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Introduction

In hadron physics, one of the most important remaining challenges is to describe the
dynamics and structure of the proton in terms of its basic constituents (quarks and gluons).

The proton light-front wave function, defined on the null plane x+ = t + z = 0, gives through
the parton probability densities access to various observables.
For example:

Electromagnetic form factors
The parton distribution function
Generalized parton distribution functions

Additionally, the double parton scattering cross section depends on the double parton
distribution function (DPDF) [1]:

D(x1, x2,~η⊥) =
∞

∑
n=3

Dn(x1, x2,~q⊥) =
∞

∑
n=3

∫ d2k1⊥
(2π)2

d2k2⊥
(2π)2

{
∏

i 6=1,2

∫ d2ki⊥
(2π)2

∫ 1

0
dxi

}

×δ

(
1−

n

∑
i=1

xi

)
δ

(
n

∑
i=1

~ki⊥

)
Ψ†

n(x1,~k1⊥ +~η⊥ , x2,~k2⊥ −~η⊥ , ...)Ψn(x1,~k1⊥ , x2,~k2⊥ , ...) ,

(1)

The first of Mellin moments of DPDF has recently been calculated within lattice QCD [2].
[1] B. Blok et al, PRD 83 (2011) 071501 (R).
[2] G. S. Bali, JHEP09 (2021) 106.
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General goals

In the long-term perspective, to create a fully dynamical model for the proton in Minkowski
space including the infinite number of Fock components in the state vector.

It will then give direct access to observables defined on the light-front hyperplane.

In that sense complementary to the BLFQ (talk by Xingbo Zhao) and the quark-diquark
model by C. Roberts et al.

As a first step, Fock basis truncated to valence order and spin degree-of-freedom not
included.

Quark-diquark model were the the quark-quark transition amplitude has a pole representing
the s-wave diquark introduced through the zero-range interaction between two of the quarks.
In that sense it is an effective low-energy model.

The proton structure will be explored through the LF wave function and its Ioffe-time
representation. Results for the momentum distributions will also be presented.
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Three-body model
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Three spinless particles of mass m. Spectator + pair of interacting particles. Factor of two due
to symmetry of wave function with respect to exchange of the particles.

In the present work a zero-range interaction with four-leg-vertex iλ used. Then, for the
two-body amplitude (see figure)

iF (M2
12)) = iλ + (iλ)2B + (iλ)3B2 + ... =

1
(iλ)−1 −B(M2

12)
(2)

with

B(M2
12) =

∫ d4k
(2π)4

i
(k2 −m2 + iε)

i
[(k− P)2 −m2 + iε]

(3)

Regularized and renormalized by fixing a diquark pole in the scattering amplitude.
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Three-body Faddeev-Bethe-Salpeter equation with zero interaction

Faddeev-Bethe-Salpeter (FBS) equation with zero interaction [1]:

v(q, p) = 2iF (M2
12)
∫ d4k

(2π)4
i

k2 −m2 + iε
i

(p− q− k)2 −m2 + iε
v(k, p) (4)

Currently, bare propagators for the quarks.

v(q, p) is one of the Faddeev components of the total vertex function.

Di-quark concept introduced via assuming a pole in F (M2
12), corresponding either to a

two-body bound (a > 0) or virtual (a < 0) state, where a denotes the scattering length

F (M2
12), where M2

12 = (p− q)2, given by

F (M2
12) =

Θ(−M2
12)

1
16π2y

log 1+y
1−y −

1
16πma

+
Θ(M2

12)Θ(4m2 −M2
12)

1
8π2y′

arctan y′ − 1
16πma

+
Θ(M2

12 − 4m2)
y′′

16π2 log 1+y′′
1−y′′ −

1
16πma −

iy′′
16π

, (5)

The FBS equation was recently solved including the infinite number of Fock components in
Euclidean [2] and Minkowski [3] space.

[1] T. Frederico, PLB 282 (1992) 409
[2] E. Ydrefors et al, PLB 770 (2017) 131

[3] E. Ydrefors et al, PLB 791 (2019) 276
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Valence LF equation

After the LF projection, i.e. introducing k± = k0 ± kz and integrating over k−, one obtains the
three-body LF equation [1, 2]:

Γ(x, k⊥) =
F (M2

12)

(2π)3

∫ 1−x

0

dx′

x′(1− x− x′)

∫ ∞

0

d2k′⊥
M2

0 −M2
N

Λ(M2
0)Γ(x

′ , k′⊥) (6)

with the squared free three-body mass

M2
0 = (k′2⊥ + m2)/x′ + (k2

⊥ + m2)/x + ((k′⊥ + k⊥)2 + m2)/(1− x− x′) (7)

Form factor introduced via substraction, i.e.

[M2
0 −M2

N ]
−1 − [M2

0 + µ2]−1 = Λ(M2
0)[M

2
0 −M2

N ]
−1 → Λ(M2

0) = [M2
0 + µ2]−1[MN + µ2], (8)

where µ is a cut-off mass.

The form factor eliminates the unphysical ground state, with M2
N < 0, and also lead to an

infrared enhancement.

