT09CSNPQvd1UoY8hFe/BUvHhTx6sGbf2NnAdcHBY/3qqiqF+ZSaHTdD2dqemZ2bn5hsbS0vLK6Vl7faOjMKMbrLJOZaoWguRQpr6NAyVu54pCEkjfD67Oh37zhSossvcJ+zjsJdFMRCwZopaC8Z4LCRzAnhwNfiW4PQansln6pdI/6EZcIgQnKFbfqjkD/Em9CKmSCi6D87kcZMwlPkUnQuu25OXYKUCiY5IOSbzTPgV1Dl7ctTSHhulOMnhrQHatENM6UrRTpSP0+UUCidT8JbWcC2NO/vaH4n9c2GB93CpHmBnnKxotiIylmdJgQjYTiDGXfEmBK2Fsp64EChjbHkg3B+/3yX9LYr3pu1bs8qNROJ3EskC2yTXaJR45IjZyTC1InjNyRB/JEnp1759F5cV7HrVPOZGaT/IDz9gmrc56L</latexit>

ū⌧=5 ! ū⌧=5 + �u
<latexit sha1_base64="xruhjk4VdrEgcom9WhqdKyI6JVY=">AAACIHicbVDLSgNBEJz1GeMr6tHLYBAEIeyKEi9C0IvHCEaFbFh6J5NkcPbBTI8Slv0UL/6KFw+K6E2/xkmyB40WNBRV3XR3hakUGl3305mZnZtfWCwtlZdXVtfWKxubVzoxivEWS2SibkLQXIqYt1Cg5Dep4hCFkl+Ht2cj//qOKy2S+BKHKe9E0I9FTzBAKwWVuh+CykweZD6COTnKfSX6AwSlkns67dF96ne5RAhMUKm6NXcM+pd4BamSAs2g8uF3E2YiHiOToHXbc1PsZKBQMMnzsm80T4HdQp+3LY0h4rqTjR/M6a5VurSXKFsx0rH6cyKDSOthFNrOCHCgp72R+J/XNtg77mQiTg3ymE0W9YykmNBRWrQrFGcoh5YAU8LeStkAFDC0mZZtCN70y3/J1UHNc2vexWG1cVrEUSLbZIfsEY/USYOckyZpEUYeyBN5Ia/Oo/PsvDnvk9YZp5jZIr/gfH0DDQCkFQ==</latexit><latexit sha1_base64="xruhjk4VdrEgcom9WhqdKyI6JVY=">AAACIHicbVDLSgNBEJz1GeMr6tHLYBAEIeyKEi9C0IvHCEaFbFh6J5NkcPbBTI8Slv0UL/6KFw+K6E2/xkmyB40WNBRV3XR3hakUGl3305mZnZtfWCwtlZdXVtfWKxubVzoxivEWS2SibkLQXIqYt1Cg5Dep4hCFkl+Ht2cj//qOKy2S+BKHKe9E0I9FTzBAKwWVuh+CykweZD6COTnKfSX6AwSlkns67dF96ne5RAhMUKm6NXcM+pd4BamSAs2g8uF3E2YiHiOToHXbc1PsZKBQMMnzsm80T4HdQp+3LY0h4rqTjR/M6a5VurSXKFsx0rH6cyKDSOthFNrOCHCgp72R+J/XNtg77mQiTg3ymE0W9YykmNBRWrQrFGcoh5YAU8LeStkAFDC0mZZtCN70y3/J1UHNc2vexWG1cVrEUSLbZIfsEY/USYOckyZpEUYeyBN5Ia/Oo/PsvDnvk9YZp5jZIr/gfH0DDQCkFQ==</latexit><latexit