Kaon-Induced Spectroscopy with RF-Separation at the M2 Beamline

Stefan Wallner (swallner@mpp.mpg.de)

Max-Planck Institute for Physics

Preceiving the Emergence of Hadron Mass through AMBER@CERN May 10, 2022

Understanding the light-meson spectrum

- Completing SU(3)_{flavor} multiplets
- Identifying supernumerous states
 - ➡ Search for exotic strange mesons

nput to other fields of physics

- Strange mesons appear as resonances in multi-body hadronic final states with kaons
- Searches for CP violation
- Searches for physics beyond SM

Understanding the light-meson spectrum

- Completing SU(3)_{flavor} multiplets
- Identifying supernumerous states
 - ➡ Search for exotic strange mesons

Input to other fields of physics

- Strange mesons appear as resonances in multi-body hadronic final states with kaons
- Searches for CP violation
- Searches for physics beyond SM

PDG lists 25 strange mesons

- 16 established states, 9 need further confirmation
- Missing states with respect to quark-model predictions
- Many measurements performed more than 30 years ago

Decays of heavier states

- \blacktriangleright τ leptons, charmed mesons, and charmonium states: limited mass range
- B mesons: modeling of large Dalitz plots difficult

Diffractive production

- Using high-energy kaon beam
- Strange mesons appear as intermediate resonances
- Allows us to
 - access in principle all strange mesons
 - study a wide mass range
 - study different decay modes

Decays of heavier states

- \blacktriangleright τ leptons, charmed mesons, and charmonium states: limited mass range
- B mesons: modeling of large Dalitz plots difficult

Diffractive production

- Using high-energy kaon beam
- Strange mesons appear as intermediate resonances
- Allows us to
 - access in principle all strange mesons
 - study a wide mass range
 - study different decay modes

Strange-Meson Spectroscopy at COMPASS COMPASS Setup for Hadron Beams

Strange-Meson Spectroscopy at COMPASS The $K^-\pi^-\pi^+$ Data Sample

World's largest data set of about 720 k events

- Rich spectrum of overlapping and interfering X
 - Dominant well known states
 - States with lower intensity are "hidden"

Strange-Meson Spectroscopy at COMPASS The $K^{-}\pi^{-}\pi^{+}$ Data Sample

- World's largest data set of about 720 k events
- Rich spectrum of overlapping and interfering X⁻
 - Dominant well known states
 - States with lower intensity are "hidden"

Partial-Wave Analysis of $K^-\pi^-\pi^+$ Final State

Partial wave: $J^P M^{\varepsilon} \xi b^- L$

- J^P spin and parity
- ▶ M^ε spin projection
- ξ isobar resonance
- b⁻ bachelor particle
- L orbital angular momentum

Partial-Wave Analysis of $K^-\pi^-\pi^+$ Final State

Partial wave: $J^P M^{\varepsilon} \xi b^- L$

- J^P spin and parity
- M^{ε} spin projection
- ξ isobar resonance
- b⁻ bachelor particle
- L orbital angular momentum

Partial-Wave Analysis of $K^-\pi^-\pi^+$ Final State

- ▶ Signal in $K_2^*(1430)$ mass region
- In different decays
 - ρ(770) K D
 - K*(892) π D
- Cleaner signal in COMPASS data

Partial-Wave Analysis of $K^-\pi^-\pi^+$ Final State

- Signal in $K_2^*(1430)$ mass region
- In different decays
 - ρ(770) K D
 - K*(892) π D
- Cleaner signal in COMPASS data

Partial-Wave Analysis of $K^-\pi^-\pi^+$ Final State

Partial waves with $J^P = 2^+$ $K^$ p p $K^ R^+$ $R^ R^+$ $R^ R^+$ $R^ R^+$ $R^ R^ R^-$

- ▶ Signal in $K_2^*(1430)$ mass region
- In different decays
 - ρ(770) K D
 - K*(892) π D
- In agreement with previous measurement
- Cleaner signal in COMPASS data

WA03 (CERN), 200 000 events, ACCMOR, Nucl. Phys. B 187 (1981)

Only a sub-set of waves affected

Limited kinematic range of final-state PID

➡ Loss of distinguishing power for some partial waves

Analysis artifacts in these waves

Artifacts can be identified

Only a sub-set of waves affected

- Limited kinematic range of final-state PID
 - ➡ Loss of distinguishing power for some partial waves
- Analysis artifacts in these waves

- Artifacts can be identified
- Only a sub-set of waves affected

Main limiting factors

► Final-state particle identification

• Low kaon fraction in the beam ($\approx 2\%$)

Goal: 10×larger data sample

- Diffraction of high-energy kaon beam
- RF-separation to increase kaon fraction in beam

- Improved precision
- Study also small signals in data
- Access to novel analysis methods

Goal: 10×larger data sample

- Diffraction of high-energy kaon beam
- RF-separation to increase kaon fraction in beam

- Improved precision
- Study also small signals in data
- Access to novel analysis methods

- K₀^{*} mesons (J^P = 0⁺) cannot be directly produced in diffractive scattering
- K_0^* mesons appear in $K^-\pi^+$ sub-system of the $K^-\pi^-\pi^+$ final state
- Freed-isobar method allows us to measure mesons in sub-systems
 - \blacktriangleright Developed and successfully applied to COMPASS $\pi^-\pi^-\pi^+$ sample
 - Requires large data samples

- K₀^{*} mesons (J^P = 0⁺) cannot be directly produced in diffractive scattering
- K_0^* mesons appear in $K^-\pi^+$ sub-system of the $K^-\pi^-\pi^+$ final state
- Freed-isobar method allows us to measure mesons in sub-systems
 - Developed and successfully applied to COMPASS $\pi^-\pi^-\pi^+$ sample
 - Requires large data samples

High-Precision Strange-Meson Spectroscopy at AMBER Requirements for AMBER Setup

Upgrade of final-state particle identification

- Cover wide momentum range
- Uniform acceptance
- Efficient beam particle identification for high-purity sample
 - High rate capability
 - Small beam divergence
- High-resolution beam telescope and vertex detector
- Recoil target detector
 - Ensures exclusivity
- Efficient photon detection over wide kinematic range
 - ► Access to final states with neutral particles: $K^-\eta^{(\prime)}$, $K^-\pi^0$, $K^-\omega$, ...
- Trigger for low momentum-transfer events

Conclusion

The Strange-Meson Spectrum

- Many strange mesons require further confirmation
- Search for strange partners of exotic non-strange light mesons

High-Precision Strange-Meson Spectroscopy at AMBER

- Collect 10×data sample using high-intensity and high-energy RF-separated kaon beam
 - Study small signals
 - Access to novel analysis methods
- Rewrite the PDG for strange mesons
 - With a single and self-consistent measurement
- Requires experimental setup
 - with uniform acceptance over wide kinematic range
 - including particle identification and measurement of neutral particles

- Many strange mesons require further confirmation
- Search for strange partners of exotic non-strange light mesons

High-Precision Strange-Meson Spectroscopy at AMBER

- Collect 10×data sample using high-intensity and high-energy RF-separated kaon beam
 - Study small signals
 - Access to novel analysis methods
- Rewrite the PDG for strange mesons
 - With a single and self-consistent measurement
- Requires experimental setup
 - with uniform acceptance over wide kinematic range
 - including particle identification and measurement of neutral particles