The three-body valence LF wave function is given by

Ψ3(x1,~k1⊥, x2,~k2⊥, x3,~k3⊥) =
Γ(x1,~k1⊥) + Γ(x2,~k2⊥) + Γ(x3,~k3⊥)√

x1x2x3(M2
N −M2

0(x1,~k1⊥, x2,~k2⊥, x3,~k3⊥))
, (9)

where due to momentum conservation: x3 = 1− x2 − x3 and~k3⊥ = −~k1⊥ −~k2⊥.

[1] J. Carbonell and V.A. Karmanov, PRC 67 (2003) 037001

[2] T. Frederico, PLB 282 (1992) 409
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Electromagnetic form factor

The valence contribution to the Dirac form factor is given by

F1(Q2) =

{
3

∏
i=1

∫ d2ki⊥
(2π)2

∫ 1

0
dxi

}
δ

(
1−

3

∑
i=1

xi

)
δ

(
3

∑
i=1

~kf
i⊥

)
Ψ†

3(x1,~kf
1⊥, ...)Ψ3(x1,~ki

1⊥, ...),

(10)
where Q2 =~q⊥ ·~q⊥ and the magnitudes of the momenta read∣∣∣~kf(i)

i⊥

∣∣∣2 =
∣∣∣~ki⊥ ±

~q⊥
2

xi

∣∣∣2 =~k2
i⊥ +

Q2

4
x2

i ±~ki⊥ ·~q⊥xi (i = 1, 2), (11)

and ∣∣∣~kf(i)
3⊥

∣∣∣2 =
∣∣∣±~q⊥

2
(x3 − 1)−~k1⊥ −~k2⊥

∣∣∣2 =

(1− x3)
2 Q2

4
± (1− x3)~q⊥ · (~k1⊥ +~k2⊥) + (~k1⊥ +~k2⊥)

2.
(12)
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Fit exp. data, Z. Ye et al

a = 2.7/m, m = 366 MeV, mu = 1.0 m

a = 3.5/m, m = 352 MeV, mu = 2.0 m

a = 5.0/m, m = 343 MeV, mu = 3.0 m

a = 9.0/m, m = 335 MeV, mu = 4.0 m

In figure Q2F(Q2) for different values of a and µ compared with fit to exp. data by Z. Ye et al.

Best agreement obtained for a = 2.7/m and µ = m with a constituent quark mass m = 366
MeV, and this parameters will be used in the following.

Fair agreement with exp. data for Q2 < 5 GeV2 but for larger values of Q2 they deviate,
presumably due to lack of a finite-range interaction.
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Results for the vertex function
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The proton structure contained in the vertex function Γ(x, k⊥). Concentrated at small k⊥ and
x ∼ 1/3.
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Parton distribution function at model scale

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.2  0.4  0.6  0.8  1

C
o

n
tr

ib
u

ti
o

n
x1

I11

I22 + I33

I12 + I13

I23

Total

The single parton distribution function (PDF), is the integrand of the form factor at Q2 = 0,
i.e.

f1(x1) =
1

(2π)6

∫ 1−x1

0
dx2

∫
d2k1⊥d2k2⊥ |Ψ3(x1,~k1⊥ , x2,~k2⊥ , x3,~k3⊥)|2 = I11 + I22 + I33 + I12 + I13 + I23.

(13)
with the Faddeev contributions

Iii =
1

(2π)6

∫ 1−x1

0
dx2

∫
d2k1⊥d2k2⊥

Γ2(xi,~ki⊥)

x1x2x3(M2
N −M2

0(x1,~k1⊥ , x2,~k2⊥ , x3,~k3⊥))2

Iij =
2

(2π)6

∫ 1−x1

0
dx2

∫
d2k1⊥d2k2⊥

Γ(xi,~ki⊥)Γ(xj,~kj⊥)

x1x2x3(M2
N −M2

0(x1,~k1⊥ , x2,~k2⊥ , x3,~k3⊥))2
; i 6= j.

(14)

The PDF at model scale is peaked around x = 1/3 and quite narrow. None of the Faddeev
contributions are negligble.
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PDF evolution

For the comparison with other frameworks and/or experimental data the PDF should be
evolved from the model scale to a higher scale.

In this work we use the all-order DGLAP evolution (see e.g. talk by Craig) and the
process-independent charge (EPJC 80 (2020) 1064):

α(k2) =
γmπ

log[K2(k2)/Λ2
QCD]

, K2(y) = (a2
0 + a1y + y2)/(b0 + y) (15)

The initial scale is given by the hadron scale Q0 = 0.330± 0.03 GeV.

The same evolution framework was used successfully for the pion (see previous talk by W. de
Paula).
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Proton PDF at Q = 3.097 GeV
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Colored areas: Computed u and d-quark xpdfs at Q = 3.097 GeV with the areas
corresponding to the uncertainty in initial scale Q0 = 0.330± 0.03 GeV.
Dash-dotted lines: Results from Y. Lu et al (see talk by Craig). Good agreement at least for
x . 0.5. Disagreement at large x probably due to the use of contact interaction in our model.
Dashed-lines: BLFQ [1] but evolved using same framework as in this work. Only good
agreement for small x.
Dotted lines: Results from the NNPDF 4.0 global fit. None of the models agree well with
these results.
A few remarks:

Model of this work and the one by Y. Lu et al, are both quark-diquark models, but the latter one has
also axial-vector diquark and a more realistic quark-quark interaction.
The BLFQ which is a Hamiltonian approach include (at least effectively) confinement, which is
lacking in the two other models.