sha1_base64="xruhjk4VdrEgcom9WhqdKyI6JVY=">AAACIHicbVDLSgNBEJz1GeMr6tHLYBAEIeyKEi9C0IvHCEaFbFh6J5NkcPbBTI8Slv0UL/6KFw+K6E2/xkmyB40WNBRV3XR3hakUGl3305mZnZtfWCwtlZdXVtfWKxubVzoxivEWS2SibkLQXIqYt1Cg5Dep4hCFkl+Ht2cj//qOKy2S+BKHKe9E0I9FTzBAKwWVuh+CykweZD6COTnKfSX6AwSlkns67dF96ne5RAhMUKm6NXcM+pd4BamSAs2g8uF3E2YiHiOToHXbc1PsZKBQMMnzsm80T4HdQp+3LY0h4rqTjR/M6a5VurSXKFsx0rH6cyKDSOthFNrOCHCgp72R+J/XNtg77mQiTg3ymE0W9YykmNBRWrQrFGcoh5YAU8LeStkAFDC0mZZtCN70y3/J1UHNc2vexWG1cVrEUSLbZIfsEY/USYOckyZpEUYeyBN5Ia/Oo/PsvDnvk9YZp5jZIr/gfH0DDQCkFQ==</latexit><latexit sha1_base64="xruhjk4VdrEgcom9WhqdKyI6JVY=">AAACIHicbVDLSgNBEJz1GeMr6tHLYBAEIeyKEi9C0IvHCEaFbFh6J5NkcPbBTI8Slv0UL/6KFw+K6E2/xkmyB40WNBRV3XR3hakUGl3305mZnZtfWCwtlZdXVtfWKxubVzoxivEWS2SibkLQXIqYt1Cg5Dep4hCFkl+Ht2cj//qOKy2S+BKHKe9E0I9FTzBAKwWVuh+CykweZD6COTnKfSX6AwSlkns67dF96ne5RAhMUKm6NXcM+pd4BamSAs2g8uF3E2YiHiOToHXbc1PsZKBQMMnzsm80T4HdQp+3LY0h4rqTjR/M6a5VurSXKFsx0rH6cyKDSOthFNrOCHCgp72R+J/XNtg77mQiTg3ymE0W9YykmNBRWrQrFGcoh5YAU8LeStkAFDC0mZZtCN70y3/J1UHNc2vexWG1cVrEUSLbZIfsEY/USYOckyZpEUYeyBN5Ia/Oo/PsvDnvk9YZp5jZIr/gfH0DDQCkFQ==</latexit>

d̄⌧=6 ! d̄⌧=6 + �d
<latexit sha1_base64="jC3kzndPU+VDHuBJ338p/faOI40=">AAACIHicbVDJSgNBEO2JW4xb1KOXxiAIQpgRMV6EoBePEcwCmTDU9HSSJj0L3TVKGPIpXvwVLx4U0Zt+jZ3loIkPCh7vVVFVz0+k0GjbX1ZuaXlldS2/XtjY3NreKe7uNXScKsbrLJaxavmguRQRr6NAyVuJ4hD6kjf9wfXYb95zpUUc3eEw4Z0QepHoCgZoJK9YcX1QWTDyMhchvTwfuUr0+ghKxQ903qMn1A24RPACr1iyy/YEdJE4M1IiM9S84qcbxCwNeYRMgtZtx06wk4FCwSQfFdxU8wTYAHq8bWgEIdedbPLgiB4ZJaDdWJmKkE7U3xMZhFoPQ990hoB9Pe+Nxf+8dordi04moiRFHrHpom4qKcZ0nBYNhOIM5dAQYEqYWynrgwKGJtOCCcGZf3mRNE7Ljl12bs9K1atZHHlyQA7JMXFIhVTJDamROmHkkTyTV/JmPVkv1rv1MW3NWbOZffIH1vcPvjuj5A==</latexit><latexit sha1_base64="jC3kzndPU+VDHuBJ338p/faOI40=">AAACIHicbVDJSgNBEO2JW4xb1KOXxiAIQpgRMV6EoBePEcwCmTDU9HSSJj0L3TVKGPIpXvwVLx4U0Zt+jZ3loIkPCh7vVVFVz0+k0GjbX1ZuaXlldS2/XtjY3NreKe7uNXScKsbrLJaxavmguRQRr6NAyVuJ4hD6kjf9wfXYb95zpUUc3eEw4Z0QepHoCgZoJK9YcX1QWTDyMhchvTwfuUr0+ghKxQ903qMn1A24RPACr1iyy/YEdJE4M1IiM9S84qcbxCwNeYRMgtZtx06wk4FCwSQfFdxU8wTYAHq8bWgEIdedbPLgiB4ZJaDdWJmKkE7U3xMZhFoPQ990hoB9Pe+Nxf+8dordi04moiRFHrHpom4qKcZ0nBYNhOIM5dAQYEqYWynrgwKGJtOCCcGZf3mRNE7Ljl12bs9K1atZHHlyQA7JMXFIhVTJDamROmHkkTyTV/JmPVkv1rv1MW3NWbOZffIH1vcPvjuj5A==</latexit><latexit