Comparison between J/ Ψ and Ψ ' Production with Proton and Pion Beams

Jen-Chieh Peng University of Illinois at Urbana-Champaign

In collaboration with Wen-Chen Chang, Ching-Him Leung, Stephane Platchkov, Takahiro Sawada

> EHM Workshop VII May 10-13, 2022

Questions to be addressed

- Do we expect different mechanisms for J/Ψ and Ψ' production at fixed-target energies?
- What have we learned from J/ Ψ and Ψ' production with proton and pion beams?
- What are the physics opportunities for measuring Ψ' production at AMBER?

Drell-Yan process versus J/ Ψ production

Drell-Yan proceeds via quark-antiquark annihilation in Leading-Order

J/Ψ production proceeds via quark-antiquark annihilation and gluon-gluon fusion in LO

J/Ψ production data provide information complementary to the Drell-Yan data

SeaQuest dimuon mass spectrum with 120 GeV proton

- J/Ψ and Ψ' are clearly observed
- From a fit to the dimuon mass distribution, the J/Ψ and Ψ' events can be extracted
- An analysis has been performed to obtain the (p+d)/2(p+p) cross section ratios for J/Ψ
- Absolute cross sections for J/Ψ production have also been measured

Decomposition of the J/ Ψ production cross sections into various processes for two models

Calculation performed by Wen-Chen Chang

- Both models predict larger gg contributions than $q\overline{q}$
- NRQCD predicts relatively larger $q\overline{q}$ contribution than CEM
- NRQCD predicts absolute cross section, but CEM does not
- NRQCD contains LDMEs (Long-distance-matrix-elements) for the hadronization probabilities for various $c\overline{c}$ configurations

Comparison of $\sigma_{_{pd}}/2\sigma_{_{pp}}\,$ for Drell-Yan versus J/Ψ

- J/ Ψ production is dominated by gluon-gluon fusion process
- J/ Ψ ratio should be 1, if gluon content of proton is the same as neutron
- The data show distinct difference for Drell-Yan and J/Ψ cross section ratios

Comparison between J/ Ψ and Ψ'

J/ Ψ p+p at 120 GeV Ψ '

$q\overline{q}$ annihilation is the dominant process for Ψ' production!!!

- This suggests the possibility of using the J/ Ψ and Ψ' data to separate the gg from the $q\overline{q}$ contributions
- This also suggests the possibility to separate the antiquark and gluon contents using the J/Ψ and Ψ' data (without using the Drell-Yan data!)
- Are there other evidences for the differences between the J/ Ψ and Ψ' production mechanisms (namely, J/ Ψ has more gg, and Ψ' has more $q\overline{q}$ contributions)?

J/Ψ cross section for p+p at 120 GeV from SeaQuest (Preliminary)

- The solid red line is prediction from NRQCD with CT14nlo PDF
- Very similar shape is obtained with CEM model
- The absolute cross section from NRQCD is in reasonable agreement with the data

Ψ' cross section for p+p and p+d at120 GeV from SeaQuest (Preliminary)

Shape is in agreement with NRQCD, but the magnitude appears to be off by a constant factor

Ψ'/(J/Ψ) ratio in SeaQuest (VERY PRELIMINARY)

The positive slope in both the data and the NRQCD calculation shows Ψ' has a broader x_F distribution than J/Ψ
The data are different from CEM model calculation which predicts a flat Ψ'/(J/Ψ) ratio

$\Psi'/(J/\Psi)$ ratio with pion beam

 $[\pi^{-} + W \rightarrow Jpsi/psi' + X \text{ at } 253 \text{ GeV, Phys. Rev. D 53, 4723} (1996)]$

From Wen-Chen Chang's talk

How about Υ'/Υ ratios ?

PRL 100, 062301 (2008)

PHYSICAL REVIEW LETTERS

week ending 15 FEBRUARY 2008

Measurement of Y Production for p + p and p + d Interactions at 800 GeV/c

One can form the Y(2S)/Y(1S) and Y(3S)/Y(1S) ratios from the above E866 data

How about Υ' / Υ ratios ?