[1] PRD 104, 094036 (2021)
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Distribution amplitude
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The distribution amplitude is defined as

φ(x1, x2) =
∫

d2k1⊥d2k2⊥Ψ3(x1,~k1⊥, x2,~k2⊥, x3,~k3⊥). (16)

It shows the dependence of the wave function on the momentum fractions for the case when
the quarks share the same position.

Triangular shape due to x1 + x2 ≤ 1. Distribution centered around x1 = x2 = 1/3 but quite
wide.
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Ioffe-time image of the valence state

Alternatively, the proton can be studied in the on the null-plane, in terms of the transverse
position (~bi⊥) and the Ioffe-time x̃i = b−i p+. The image of the proton is then obtained through
the Fourier transform of the proton LF wave function.

For simplicity, we consider here the case~b1⊥ =~b2⊥ =~0⊥, and then one has

Φ(x̃1, x̃2) ≡ Ψ̃3(x̃1,~0⊥, x̃2,~0⊥) =
∫ 1

0
dx1 eix̃1 x1

∫ 1−x1

0
dx2 eix̃2 x2 φ(x1, x2) , (17)
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For x̃1 >= 10 a rather dramatic decrease of the amplitude is seen.

An exponential damping is seen with respect to the relative distance in Ioffe-time between
the two quarks. We expect this damping to be even more significant if confinement is
incorporated, as its more effective at large distances.
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The valence double parton distribution function (DPDF) is given by

D3(x1, x2;~η⊥) =
1

(2π)6

∫
d2k1⊥d2k2⊥

×Ψ†
3(x1,~k1⊥ +~η⊥ ; x2,~k2⊥ −~η⊥ ; x3,~k3⊥)Ψ3(x1,~k1⊥ ; x2,~k2⊥ ; x3,~k3⊥).

(18)

Fourier transform of D3(x1, x2,~η⊥) in ~η⊥ gives the probability of finding the quarks 1 and 2
with momentum fractions x1 and x2 at a relative distance~y⊥ within the proton.

In the figure is shown results for η⊥ = 0, showing a distribution centered around
x1 = x2 = 1/3.
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Transverse momentum densities
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The single quark transverse momentum density in the forward limit and integrated in the
longitudinal momentum is associated with the probability density to find a quark with
momentum k⊥.
It can be computed as:

L1(k1⊥) =
k1⊥
(2π)6

∫ 1

0
dx1

∫ 1−x1

0
dx2

∫ 2π

0
dθ1

∫
d2k2⊥|ψ3(x1,~k1⊥, x2,~k2⊥, x3,~k3⊥)|2. (19)

Two-quark one:

L2(k1⊥, k2⊥) =
k1⊥k2⊥
(2π)6

∫ 1

0
dx1

∫ 1−x1

0
dx2

∫ 2π

0
dθ1

∫ 2π

0
dθ2|ψ3(x1,~k1⊥, x2,~k2⊥, x3,~k3⊥)|2.

(20)
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Work in progress: Going beyond the valence order

The three-body FBS equation with zero-range interaction, including the infinite number of
Fock components, was solved by direct integration in Minkowski space in Ref. [1]. However,
the solution was quite difficult from numerical point of view.

However, like in the two-body case, the Nakanishi integral representation be used for vertex
function:

v(q; p) =
∫ 2/3

−4/3
dz
∫ ∞

0

dγg(γ, z)
γ− k2 − (p · q)z− iε

(21)

For the two-body scattering amplitude

F (M2
12) =

∫ ∞

4m2
dγ

ρ(γ)

M2
12 − γ + iε

(22)

with the spectral function

ρ(γ) = − θ(s− 4m2)

16π2
y′′(

y′′

16π2 log 1+y′′
1−y′′ −

1
16πma

)2
+
(

y′′
16π

)2 (23)

Construction of the integral equation for g(γ, z) and its solution is under development.

Observables could then be computed including all the infinite number of Fock components.

[1] E. Ydrefors et al, PLB 791 (2019) 276
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Conclusions

We have, in this work, studied the proton in a simple but fully dynamical valence LF model
based on a zero-range interaction.

The model is based on the concept of a strongly interacting scalar diquark.

We have studied the structure of the proton by computing the LF wave function in its
Ioffe-time representation and also momentum distributions.

However, the model is rather crude since e.g. the spin degree of freedom hasn’t been
included yet. But is a first step towards studying the proton directly in Minkowski space.
Future plans:

Generalization to the infinite set of Fock components (The Faddeev-Bethe-Salpeter equation solved in
PLB 791 (2019) 276)
Implementation of a more realistic interaction (gluon exchange)
Inclusion of spin degree of freedom
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