Kaon-induced prompt-photon production with RF-separation at the M2 beamline

on behalf of the AMBER Prompt-photon working group

A. Guskov, JINR 10.5.22

Prompt photons and gluon PDFs

data $\rightarrow \sigma_{inclusive \gamma}(p_T, x_F) \rightarrow g_K(x_K)$

Gluon Compton scattering

$$d\sigma_{AB} = \sum_{a,b=q,\bar{q},g} \int dx_a dx_b f_a^A(x_a,\mu^2) f_b^B(x_b,\mu^2) d\sigma_{ab\to\gamma X}(x_a,x_b,\mu^2).$$

Experiment	Beam and target	\sqrt{s} , GeV	y range	x_T range
E95 (1979)	p; Be	19.4, 23.75	-0.7 - 0.7	0.15 - 0.45
E629 (1983)	p, π^+ ; C	19.4	-0.75 - 0.2	0.22 - 0.52
NA3 (1986)	p, π^+ , π^- ; C	19.4	-0.4 - 1.2	0.26 - 0.62
NA24 (1987)	p, π^+ , π^- ; p	23.75	-0.65 - 0.52	0.23 - 0.59
WA70 (1988)	p, π^+ , π^- ; p	22.96	-0.9 - 1.1	0.35 - 0.61
E706 (1993)	p, π^- ; Be	30.63	-0.7 - 0.7	0.20 - 0.65
E704 (1995)	p; p	19.4	< 0.74	0.26 - 0.39
UA6 (1993,1998)	$\bar{p}; p$	24.3	-0.2 - 1.0	0.34 - 0.50

100 GeV kaon beam → √s=13.7 GeV → extremely challenging task

Prompt photons at AMBER

- COMPASS DVCS-like setup
- We have some amount of 2017 data with pion beam that we are trying to use for tests

Observables

- JAM21PionPDFnIonII_cosine JAM21PionPDFnIonII_expansion
- _____JAM21PionPDFnIonII_double_Mellin _____xFitterPI_NLO_EIG
- __ xFitterPI_NLO_VAR

 $\sigma_{K}, \sigma_{K^{+}} - \sigma_{K^{-}}, \sigma_{K}/\sigma_{\pi}, (\sigma_{K^{+}} - \sigma_{K^{-}})/\sigma_{\pi}, \dots$ Optimization is ongoing

Setup optimisation

- Target thickness & material
- Hodoscope in front of ECAL0
- Shielding upstream the target
- Transparency of the setup
- Trigger conditions

Target

$$R \sim \frac{\Lambda_K \lambda_{\gamma}}{\Lambda_K - \lambda_{\gamma}} \times (e^{-h/\Lambda_K} - e^{-h/\lambda_{\gamma}})$$

Wide-target approximation: R is large enough

20-50 cm of graphite or aluminium looks to be the most realistic.

Target & statistics

prompt-y production rate

x4 higher yield with respect to the Lol !

So, even for the kaon beam intensity of 5e5 per spill we could have more than 100k events per year (p_T>2 GeV/c)

Hodoscope in front of ECAL0

So, now we sure that neutral and charged clusters can be effectively separated, it is a question of further optimisation of the hodoscope (one or 2 coordinates, slab width, distance to the ECAL surface etc.

Shielding upstream the target

Setup transparency

We should have ECAL0 and ECAL1 in the trigger
Clusters with high p_T
Digital trigger (?)

Not only prompt photons!

p_>2 GeV/c $\sigma_{\mathbf{K}}/\sigma_{\pi}$ E=100 GeV 1.4 1.2 **High-pT** π^0 are not only a background fc prompt-photon signal. They also a complimentary way to access the gluor 0.8 content! 0.6 π GRV gluon PDF for K 0.4 no gluons in K 0.2 100 GeV K+ beam (pion GRV PDF for gluon: 0L -0.5 0.5 0 E=100 GeV σ**κ**/σ_π x_⊏>0 51 % qg→qg 1.6 LO 33 % gg→gg 1.4 15 % 1.2 dd→dd qqbar→qqbar 0.8 1 % qqbar→gg π GRV gluon PDF for K 0.6 no gluons in K gg→qqbar 0.4 0.2 00 2.5 3.5 4.5 p_, GeV/c 1.5 3 05 2 4

Summary

Prompt-photon production is an instrument to access gluon content of kaon;

COMPASS-based experimental setup looks to be convenient for study of the kaon-induced prompt-photon production but some optimization is needed;

Production of high-pT neutral pions is a complimentary way to access gluons with the same experimental setup;

AMBER Prompt-Photon working group works on preparation of the corresponding part of the Phase II Proposal.