sha1_base64="jC3kzndPU+VDHuBJ338p/faOI40=">AAACIHicbVDJSgNBEO2JW4xb1KOXxiAIQpgRMV6EoBePEcwCmTDU9HSSJj0L3TVKGPIpXvwVLx4U0Zt+jZ3loIkPCh7vVVFVz0+k0GjbX1ZuaXlldS2/XtjY3NreKe7uNXScKsbrLJaxavmguRQRr6NAyVuJ4hD6kjf9wfXYb95zpUUc3eEw4Z0QepHoCgZoJK9YcX1QWTDyMhchvTwfuUr0+ghKxQ903qMn1A24RPACr1iyy/YEdJE4M1IiM9S84qcbxCwNeYRMgtZtx06wk4FCwSQfFdxU8wTYAHq8bWgEIdedbPLgiB4ZJaDdWJmKkE7U3xMZhFoPQ990hoB9Pe+Nxf+8dordi04moiRFHrHpom4qKcZ0nBYNhOIM5dAQYEqYWynrgwKGJtOCCcGZf3mRNE7Ljl12bs9K1atZHHlyQA7JMXFIhVTJDamROmHkkTyTV/JmPVkv1rv1MW3NWbOZffIH1vcPvjuj5A==</latexit><latexit sha1_base64="jC3kzndPU+VDHuBJ338p/faOI40=">AAACIHicbVDJSgNBEO2JW4xb1KOXxiAIQpgRMV6EoBePEcwCmTDU9HSSJj0L3TVKGPIpXvwVLx4U0Zt+jZ3loIkPCh7vVVFVz0+k0GjbX1ZuaXlldS2/XtjY3NreKe7uNXScKsbrLJaxavmguRQRr6NAyVuJ4hD6kjf9wfXYb95zpUUc3eEw4Z0QepHoCgZoJK9YcX1QWTDyMhchvTwfuUr0+ghKxQ903qMn1A24RPACr1iyy/YEdJE4M1IiM9S84qcbxCwNeYRMgtZtx06wk4FCwSQfFdxU8wTYAHq8bWgEIdedbPLgiB4ZJaDdWJmKkE7U3xMZhFoPQ990hoB9Pe+Nxf+8dordi04moiRFHrHpom4qKcZ0nBYNhOIM5dAQYEqYWynrgwKGJtOCCcGZf3mRNE7Ljl12bs9K1atZHHlyQA7JMXFIhVTJDamROmHkkTyTV/JmPVkv1rv1MW3NWbOZffIH1vcPvjuj5A==</latexit>

d⌧=6 ! d⌧=6 + �d
<latexit sha1_base64="Gnvu0BYdzzzQoqEe789x1BAf4J4=">AAACGHicbVDJSgNBEO1xjXGLevTSGARBiDMi6kUIevEYwSyQCUNNTydp0rPQXaOEIZ/hxV/x4kERr7n5N3aWQ0x8UPB4r4qqen4ihUbb/rGWlldW19ZzG/nNre2d3cLefk3HqWK8ymIZq4YPmksR8SoKlLyRKA6hL3nd792N/PoTV1rE0SP2E94KoROJtmCARvIKZ1kw8DIXIb25HLhKdLoISsXPdFanp9QNuETwAq9QtEv2GHSROFNSJFNUvMLQDWKWhjxCJkHrpmMn2MpAoWCSD/JuqnkCrAcd3jQ0gpDrVjZ+bECPjRLQdqxMRUjH6uxEBqHW/dA3nSFgV897I/E/r5li+7qViShJkUdssqidSooxHaVEA6E4Q9k3BJgS5lbKuqCAockyb0Jw5l9eJLXzkmOXnIeLYvl2GkeOHJIjckIcckXK5J5USJUw8kLeyAf5tF6td+vL+p60LlnTmQPyB9bwFzSJoHI=</latexit><latexit