Introduction to Special Relativity

Pichet Vanichchapongjaroen

The Institute for Fundamental Study (IF), Naresuan University, Thailand

โครงการอบรมฟิสิกส์อนุภาคพื้นฐาน 2565

Mahidol Wittayanusorn School

5-7 May 2022

Speed of light in vacuum

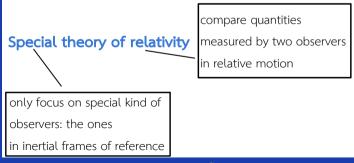
- Waves travel in medium.

- Light can still travel through space. Medium: **aether**.

- Michelson-Morley experiment tries to measure

the velocity of Earth with respect to aether.

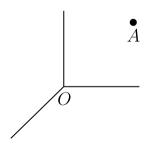
- Measuring speed of light in two directions to find the difference.
- No difference found -> failed


Einstein's Postulates

1. The law of physics are the same in all inertial frames

of reference.

2. The speed of light in vacuum has the same value in


all inertial frames of reference.

Frame of reference

To describe position, velocity, acceleration, etc. of an object, we need to specify "who is measuring".

To quantify this, we set up a coordinate system.

At time t, position, velocity, and acceleration of object Awith respect to O are (x(t), y(t), z(t)), $\vec{v}(t)$, and $\vec{a}(t)$, respectively. Introduction to Special Relativity

Inertial Frame of reference

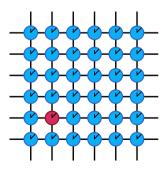
When there is no force acting on an object, if the velocity of that object as measured by a frame of reference is a constant, then that frame of reference is called an inertial frame of reference. ้โครงการอบรมฟิสิกส์อนุภาคพื้นฐาน 2565

Introduction to Special Relativity

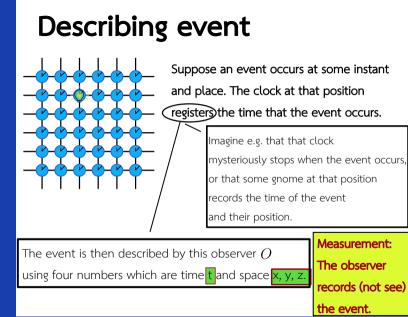
Event

Event: a physical occurence at a certain instant and place. Examples of event:

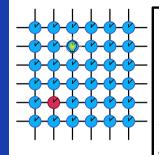
- A light bulb going off


- A tree falling

Each observer describes an event


by specifying time t and spatial coordinates x, y, z

Grid of clocks


Consider an inertial observer. Let us suppose that there is a 3D grid with a clock at each intersection. These clocks are in sync, and tick at the same rate.

We should specify a point to be the origin (x, y, z) = (0, 0, 0). For example, the position of the red clock. We should also specify a reference time t=0. For example, today at noon.

Measuring versus seeing

Inertial observer **measures** the event:

- specify the origin (as well as axes)
- specify starting time
- wait until the event happens
- the time and position that the event occurs

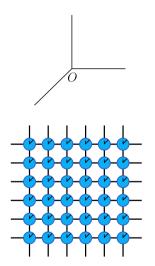
is recorded (say, when the event occurs,

a gnome at that position records the time on the clock).

The observer **sees** the event:

wait until the signal from the event

reaches the origin.


Unless otherwise stated, observer describes event by measuring.

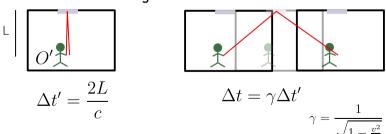
โครงการอบรมฟิสิกส์อนุภาคพื้นฐาน 2565

8

Introduction to Special Relativity

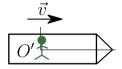
Observer

Simple viewpoint: someone staying at the origin of their coordinate system


Complicated viewpoint: a 3D grid of clocks (with a gnome at each position recording time and space events)

Light and mirror

Consider two inertial observers

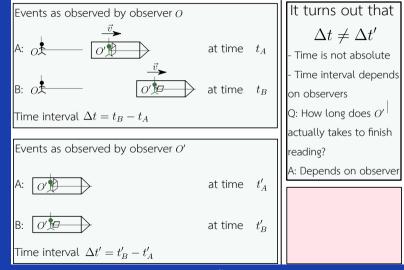

Observer O' shines light which reflects off the mirror

Time dilation

Consider two inertial observers

and two events:

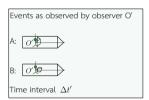
A: observer O' starts reading


B: observer O' finishes reading

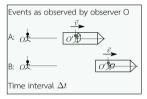
We have to state who is observing the events.