- The E866 data on Υ production also suggests a broader x_F distribution for $\Upsilon(2S+3S)$ than for $\Upsilon(1S)$
- This suggests a larger $q\overline{q}$ contribution for $\Upsilon(2S+3S)$ than for $\Upsilon(1S)$
- Are there other evidences?

Polarization of J/ Ψ , Ψ' and Υ s

• Decay angular distribution in the quarkonium rest frame ($p_T=0$)

$$\frac{d\sigma}{d\Omega} \sim 1 + \lambda \cos^2 \theta$$

- * Transverse : $\sigma_{\rm T}$; helicity: ± 1 ; $\lambda = 1$
- * Longitudinal : $\sigma_{\rm L}$; helicity: 0; $\lambda = -1$
- * Unpolarized : $\sigma_{T} = 2\sigma_{L}$; helicity: 0, ±1; $\lambda = 0$

•
$$\lambda = \frac{\sigma_T - 2\sigma_L}{\sigma_T + 2\sigma_L} = (1 - 2\sigma_L / \sigma_T) / (1 + 2\sigma_L / \sigma_T)$$

- σ_L / σ_T depends on the color spin states of the QQ pair : State: ${}^3S_1^{(1)}$ ${}^1S_0^{(8)}$ ${}^3P_J^{(8)}$ ${}^3S_1^{(8)}$ σ_L / σ_T : 1/3.4 1/2 1/6 0/1
- Polarization of $Q\overline{Q}$ is sensitive to the production mechanism

Drell-Yan angular distribution

Decay Angular Distribution of "naïve" Drell-Yan:

Data from Fermilab E772

Polarization of J/Ψ in p + Cu Collision

 $d\sigma/d\Omega \sim 1 + \lambda \cos^2\theta$

(λ =1: transversely polarized, λ = -1: longitudinally polarized λ = 0, unpolarized)

E866 data

- D-Y is transversely polarized
- Y(1S) is slightly polarized (like J/Ψ)
- Y(2S+3S) is transversely polarized!
- Preliminary result shows ψ ' is also transversely polarized!

It would be very interesting to measure J/ Ψ and Ψ ' polarization in SeaQuest and COMPASS/AMBER (expect difference between J/ Ψ and Ψ ')

Comparison between J/ Ψ and Ψ' for π +W at COMPASS (calculation by Wen-Chen Chang) J/ Ψ

qq̄ annihilation is the more dominant process for Ψ' production!!!
This suggests the possibility of using the J/Ψ and Ψ' data to separate the gg from the qq̄ contributions (gluon Sivers versus quark Sivers in TSSA)
This also suggests the possibility of different polarization for the COMPASS

- This also suggests the possibility of different polarization for the COMPASS J/Ψ and Ψ' data
- The cross section ratio of $\Psi' / (J/\Psi)$ is expected to have a postive slope for $x_F > 0_9$

Comparison between J/ Ψ and Ψ ' for π +W at COMPASS (calculation by Wen-Chen Chang)

 Ψ ' / (J/ Ψ)

• The cross section ratio of $\Psi' / (J/\Psi)$ is expected to have a postive slope for $x_F > 0$

Possible implications for COMPASS/AMBER

- J/ Ψ and Ψ' provide complementary information, since the $q\overline{q}$ and gg contributions for them are different
- Analysis of J/ Ψ and Ψ' production cross sections and polarization for the COMPASS data on NH₃ and W targets would be interesting
- Obtain the Ψ'/(J/Ψ) cross section ratio versus x_F. Check if the ratio has a positive slope
- Check if Ψ' has larger polarization than J/Ψ ?
- \bullet Improved mass resolution in AMBER would enable improved measurement of Ψ^\prime
- Ψ' production with kaon beam in AMBER would be new measurements