sha1_base64="Gnvu0BYdzzzQoqEe789x1BAf4J4=">AAACGHicbVDJSgNBEO1xjXGLevTSGARBiDMi6kUIevEYwSyQCUNNTydp0rPQXaOEIZ/hxV/x4kERr7n5N3aWQ0x8UPB4r4qqen4ihUbb/rGWlldW19ZzG/nNre2d3cLefk3HqWK8ymIZq4YPmksR8SoKlLyRKA6hL3nd792N/PoTV1rE0SP2E94KoROJtmCARvIKZ1kw8DIXIb25HLhKdLoISsXPdFanp9QNuETwAq9QtEv2GHSROFNSJFNUvMLQDWKWhjxCJkHrpmMn2MpAoWCSD/JuqnkCrAcd3jQ0gpDrVjZ+bECPjRLQdqxMRUjH6uxEBqHW/dA3nSFgV897I/E/r5li+7qViShJkUdssqidSooxHaVEA6E4Q9k3BJgS5lbKuqCAockyb0Jw5l9eJLXzkmOXnIeLYvl2GkeOHJIjckIcckXK5J5USJUw8kLeyAf5tF6td+vL+p60LlnTmQPyB9bwFzSJoHI=</latexit><latexit sha1_base64="Gnvu0BYdzzzQoqEe789x1BAf4J4=">AAACGHicbVDJSgNBEO1xjXGLevTSGARBiDMi6kUIevEYwSyQCUNNTydp0rPQXaOEIZ/hxV/x4kERr7n5N3aWQ0x8UPB4r4qqen4ihUbb/rGWlldW19ZzG/nNre2d3cLefk3HqWK8ymIZq4YPmksR8SoKlLyRKA6hL3nd792N/PoTV1rE0SP2E94KoROJtmCARvIKZ1kw8DIXIb25HLhKdLoISsXPdFanp9QNuETwAq9QtEv2GHSROFNSJFNUvMLQDWKWhjxCJkHrpmMn2MpAoWCSD/JuqnkCrAcd3jQ0gpDrVjZ+bECPjRLQdqxMRUjH6uxEBqHW/dA3nSFgV897I/E/r5li+7qViShJkUdssqidSooxHaVEA6E4Q9k3BJgS5lbKuqCAockyb0Jw5l9eJLXzkmOXnIeLYvl2GkeOHJIjckIcckXK5J5USJUw8kLeyAf5tF6td+vL+p60LlnTmQPyB9bwFzSJoHI=</latexit><latexit sha1_base64="Gnvu0BYdzzzQoqEe789x1BAf4J4=">AAACGHicbVDJSgNBEO1xjXGLevTSGARBiDMi6kUIevEYwSyQCUNNTydp0rPQXaOEIZ/hxV/x4kERr7n5N3aWQ0x8UPB4r4qqen4ihUbb/rGWlldW19ZzG/nNre2d3cLefk3HqWK8ymIZq4YPmksR8SoKlLyRKA6hL3nd792N/PoTV1rE0SP2E94KoROJtmCARvIKZ1kw8DIXIb25HLhKdLoISsXPdFanp9QNuETwAq9QtEv2GHSROFNSJFNUvMLQDWKWhjxCJkHrpmMn2MpAoWCSD/JuqnkCrAcd3jQ0gpDrVjZ+bECPjRLQdqxMRUjH6uxEBqHW/dA3nSFgV897I/E/r5li+7qViShJkUdssqidSooxHaVEA6E4Q9k3BJgS5lbKuqCAockyb0Jw5l9eJLXzkmOXnIeLYvl2GkeOHJIjckIcckXK5J5USJUw8kLeyAf5tF6td+vL+p60LlnTmQPyB9bwFzSJoHI=</latexit>

Variation due to different ways to saturate gA is taken as part of our uncertainty.
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