Perceiving the Emergence of Hadron Mass through AMBER@CERN

10 - 13 May 2022 CERN, Geneve - Switzerland

Dimuon production with RF separated beams

Stephane Platchkov

Paris-Saclay University, CEA/IRFU, France

S. Platchkov, EHM7

RF-separated beam parameters

- RF kaons: expected parameters...
 - Energy: up to 80 GeV
 - Flux: $\sim 5x10^5$ kaons/s (instead of ~ 40 more, optimistically assumed)
- ♦ Corollary
 - Drell-Yan measurements: no significant improvement vs available data
 - Charmonium measurements: much larger cross sections => yes, possible
- Thinking positive...
 - Low intensity allows for an open spectrometer => better mass resolution
 - At lower energies the $q\bar{q}$ term (in J/ ψ prod.) becomes dominant (vs gg)

The celebrated 40y old kaon data from NA3

- only information on the kaon PDF.
- AMBER RF: marginal improvement...
- A good news: K^- and π^- same beam
- Kaon-induced J/ ψ production data
 - also from NA3, no PDF information

Beam energy dependence: 190 GeV vs 80 GeV

Lower energy = smaller cross section, but also: much smaller gg contribution; the $q\bar{q}$ term is dominant

Beam charge dependence: K⁺ vs K⁻80 GeV

The K^+ cross section is smaller than the K^- one Charge symmetry: the *gg* contributions are equal

J/ψ – access to the kaon valence PDF

K⁺($u\bar{s}$); K($\bar{u}s$)

Production cross section for K⁺ and K⁻

 $K^{-}(\overline{u}s) + p(uud) \propto gg + \left[\overline{u}_{v}^{K}u_{v}^{p}\right] + \left[\overline{u}_{v}^{K}u_{s}^{p} + s_{v}^{K}s_{s}^{p}\right] + \left[\overline{u}_{s}^{K}u_{v}^{p}\right] + \left[\overline{u}_{s}^{K}u_{s}^{p} + u_{s}^{K}\overline{u}_{s}^{p} + s_{s}^{K}\overline{s}_{s}^{p} + \overline{s}_{s}^{K}s_{s}^{p}\right]$ $K^{+}(u\overline{s}) + p(uud) \propto gg + \left[--\right] + \left[u_{v}^{K}\overline{u}_{s}^{p} + \overline{s}_{v}^{K}s_{s}^{p}\right] + \left[\overline{u}_{s}^{K}u_{v}^{p}\right] + \left[\overline{u}_{s}^{K}u_{s}^{p} + u_{s}^{K}\overline{u}_{s}^{p} + s_{s}^{K}\overline{s}_{s}^{p} + \overline{s}_{s}^{K}s_{s}^{p}\right]$ val-val val-sea sea-val sea-sea

• The cross section difference isolates the val-val term: $S(K^{-}) - S(K^{+}) \mid \overline{u}_{u}^{K} u_{u}^{p}$

- Assumptions
 - Flux: $5.10^{5}/s$
 - ~10 000 events for each beam (conservative number)
 - Beam sharing: ~70 d of Kand ~210 d of K+
 - 3 carbon targets, length of 25cm each
 - x_F coverage: 0.00 0.95
- Lower panel: statistical errors in %

Assumptions

 Both K charges measured with ~10⁴ events

Plotted quantity

- The valence-valence part $(\bar{u}u)$ of the J/ ψ production cross section for K⁻
- 3 different models for the pion PDF-u
- The errors include both statistical and systematic (4%) uncertainties

valence-valence term of K- only.

Additional opportunities

- Kaon-induced ψ ' production
 - Unknown: can be measured for both kaon charges

talk by J.-C. Peng (Thu)

E771 Collaboration / Physics Letters B 374 (1996) 271-276

- χ_c production and decay to J/ ψ
 - detect photons in coincidence
 - not known for kaon beams

Conclusions on RF separated K beams

- Drell-Yan data: very limited statistics
 - Only marginal improvement of the available data
- Charmonium production: mass resolution=> good J/ ψ and ψ ' separation
 - J/ ψ production: can be used to determine the kaon valence PDF with very good accuracy
 - ψ ' production: has never been measured with kaon beams. Brings information on the kaon structure
 - χ_c production: never measured for kaons; can be done by detecting photons in coincidence.