Introduction to Special Relativity

Time dilation (2)


Time dilation (3)

Definition: proper time is a time interval when


two events occur at the same place

Property: For inertial observers

time interval between two events > proper time

 $\Delta t'$ is the proper time between the events A and B

 $\Delta t > \Delta t'$

Time dilation

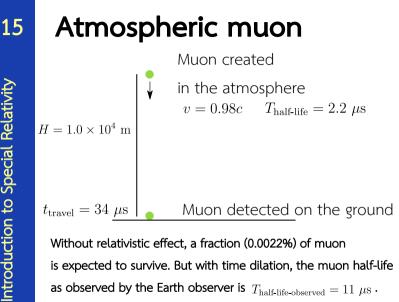
Time dilation (4)

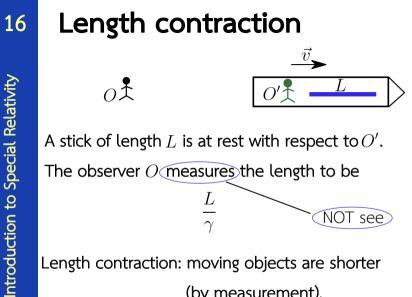
Let $\Delta\tau$ be a proper time for a(n appropriate) pair of events.

The corresponding frame is called the **rest frame**.

An observer moving with velocity \vec{v} relative to the rest frame

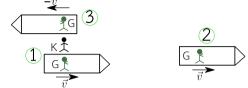
will measure the time interval to be


$$\Delta t = \gamma \Delta \tau$$


Example: Suppose that the proper time is $\Delta au = 4~{
m s}$, and that the relative speed between the two frames is ~v=0.6c. This gives

$$\gamma = \frac{5}{4}$$
$$\Delta t = 5 \text{ s}$$

So



So 12% of muon is expected to survive. This agrees with experiment.

Length contraction: moving objects are shorter (by measurement).

Twin paradox

Consider a pair of twin K and G. K stays on Earth. G travels to a distant star

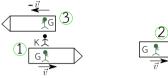
with speed v, then immediately returns. When they meet, who are older?

Wrong interpretation 1: From K (G) perspective, G (K) keeps moving. So from

"moving clocks are slower", the time G (K) takes for the journey are shorter.

So K (G) will become older when they meet. CONFUSION

Wrong interpretation 2: Event (1) and (3) occur at the same position


from the perspective of both K and G. So the journey time is proper time.

Both of them should be aged the same.

โครงการอบรมฟิสิกส์อนุภาคพื้นฐาน 2565

17

Resolving the twin paradox

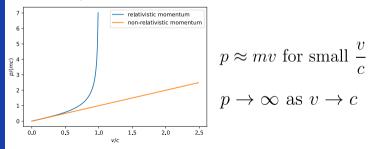
When they meet, who is older?

Wrong interpretation 1: From K (G) perspective, G (K) keeps moving. So from "moving clocks are slower", the time G (K) takes for the journey are shorter. So K (G) will become older when they meet. CONFUSION

Wrong interpretation 2: Event (1) and (3) occur at the same position from the perspective of both K and G. So the journey time is proper time. Both of them should be aged the same.

Both of these interpretations are wrong because G is not in an inertial frame.

Correct interpretation: Consider events (1) and (2). During these events, both K and G are inertial observers. The time measured by G is proper time, which is shorter than that measured by K. The same conclusion can be obtained when we consider events (2) and (3). So when they meet, K is older.

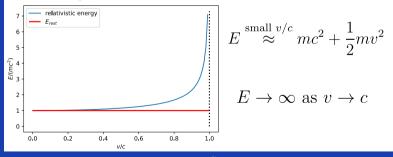

Introduction to Special Relativity

Relativistic momentum

$$\vec{p} = \gamma m \vec{v} = \frac{m \vec{v}}{\sqrt{1 - \frac{v^2}{c^2}}}$$

This form ensures that conservation of momentum

holds in any inertial frame of reference.



Relativistic energy $E = \gamma mc^2 = \frac{mc^2}{\sqrt{1-v^2}}$

This form ensures that conservation of energy

holds in any inertial frame of reference.

Energy-momentum-mass relation

From
$$E=\gamma mc^2$$
 and $~ec{p}=\gamma mec{v}$,

it can be shown that

$$E^2 = p^2 c^2 + m^2 c^4$$

This also applies to massless particle: E = pc when m = 0

Energy and momentum of photon

A photon of frequency f has wavelength $\lambda = f/c$. The photon has energy E = hf, and momentum $p = \frac{h}{\lambda}$. This agrees with E = pc.

Proved by Compton scattering:

wavelength of photon changes

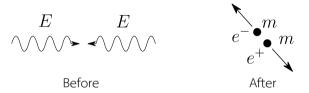
after colliding with an electron.

Conservation laws

Consider collisions of elementary particles.

Energy and momentum are conserved in the process.

However, total mass does not need to be conserved.


Elastic scattering: total mass is conserved.

Inelastic scattering: total mass is not conserved.

Pair production

Two photons producing an electron-positron pair

Consider two photons, each with energy E colliding with each other to produce an electron-positron pair. The least energy for this process to occur is $E_{\rm threshold} = mc^2 \approx 0.51 \; {\rm MeV}_{\rm for \; electron}$ When $E = E_{\rm threshold}$, the electron and positron are at rest. But when $E > E_{\rm threshold}$, they move in the opposite direction

with the same speed.